blob: b160d759d269ce95a5dd71a647cac3c800cb0a14 [file] [log] [blame] [edit]
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math';
import 'package:flutter/material.dart';
import 'package:vector_math/vector_math.dart' show Vector2;
// Provides calculations for an object moving with inertia and friction using
// the equation of motion from physics.
// https://en.wikipedia.org/wiki/Equations_of_motion#Constant_translational_acceleration_in_a_straight_line
// TODO(justinmc): Can this be replaced with friction_simulation.dart?
@immutable
class InertialMotion {
const InertialMotion(this._initialVelocity, this._initialPosition);
static const double _kFrictionalAcceleration = 0.01; // How quickly to stop
final Velocity _initialVelocity;
final Offset _initialPosition;
// The position when the motion stops.
Offset get finalPosition {
return _getPositionAt(Duration(milliseconds: duration.toInt()));
}
// The total time that the animation takes start to stop in milliseconds.
double get duration {
return (_initialVelocity.pixelsPerSecond.dx / 1000 / _acceleration.x).abs();
}
// The acceleration opposing the initial velocity in x and y components.
Vector2 get _acceleration {
// TODO(justinmc): Find actual velocity instead of summing?
final double velocityTotal = _initialVelocity.pixelsPerSecond.dx.abs()
+ _initialVelocity.pixelsPerSecond.dy.abs();
final double vRatioX = _initialVelocity.pixelsPerSecond.dx / velocityTotal;
final double vRatioY = _initialVelocity.pixelsPerSecond.dy / velocityTotal;
return Vector2(
_kFrictionalAcceleration * vRatioX,
_kFrictionalAcceleration * vRatioY,
);
}
// The position at a given time.
Offset _getPositionAt(Duration time) {
final double xf = _getPosition(
r0: _initialPosition.dx,
v0: _initialVelocity.pixelsPerSecond.dx / 1000,
t: time.inMilliseconds,
a: _acceleration.x,
);
final double yf = _getPosition(
r0: _initialPosition.dy,
v0: _initialVelocity.pixelsPerSecond.dy / 1000,
t: time.inMilliseconds,
a: _acceleration.y,
);
return Offset(xf, yf);
}
// Solve the equation of motion to find the position at a given point in time
// in one dimension.
double _getPosition({required double r0, required double v0, required int t, required double a}) {
// Stop movement when it would otherwise reverse direction.
final double stopTime = (v0 / a).abs();
if (t > stopTime) {
t = stopTime.toInt();
}
return r0 + v0 * t + 0.5 * a * pow(t, 2);
}
}