blob: 328299e2e9ef2e623fbfd6760c94fdc9fbe85a5b [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'dart:ui' show lerpDouble, hashValues;
import 'package:flutter/foundation.dart';
import 'box.dart';
import 'object.dart';
/// An immutable 2D, axis-aligned, floating-point rectangle whose coordinates
/// are given relative to another rectangle's edges, known as the container.
/// Since the dimensions of the rectangle are relative to those of the
/// container, this class has no width and height members. To determine the
/// width or height of the rectangle, convert it to a [Rect] using [toRect()]
/// (passing the container's own Rect), and then examine that object.
///
/// The fields [left], [right], [bottom], and [top] must not be null.
@immutable
class RelativeRect {
/// Creates a RelativeRect with the given values.
///
/// The arguments must not be null.
const RelativeRect.fromLTRB(this.left, this.top, this.right, this.bottom)
: assert(left != null && top != null && right != null && bottom != null);
/// Creates a RelativeRect from a Rect and a Size. The Rect (first argument)
/// and the RelativeRect (the output) are in the coordinate space of the
/// rectangle described by the Size, with 0,0 being at the top left.
factory RelativeRect.fromSize(Rect rect, Size container) {
return new RelativeRect.fromLTRB(rect.left, rect.top, container.width - rect.right, container.height - rect.bottom);
}
/// Creates a RelativeRect from two Rects. The second Rect provides the
/// container, the first provides the rectangle, in the same coordinate space,
/// that is to be converted to a RelativeRect. The output will be in the
/// container's coordinate space.
///
/// For example, if the top left of the rect is at 0,0, and the top left of
/// the container is at 100,100, then the top left of the output will be at
/// -100,-100.
///
/// If the first rect is actually in the container's coordinate space, then
/// use [RelativeRect.fromSize] and pass the container's size as the second
/// argument instead.
factory RelativeRect.fromRect(Rect rect, Rect container) {
return new RelativeRect.fromLTRB(
rect.left - container.left,
rect.top - container.top,
container.right - rect.right,
container.bottom - rect.bottom
);
}
/// A rect that covers the entire container.
static const RelativeRect fill = const RelativeRect.fromLTRB(0.0, 0.0, 0.0, 0.0);
/// Distance from the left side of the container to the left side of this rectangle.
///
/// May be negative if the left side of the rectangle is outside of the container.
final double left;
/// Distance from the top side of the container to the top side of this rectangle.
///
/// May be negative if the top side of the rectangle is outside of the container.
final double top;
/// Distance from the right side of the container to the right side of this rectangle.
///
/// May be negative if the right side of the rectangle is outside of the container.
final double right;
/// Distance from the bottom side of the container to the bottom side of this rectangle.
///
/// May be negative if the bottom side of the rectangle is outside of the container.
final double bottom;
/// Returns whether any of the values are greater than zero.
///
/// This corresponds to one of the sides ([left], [top], [right], or [bottom]) having
/// some positive inset towards the center.
bool get hasInsets => left > 0.0 || top > 0.0 || right > 0.0 || bottom > 0.0;
/// Returns a new rectangle object translated by the given offset.
RelativeRect shift(Offset offset) {
return new RelativeRect.fromLTRB(left + offset.dx, top + offset.dy, right - offset.dx, bottom - offset.dy);
}
/// Returns a new rectangle with edges moved outwards by the given delta.
RelativeRect inflate(double delta) {
return new RelativeRect.fromLTRB(left - delta, top - delta, right - delta, bottom - delta);
}
/// Returns a new rectangle with edges moved inwards by the given delta.
RelativeRect deflate(double delta) {
return inflate(-delta);
}
/// Returns a new rectangle that is the intersection of the given rectangle and this rectangle.
RelativeRect intersect(RelativeRect other) {
return new RelativeRect.fromLTRB(
math.max(left, other.left),
math.max(top, other.top),
math.max(right, other.right),
math.max(bottom, other.bottom)
);
}
/// Convert this [RelativeRect] to a [Rect], in the coordinate space of the container.
///
/// See also:
///
/// * [toSize], which returns the size part of the rect, based on the size of
/// the container.
Rect toRect(Rect container) {
return new Rect.fromLTRB(left, top, container.width - right, container.height - bottom);
}
/// Convert this [RelativeRect] to a [Size], assuming a container with the given size.
///
/// See also:
///
/// * [toRect], which also computes the position relative to the container.
Size toSize(Size container) {
return new Size(container.width - left - right, container.height - top - bottom);
}
/// Linearly interpolate between two RelativeRects.
///
/// If either rect is null, this function interpolates from [RelativeRect.fill].
///
/// The `t` argument represents position on the timeline, with 0.0 meaning
/// that the interpolation has not started, returning `a` (or something
/// equivalent to `a`), 1.0 meaning that the interpolation has finished,
/// returning `b` (or something equivalent to `b`), and values in between
/// meaning that the interpolation is at the relevant point on the timeline
/// between `a` and `b`. The interpolation can be extrapolated beyond 0.0 and
/// 1.0, so negative values and values greater than 1.0 are valid (and can
/// easily be generated by curves such as [Curves.elasticInOut]).
///
/// Values for `t` are usually obtained from an [Animation<double>], such as
/// an [AnimationController].
static RelativeRect lerp(RelativeRect a, RelativeRect b, double t) {
assert(t != null);
if (a == null && b == null)
return null;
if (a == null)
return new RelativeRect.fromLTRB(b.left * t, b.top * t, b.right * t, b.bottom * t);
if (b == null) {
final double k = 1.0 - t;
return new RelativeRect.fromLTRB(b.left * k, b.top * k, b.right * k, b.bottom * k);
}
return new RelativeRect.fromLTRB(
lerpDouble(a.left, b.left, t),
lerpDouble(a.top, b.top, t),
lerpDouble(a.right, b.right, t),
lerpDouble(a.bottom, b.bottom, t),
);
}
@override
bool operator ==(dynamic other) {
if (identical(this, other))
return true;
if (other is! RelativeRect)
return false;
final RelativeRect typedOther = other;
return left == typedOther.left &&
top == typedOther.top &&
right == typedOther.right &&
bottom == typedOther.bottom;
}
@override
int get hashCode => hashValues(left, top, right, bottom);
@override
String toString() => 'RelativeRect.fromLTRB(${left?.toStringAsFixed(1)}, ${top?.toStringAsFixed(1)}, ${right?.toStringAsFixed(1)}, ${bottom?.toStringAsFixed(1)})';
}
/// Parent data for use with [RenderStack].
class StackParentData extends ContainerBoxParentData<RenderBox> {
/// The distance by which the child's top edge is inset from the top of the stack.
double top;
/// The distance by which the child's right edge is inset from the right of the stack.
double right;
/// The distance by which the child's bottom edge is inset from the bottom of the stack.
double bottom;
/// The distance by which the child's left edge is inset from the left of the stack.
double left;
/// The child's width.
///
/// Ignored if both left and right are non-null.
double width;
/// The child's height.
///
/// Ignored if both top and bottom are non-null.
double height;
/// Get or set the current values in terms of a RelativeRect object.
RelativeRect get rect => new RelativeRect.fromLTRB(left, top, right, bottom);
set rect(RelativeRect value) {
top = value.top;
right = value.right;
bottom = value.bottom;
left = value.left;
}
/// Whether this child is considered positioned.
///
/// A child is positioned if any of the top, right, bottom, or left properties
/// are non-null. Positioned children do not factor into determining the size
/// of the stack but are instead placed relative to the non-positioned
/// children in the stack.
bool get isPositioned => top != null || right != null || bottom != null || left != null || width != null || height != null;
@override
String toString() {
final List<String> values = <String>[];
if (top != null)
values.add('top=$top');
if (right != null)
values.add('right=$right');
if (bottom != null)
values.add('bottom=$bottom');
if (left != null)
values.add('left=$left');
if (width != null)
values.add('width=$width');
if (height != null)
values.add('height=$height');
if (values.isEmpty)
values.add('not positioned');
values.add(super.toString());
return values.join('; ');
}
}
/// How to size the non-positioned children of a [Stack].
///
/// This enum is used with [Stack.fit] and [RenderStack.fit] to control
/// how the [BoxConstraints] passed from the stack's parent to the stack's child
/// are adjusted.
///
/// See also:
///
/// * [Stack], the widget that uses this.
/// * [RenderStack], the render object that implements the stack algorithm.
enum StackFit {
/// The constraints passed to the stack from its parent are loosened.
///
/// For example, if the stack has constraints that force it to 350x600, then
/// this would allow the non-positioned children of the stack to have any
/// width from zero to 350 and any height from zero to 600.
///
/// See also:
///
/// * [Center], which loosens the constraints passed to its child and then
/// centers the child in itself.
/// * [BoxConstraints.loosen], which implements the loosening of box
/// constraints.
loose,
/// The constraints passed to the stack from its parent are tightened to the
/// biggest size allowed.
///
/// For example, if the stack has loose constraints with a width in the range
/// 10 to 100 and a height in the range 0 to 600, then the non-positioned
/// children of the stack would all be sized as 100 pixels wide and 600 high.
expand,
/// The constraints passed to the stack from its parent are passed unmodified
/// to the non-positioned children.
///
/// For example, if a [Stack] is an [Expanded] child of a [Row], the
/// horizontal constraints will be tight and the vertical constraints will be
/// loose.
passthrough,
}
/// Whether overflowing children should be clipped, or their overflow be
/// visible.
enum Overflow {
/// Overflowing children will be visible.
visible,
/// Overflowing children will be clipped to the bounds of their parent.
clip,
}
/// Implements the stack layout algorithm
///
/// In a stack layout, the children are positioned on top of each other in the
/// order in which they appear in the child list. First, the non-positioned
/// children (those with null values for top, right, bottom, and left) are
/// laid out and initially placed in the upper-left corner of the stack. The
/// stack is then sized to enclose all of the non-positioned children. If there
/// are no non-positioned children, the stack becomes as large as possible.
///
/// The final location of non-positioned children is determined by the alignment
/// parameter. The left of each non-positioned child becomes the
/// difference between the child's width and the stack's width scaled by
/// alignment.x. The top of each non-positioned child is computed
/// similarly and scaled by alignment.y. So if the alignment x and y properties
/// are 0.0 (the default) then the non-positioned children remain in the
/// upper-left corner. If the alignment x and y properties are 0.5 then the
/// non-positioned children are centered within the stack.
///
/// Next, the positioned children are laid out. If a child has top and bottom
/// values that are both non-null, the child is given a fixed height determined
/// by subtracting the sum of the top and bottom values from the height of the stack.
/// Similarly, if the child has right and left values that are both non-null,
/// the child is given a fixed width derived from the stack's width.
/// Otherwise, the child is given unbounded constraints in the non-fixed dimensions.
///
/// Once the child is laid out, the stack positions the child
/// according to the top, right, bottom, and left properties of their
/// [StackParentData]. For example, if the bottom value is 10.0, the
/// bottom edge of the child will be inset 10.0 pixels from the bottom
/// edge of the stack. If the child extends beyond the bounds of the
/// stack, the stack will clip the child's painting to the bounds of
/// the stack.
///
/// See also:
///
/// * [RenderFlow]
class RenderStack extends RenderBox
with ContainerRenderObjectMixin<RenderBox, StackParentData>,
RenderBoxContainerDefaultsMixin<RenderBox, StackParentData> {
/// Creates a stack render object.
///
/// By default, the non-positioned children of the stack are aligned by their
/// top left corners.
RenderStack({
List<RenderBox> children,
AlignmentGeometry alignment: AlignmentDirectional.topStart,
TextDirection textDirection,
StackFit fit: StackFit.loose,
Overflow overflow: Overflow.clip,
}) : assert(alignment != null),
assert(fit != null),
assert(overflow != null),
_alignment = alignment,
_textDirection = textDirection,
_fit = fit,
_overflow = overflow {
addAll(children);
}
bool _hasVisualOverflow = false;
@override
void setupParentData(RenderBox child) {
if (child.parentData is! StackParentData)
child.parentData = new StackParentData();
}
Alignment _resolvedAlignment;
void _resolve() {
if (_resolvedAlignment != null)
return;
_resolvedAlignment = alignment.resolve(textDirection);
}
void _markNeedResolution() {
_resolvedAlignment = null;
markNeedsLayout();
}
/// How to align the non-positioned or partially-positioned children in the
/// stack.
///
/// The non-positioned children are placed relative to each other such that
/// the points determined by [alignment] are co-located. For example, if the
/// [alignment] is [Alignment.topLeft], then the top left corner of
/// each non-positioned child will be located at the same global coordinate.
///
/// Partially-positioned children, those that do not specify an alignment in a
/// particular axis (e.g. that have neither `top` nor `bottom` set), use the
/// alignment to determine how they should be positioned in that
/// under-specified axis.
///
/// If this is set to an [AlignmentDirectional] object, then [textDirection]
/// must not be null.
AlignmentGeometry get alignment => _alignment;
AlignmentGeometry _alignment;
set alignment(AlignmentGeometry value) {
assert(value != null);
if (_alignment == value)
return;
_alignment = value;
_markNeedResolution();
}
/// The text direction with which to resolve [alignment].
///
/// This may be changed to null, but only after the [alignment] has been changed
/// to a value that does not depend on the direction.
TextDirection get textDirection => _textDirection;
TextDirection _textDirection;
set textDirection(TextDirection value) {
if (_textDirection == value)
return;
_textDirection = value;
_markNeedResolution();
}
/// How to size the non-positioned children in the stack.
///
/// The constraints passed into the [RenderStack] from its parent are either
/// loosened ([StackFit.loose]) or tightened to their biggest size
/// ([StackFit.expand]).
StackFit get fit => _fit;
StackFit _fit;
set fit(StackFit value) {
assert(value != null);
if (_fit != value) {
_fit = value;
markNeedsLayout();
}
}
/// Whether overflowing children should be clipped. See [Overflow].
///
/// Some children in a stack might overflow its box. When this flag is set to
/// [Overflow.clip], children cannot paint outside of the stack's box.
Overflow get overflow => _overflow;
Overflow _overflow;
set overflow(Overflow value) {
assert(value != null);
if (_overflow != value) {
_overflow = value;
markNeedsPaint();
}
}
double _getIntrinsicDimension(double mainChildSizeGetter(RenderBox child)) {
double extent = 0.0;
RenderBox child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData;
if (!childParentData.isPositioned)
extent = math.max(extent, mainChildSizeGetter(child));
assert(child.parentData == childParentData);
child = childParentData.nextSibling;
}
return extent;
}
@override
double computeMinIntrinsicWidth(double height) {
return _getIntrinsicDimension((RenderBox child) => child.getMinIntrinsicWidth(height));
}
@override
double computeMaxIntrinsicWidth(double height) {
return _getIntrinsicDimension((RenderBox child) => child.getMaxIntrinsicWidth(height));
}
@override
double computeMinIntrinsicHeight(double width) {
return _getIntrinsicDimension((RenderBox child) => child.getMinIntrinsicHeight(width));
}
@override
double computeMaxIntrinsicHeight(double width) {
return _getIntrinsicDimension((RenderBox child) => child.getMaxIntrinsicHeight(width));
}
@override
double computeDistanceToActualBaseline(TextBaseline baseline) {
return defaultComputeDistanceToHighestActualBaseline(baseline);
}
@override
void performLayout() {
_resolve();
assert(_resolvedAlignment != null);
_hasVisualOverflow = false;
bool hasNonPositionedChildren = false;
if (childCount == 0) {
size = constraints.biggest;
assert(size.isFinite);
return;
}
double width = constraints.minWidth;
double height = constraints.minHeight;
BoxConstraints nonPositionedConstraints;
assert(fit != null);
switch (fit) {
case StackFit.loose:
nonPositionedConstraints = constraints.loosen();
break;
case StackFit.expand:
nonPositionedConstraints = new BoxConstraints.tight(constraints.biggest);
break;
case StackFit.passthrough:
nonPositionedConstraints = constraints;
break;
}
assert(nonPositionedConstraints != null);
RenderBox child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData;
if (!childParentData.isPositioned) {
hasNonPositionedChildren = true;
child.layout(nonPositionedConstraints, parentUsesSize: true);
final Size childSize = child.size;
width = math.max(width, childSize.width);
height = math.max(height, childSize.height);
}
child = childParentData.nextSibling;
}
if (hasNonPositionedChildren) {
size = new Size(width, height);
assert(size.width == constraints.constrainWidth(width));
assert(size.height == constraints.constrainHeight(height));
} else {
size = constraints.biggest;
}
assert(size.isFinite);
child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData;
if (!childParentData.isPositioned) {
childParentData.offset = _resolvedAlignment.alongOffset(size - child.size);
} else {
BoxConstraints childConstraints = const BoxConstraints();
if (childParentData.left != null && childParentData.right != null)
childConstraints = childConstraints.tighten(width: size.width - childParentData.right - childParentData.left);
else if (childParentData.width != null)
childConstraints = childConstraints.tighten(width: childParentData.width);
if (childParentData.top != null && childParentData.bottom != null)
childConstraints = childConstraints.tighten(height: size.height - childParentData.bottom - childParentData.top);
else if (childParentData.height != null)
childConstraints = childConstraints.tighten(height: childParentData.height);
child.layout(childConstraints, parentUsesSize: true);
double x;
if (childParentData.left != null) {
x = childParentData.left;
} else if (childParentData.right != null) {
x = size.width - childParentData.right - child.size.width;
} else {
x = _resolvedAlignment.alongOffset(size - child.size).dx;
}
if (x < 0.0 || x + child.size.width > size.width)
_hasVisualOverflow = true;
double y;
if (childParentData.top != null) {
y = childParentData.top;
} else if (childParentData.bottom != null) {
y = size.height - childParentData.bottom - child.size.height;
} else {
y = _resolvedAlignment.alongOffset(size - child.size).dy;
}
if (y < 0.0 || y + child.size.height > size.height)
_hasVisualOverflow = true;
childParentData.offset = new Offset(x, y);
}
assert(child.parentData == childParentData);
child = childParentData.nextSibling;
}
}
@override
bool hitTestChildren(HitTestResult result, { Offset position }) {
return defaultHitTestChildren(result, position: position);
}
/// Override in subclasses to customize how the stack paints.
///
/// By default, the stack uses [defaultPaint]. This function is called by
/// [paint] after potentially applying a clip to contain visual overflow.
@protected
void paintStack(PaintingContext context, Offset offset) {
defaultPaint(context, offset);
}
@override
void paint(PaintingContext context, Offset offset) {
if (_overflow == Overflow.clip && _hasVisualOverflow) {
context.pushClipRect(needsCompositing, offset, Offset.zero & size, paintStack);
} else {
paintStack(context, offset);
}
}
@override
Rect describeApproximatePaintClip(RenderObject child) => _hasVisualOverflow ? Offset.zero & size : null;
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(new DiagnosticsProperty<AlignmentGeometry>('alignment', alignment));
properties.add(new EnumProperty<TextDirection>('textDirection', textDirection));
properties.add(new EnumProperty<StackFit>('fit', fit));
properties.add(new EnumProperty<Overflow>('overflow', overflow));
}
}
/// Implements the same layout algorithm as RenderStack but only paints the child
/// specified by index.
///
/// Although only one child is displayed, the cost of the layout algorithm is
/// still O(N), like an ordinary stack.
class RenderIndexedStack extends RenderStack {
/// Creates a stack render object that paints a single child.
///
/// If the [index] parameter is null, nothing is displayed.
RenderIndexedStack({
List<RenderBox> children,
AlignmentGeometry alignment: AlignmentDirectional.topStart,
TextDirection textDirection,
int index: 0,
}) : _index = index, super(
children: children,
alignment: alignment,
textDirection: textDirection,
);
@override
void visitChildrenForSemantics(RenderObjectVisitor visitor) {
if (index != null)
visitor(_childAtIndex());
}
/// The index of the child to show, null if nothing is to be displayed.
int get index => _index;
int _index;
set index(int value) {
if (_index != value) {
_index = value;
markNeedsLayout();
}
}
RenderBox _childAtIndex() {
assert(index != null);
RenderBox child = firstChild;
int i = 0;
while (child != null && i < index) {
final StackParentData childParentData = child.parentData;
child = childParentData.nextSibling;
i += 1;
}
assert(i == index);
assert(child != null);
return child;
}
@override
bool hitTestChildren(HitTestResult result, { @required Offset position }) {
if (firstChild == null || index == null)
return false;
assert(position != null);
final RenderBox child = _childAtIndex();
final StackParentData childParentData = child.parentData;
return child.hitTest(result, position: position - childParentData.offset);
}
@override
void paintStack(PaintingContext context, Offset offset) {
if (firstChild == null || index == null)
return;
final RenderBox child = _childAtIndex();
final StackParentData childParentData = child.parentData;
context.paintChild(child, childParentData.offset + offset);
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(new IntProperty('index', index));
}
}