| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <functional> |
| #include <map> |
| #include <numeric> |
| #include <random> |
| #include <set> |
| #include <string> |
| #include <type_traits> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "benchmark/benchmark.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/container/btree_map.h" |
| #include "absl/container/btree_set.h" |
| #include "absl/container/btree_test.h" |
| #include "absl/container/flat_hash_map.h" |
| #include "absl/container/flat_hash_set.h" |
| #include "absl/container/internal/hashtable_debug.h" |
| #include "absl/flags/flag.h" |
| #include "absl/hash/hash.h" |
| #include "absl/memory/memory.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/str_format.h" |
| #include "absl/time/time.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| namespace { |
| |
| constexpr size_t kBenchmarkValues = 1 << 20; |
| |
| // How many times we add and remove sub-batches in one batch of *AddRem |
| // benchmarks. |
| constexpr size_t kAddRemBatchSize = 1 << 2; |
| |
| // Generates n values in the range [0, 4 * n]. |
| template <typename V> |
| std::vector<V> GenerateValues(int n) { |
| constexpr int kSeed = 23; |
| return GenerateValuesWithSeed<V>(n, 4 * n, kSeed); |
| } |
| |
| // Benchmark insertion of values into a container. |
| template <typename T> |
| void BM_InsertImpl(benchmark::State& state, bool sorted) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| if (sorted) { |
| std::sort(values.begin(), values.end()); |
| } |
| T container(values.begin(), values.end()); |
| |
| // Remove and re-insert 10% of the keys per batch. |
| const int batch_size = (kBenchmarkValues + 9) / 10; |
| while (state.KeepRunningBatch(batch_size)) { |
| state.PauseTiming(); |
| const auto i = static_cast<int>(state.iterations()); |
| |
| for (int j = i; j < i + batch_size; j++) { |
| int x = j % kBenchmarkValues; |
| container.erase(key_of_value(values[x])); |
| } |
| |
| state.ResumeTiming(); |
| |
| for (int j = i; j < i + batch_size; j++) { |
| int x = j % kBenchmarkValues; |
| container.insert(values[x]); |
| } |
| } |
| } |
| |
| template <typename T> |
| void BM_Insert(benchmark::State& state) { |
| BM_InsertImpl<T>(state, false); |
| } |
| |
| template <typename T> |
| void BM_InsertSorted(benchmark::State& state) { |
| BM_InsertImpl<T>(state, true); |
| } |
| |
| // Benchmark inserting the first few elements in a container. In b-tree, this is |
| // when the root node grows. |
| template <typename T> |
| void BM_InsertSmall(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| |
| const int kSize = 8; |
| std::vector<V> values = GenerateValues<V>(kSize); |
| T container; |
| |
| while (state.KeepRunningBatch(kSize)) { |
| for (int i = 0; i < kSize; ++i) { |
| benchmark::DoNotOptimize(container.insert(values[i])); |
| } |
| state.PauseTiming(); |
| // Do not measure the time it takes to clear the container. |
| container.clear(); |
| state.ResumeTiming(); |
| } |
| } |
| |
| template <typename T> |
| void BM_LookupImpl(benchmark::State& state, bool sorted) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| if (sorted) { |
| std::sort(values.begin(), values.end()); |
| } |
| T container(values.begin(), values.end()); |
| |
| while (state.KeepRunning()) { |
| int idx = state.iterations() % kBenchmarkValues; |
| benchmark::DoNotOptimize(container.find(key_of_value(values[idx]))); |
| } |
| } |
| |
| // Benchmark lookup of values in a container. |
| template <typename T> |
| void BM_Lookup(benchmark::State& state) { |
| BM_LookupImpl<T>(state, false); |
| } |
| |
| // Benchmark lookup of values in a full container, meaning that values |
| // are inserted in-order to take advantage of biased insertion, which |
| // yields a full tree. |
| template <typename T> |
| void BM_FullLookup(benchmark::State& state) { |
| BM_LookupImpl<T>(state, true); |
| } |
| |
| // Benchmark erasing values from a container. |
| template <typename T> |
| void BM_Erase(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| T container(values.begin(), values.end()); |
| |
| // Remove and re-insert 10% of the keys per batch. |
| const int batch_size = (kBenchmarkValues + 9) / 10; |
| while (state.KeepRunningBatch(batch_size)) { |
| const int i = state.iterations(); |
| |
| for (int j = i; j < i + batch_size; j++) { |
| int x = j % kBenchmarkValues; |
| container.erase(key_of_value(values[x])); |
| } |
| |
| state.PauseTiming(); |
| for (int j = i; j < i + batch_size; j++) { |
| int x = j % kBenchmarkValues; |
| container.insert(values[x]); |
| } |
| state.ResumeTiming(); |
| } |
| } |
| |
| // Benchmark erasing multiple values from a container. |
| template <typename T> |
| void BM_EraseRange(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| T container(values.begin(), values.end()); |
| |
| // Remove and re-insert 10% of the keys per batch. |
| const int batch_size = (kBenchmarkValues + 9) / 10; |
| while (state.KeepRunningBatch(batch_size)) { |
| const int i = state.iterations(); |
| |
| const int start_index = i % kBenchmarkValues; |
| |
| state.PauseTiming(); |
| { |
| std::vector<V> removed; |
| removed.reserve(batch_size); |
| auto itr = container.find(key_of_value(values[start_index])); |
| auto start = itr; |
| for (int j = 0; j < batch_size; j++) { |
| if (itr == container.end()) { |
| state.ResumeTiming(); |
| container.erase(start, itr); |
| state.PauseTiming(); |
| itr = container.begin(); |
| start = itr; |
| } |
| removed.push_back(*itr++); |
| } |
| |
| state.ResumeTiming(); |
| container.erase(start, itr); |
| state.PauseTiming(); |
| |
| container.insert(removed.begin(), removed.end()); |
| } |
| state.ResumeTiming(); |
| } |
| } |
| |
| // Predicate that erases every other element. We can't use a lambda because |
| // C++11 doesn't support generic lambdas. |
| // TODO(b/207389011): consider adding benchmarks that remove different fractions |
| // of keys (e.g. 10%, 90%). |
| struct EraseIfPred { |
| uint64_t i = 0; |
| template <typename T> |
| bool operator()(const T&) { |
| return ++i % 2; |
| } |
| }; |
| |
| // Benchmark erasing multiple values from a container with a predicate. |
| template <typename T> |
| void BM_EraseIf(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| |
| // Removes half of the keys per batch. |
| const int batch_size = (kBenchmarkValues + 1) / 2; |
| EraseIfPred pred; |
| while (state.KeepRunningBatch(batch_size)) { |
| state.PauseTiming(); |
| { |
| T container(values.begin(), values.end()); |
| state.ResumeTiming(); |
| erase_if(container, pred); |
| benchmark::DoNotOptimize(container); |
| state.PauseTiming(); |
| } |
| state.ResumeTiming(); |
| } |
| } |
| |
| // Benchmark steady-state insert (into first half of range) and remove (from |
| // second half of range), treating the container approximately like a queue with |
| // log-time access for all elements. This benchmark does not test the case where |
| // insertion and removal happen in the same region of the tree. This benchmark |
| // counts two value constructors. |
| template <typename T> |
| void BM_QueueAddRem(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| |
| ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); |
| |
| T container; |
| |
| const size_t half = kBenchmarkValues / 2; |
| std::vector<int> remove_keys(half); |
| std::vector<int> add_keys(half); |
| |
| // We want to do the exact same work repeatedly, and the benchmark can end |
| // after a different number of iterations depending on the speed of the |
| // individual run so we use a large batch size here and ensure that we do |
| // deterministic work every batch. |
| while (state.KeepRunningBatch(half * kAddRemBatchSize)) { |
| state.PauseTiming(); |
| |
| container.clear(); |
| |
| for (size_t i = 0; i < half; ++i) { |
| remove_keys[i] = i; |
| add_keys[i] = i; |
| } |
| constexpr int kSeed = 5; |
| std::mt19937_64 rand(kSeed); |
| std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
| std::shuffle(add_keys.begin(), add_keys.end(), rand); |
| |
| // Note needs lazy generation of values. |
| Generator<V> g(kBenchmarkValues * kAddRemBatchSize); |
| |
| for (size_t i = 0; i < half; ++i) { |
| container.insert(g(add_keys[i])); |
| container.insert(g(half + remove_keys[i])); |
| } |
| |
| // There are three parts each of size "half": |
| // 1 is being deleted from [offset - half, offset) |
| // 2 is standing [offset, offset + half) |
| // 3 is being inserted into [offset + half, offset + 2 * half) |
| size_t offset = 0; |
| |
| for (size_t i = 0; i < kAddRemBatchSize; ++i) { |
| std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
| std::shuffle(add_keys.begin(), add_keys.end(), rand); |
| offset += half; |
| |
| state.ResumeTiming(); |
| for (size_t idx = 0; idx < half; ++idx) { |
| container.erase(key_of_value(g(offset - half + remove_keys[idx]))); |
| container.insert(g(offset + half + add_keys[idx])); |
| } |
| state.PauseTiming(); |
| } |
| state.ResumeTiming(); |
| } |
| } |
| |
| // Mixed insertion and deletion in the same range using pre-constructed values. |
| template <typename T> |
| void BM_MixedAddRem(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| |
| ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); |
| |
| T container; |
| |
| // Create two random shuffles |
| std::vector<int> remove_keys(kBenchmarkValues); |
| std::vector<int> add_keys(kBenchmarkValues); |
| |
| // We want to do the exact same work repeatedly, and the benchmark can end |
| // after a different number of iterations depending on the speed of the |
| // individual run so we use a large batch size here and ensure that we do |
| // deterministic work every batch. |
| while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) { |
| state.PauseTiming(); |
| |
| container.clear(); |
| |
| constexpr int kSeed = 7; |
| std::mt19937_64 rand(kSeed); |
| |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2); |
| |
| // Insert the first half of the values (already in random order) |
| container.insert(values.begin(), values.begin() + kBenchmarkValues); |
| |
| // Insert the first half of the values (already in random order) |
| for (size_t i = 0; i < kBenchmarkValues; ++i) { |
| // remove_keys and add_keys will be swapped before each round, |
| // therefore fill add_keys here w/ the keys being inserted, so |
| // they'll be the first to be removed. |
| remove_keys[i] = i + kBenchmarkValues; |
| add_keys[i] = i; |
| } |
| |
| for (size_t i = 0; i < kAddRemBatchSize; ++i) { |
| remove_keys.swap(add_keys); |
| std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
| std::shuffle(add_keys.begin(), add_keys.end(), rand); |
| |
| state.ResumeTiming(); |
| for (size_t idx = 0; idx < kBenchmarkValues; ++idx) { |
| container.erase(key_of_value(values[remove_keys[idx]])); |
| container.insert(values[add_keys[idx]]); |
| } |
| state.PauseTiming(); |
| } |
| state.ResumeTiming(); |
| } |
| } |
| |
| // Insertion at end, removal from the beginning. This benchmark |
| // counts two value constructors. |
| // TODO(ezb): we could add a GenerateNext version of generator that could reduce |
| // noise for string-like types. |
| template <typename T> |
| void BM_Fifo(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| |
| T container; |
| // Need lazy generation of values as state.max_iterations is large. |
| Generator<V> g(kBenchmarkValues + state.max_iterations); |
| |
| for (int i = 0; i < kBenchmarkValues; i++) { |
| container.insert(g(i)); |
| } |
| |
| while (state.KeepRunning()) { |
| container.erase(container.begin()); |
| container.insert(container.end(), g(state.iterations() + kBenchmarkValues)); |
| } |
| } |
| |
| // Iteration (forward) through the tree |
| template <typename T> |
| void BM_FwdIter(benchmark::State& state) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| using R = typename T::value_type const*; |
| |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| T container(values.begin(), values.end()); |
| |
| auto iter = container.end(); |
| |
| R r = nullptr; |
| |
| while (state.KeepRunning()) { |
| if (iter == container.end()) iter = container.begin(); |
| r = &(*iter); |
| ++iter; |
| } |
| |
| benchmark::DoNotOptimize(r); |
| } |
| |
| // Benchmark random range-construction of a container. |
| template <typename T> |
| void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) { |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| |
| std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
| if (sorted) { |
| std::sort(values.begin(), values.end()); |
| } |
| { |
| T container(values.begin(), values.end()); |
| } |
| |
| while (state.KeepRunning()) { |
| T container(values.begin(), values.end()); |
| benchmark::DoNotOptimize(container); |
| } |
| } |
| |
| template <typename T> |
| void BM_InsertRangeRandom(benchmark::State& state) { |
| BM_RangeConstructionImpl<T>(state, false); |
| } |
| |
| template <typename T> |
| void BM_InsertRangeSorted(benchmark::State& state) { |
| BM_RangeConstructionImpl<T>(state, true); |
| } |
| |
| #define STL_ORDERED_TYPES(value) \ |
| using stl_set_##value = std::set<value>; \ |
| using stl_map_##value = std::map<value, intptr_t>; \ |
| using stl_multiset_##value = std::multiset<value>; \ |
| using stl_multimap_##value = std::multimap<value, intptr_t> |
| |
| using StdString = std::string; |
| STL_ORDERED_TYPES(int32_t); |
| STL_ORDERED_TYPES(int64_t); |
| STL_ORDERED_TYPES(StdString); |
| STL_ORDERED_TYPES(Cord); |
| STL_ORDERED_TYPES(Time); |
| |
| #define STL_UNORDERED_TYPES(value) \ |
| using stl_unordered_set_##value = std::unordered_set<value>; \ |
| using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \ |
| using flat_hash_set_##value = flat_hash_set<value>; \ |
| using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \ |
| using stl_unordered_multiset_##value = std::unordered_multiset<value>; \ |
| using stl_unordered_multimap_##value = \ |
| std::unordered_multimap<value, intptr_t> |
| |
| #define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \ |
| using stl_unordered_set_##value = std::unordered_set<value, hash>; \ |
| using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \ |
| using flat_hash_set_##value = flat_hash_set<value, hash>; \ |
| using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \ |
| using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \ |
| using stl_unordered_multimap_##value = \ |
| std::unordered_multimap<value, intptr_t, hash> |
| |
| STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>); |
| |
| STL_UNORDERED_TYPES(int32_t); |
| STL_UNORDERED_TYPES(int64_t); |
| STL_UNORDERED_TYPES(StdString); |
| STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>); |
| |
| #define BTREE_TYPES(value) \ |
| using btree_256_set_##value = \ |
| btree_set<value, std::less<value>, std::allocator<value>>; \ |
| using btree_256_map_##value = \ |
| btree_map<value, intptr_t, std::less<value>, \ |
| std::allocator<std::pair<const value, intptr_t>>>; \ |
| using btree_256_multiset_##value = \ |
| btree_multiset<value, std::less<value>, std::allocator<value>>; \ |
| using btree_256_multimap_##value = \ |
| btree_multimap<value, intptr_t, std::less<value>, \ |
| std::allocator<std::pair<const value, intptr_t>>> |
| |
| BTREE_TYPES(int32_t); |
| BTREE_TYPES(int64_t); |
| BTREE_TYPES(StdString); |
| BTREE_TYPES(Cord); |
| BTREE_TYPES(Time); |
| |
| #define MY_BENCHMARK4(type, func) \ |
| void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \ |
| BENCHMARK(BM_##type##_##func) |
| |
| #define MY_BENCHMARK3_STL(type) \ |
| MY_BENCHMARK4(type, Insert); \ |
| MY_BENCHMARK4(type, InsertSorted); \ |
| MY_BENCHMARK4(type, InsertSmall); \ |
| MY_BENCHMARK4(type, Lookup); \ |
| MY_BENCHMARK4(type, FullLookup); \ |
| MY_BENCHMARK4(type, Erase); \ |
| MY_BENCHMARK4(type, EraseRange); \ |
| MY_BENCHMARK4(type, QueueAddRem); \ |
| MY_BENCHMARK4(type, MixedAddRem); \ |
| MY_BENCHMARK4(type, Fifo); \ |
| MY_BENCHMARK4(type, FwdIter); \ |
| MY_BENCHMARK4(type, InsertRangeRandom); \ |
| MY_BENCHMARK4(type, InsertRangeSorted) |
| |
| #define MY_BENCHMARK3(type) \ |
| MY_BENCHMARK4(type, EraseIf); \ |
| MY_BENCHMARK3_STL(type) |
| |
| #define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \ |
| MY_BENCHMARK3_STL(stl_##type); \ |
| MY_BENCHMARK3_STL(stl_unordered_##type); \ |
| MY_BENCHMARK3(btree_256_##type) |
| |
| #define MY_BENCHMARK2(type) \ |
| MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \ |
| MY_BENCHMARK3(flat_hash_##type) |
| |
| // Define MULTI_TESTING to see benchmarks for multi-containers also. |
| // |
| // You can use --copt=-DMULTI_TESTING. |
| #ifdef MULTI_TESTING |
| #define MY_BENCHMARK(type) \ |
| MY_BENCHMARK2(set_##type); \ |
| MY_BENCHMARK2(map_##type); \ |
| MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \ |
| MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type) |
| #else |
| #define MY_BENCHMARK(type) \ |
| MY_BENCHMARK2(set_##type); \ |
| MY_BENCHMARK2(map_##type) |
| #endif |
| |
| MY_BENCHMARK(int32_t); |
| MY_BENCHMARK(int64_t); |
| MY_BENCHMARK(StdString); |
| MY_BENCHMARK(Cord); |
| MY_BENCHMARK(Time); |
| |
| // Define a type whose size and cost of moving are independently customizable. |
| // When sizeof(value_type) increases, we expect btree to no longer have as much |
| // cache-locality advantage over STL. When cost of moving increases, we expect |
| // btree to actually do more work than STL because it has to move values around |
| // and STL doesn't have to. |
| template <int Size, int Copies> |
| struct BigType { |
| BigType() : BigType(0) {} |
| explicit BigType(int x) { std::iota(values.begin(), values.end(), x); } |
| |
| void Copy(const BigType& other) { |
| for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i]; |
| // If Copies > Size, do extra copies. |
| for (int i = Size, idx = 0; i < Copies; ++i) { |
| int64_t tmp = other.values[idx]; |
| benchmark::DoNotOptimize(tmp); |
| idx = idx + 1 == Size ? 0 : idx + 1; |
| } |
| } |
| |
| BigType(const BigType& other) { Copy(other); } |
| BigType& operator=(const BigType& other) { |
| Copy(other); |
| return *this; |
| } |
| |
| // Compare only the first Copies elements if Copies is less than Size. |
| bool operator<(const BigType& other) const { |
| return std::lexicographical_compare( |
| values.begin(), values.begin() + std::min(Size, Copies), |
| other.values.begin(), other.values.begin() + std::min(Size, Copies)); |
| } |
| bool operator==(const BigType& other) const { |
| return std::equal(values.begin(), values.begin() + std::min(Size, Copies), |
| other.values.begin()); |
| } |
| |
| // Support absl::Hash. |
| template <typename State> |
| friend State AbslHashValue(State h, const BigType& b) { |
| for (int i = 0; i < Size && i < Copies; ++i) |
| h = State::combine(std::move(h), b.values[i]); |
| return h; |
| } |
| |
| std::array<int64_t, Size> values; |
| }; |
| |
| #define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \ |
| using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \ |
| using stl_map_size##SIZE##copies##COPIES = \ |
| std::map<BigType<SIZE, COPIES>, intptr_t>; \ |
| using stl_multiset_size##SIZE##copies##COPIES = \ |
| std::multiset<BigType<SIZE, COPIES>>; \ |
| using stl_multimap_size##SIZE##copies##COPIES = \ |
| std::multimap<BigType<SIZE, COPIES>, intptr_t>; \ |
| using stl_unordered_set_size##SIZE##copies##COPIES = \ |
| std::unordered_set<BigType<SIZE, COPIES>, \ |
| absl::Hash<BigType<SIZE, COPIES>>>; \ |
| using stl_unordered_map_size##SIZE##copies##COPIES = \ |
| std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \ |
| absl::Hash<BigType<SIZE, COPIES>>>; \ |
| using flat_hash_set_size##SIZE##copies##COPIES = \ |
| flat_hash_set<BigType<SIZE, COPIES>>; \ |
| using flat_hash_map_size##SIZE##copies##COPIES = \ |
| flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \ |
| using stl_unordered_multiset_size##SIZE##copies##COPIES = \ |
| std::unordered_multiset<BigType<SIZE, COPIES>, \ |
| absl::Hash<BigType<SIZE, COPIES>>>; \ |
| using stl_unordered_multimap_size##SIZE##copies##COPIES = \ |
| std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \ |
| absl::Hash<BigType<SIZE, COPIES>>>; \ |
| using btree_256_set_size##SIZE##copies##COPIES = \ |
| btree_set<BigType<SIZE, COPIES>>; \ |
| using btree_256_map_size##SIZE##copies##COPIES = \ |
| btree_map<BigType<SIZE, COPIES>, intptr_t>; \ |
| using btree_256_multiset_size##SIZE##copies##COPIES = \ |
| btree_multiset<BigType<SIZE, COPIES>>; \ |
| using btree_256_multimap_size##SIZE##copies##COPIES = \ |
| btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \ |
| MY_BENCHMARK(size##SIZE##copies##COPIES) |
| |
| // Define BIG_TYPE_TESTING to see benchmarks for more big types. |
| // |
| // You can use --copt=-DBIG_TYPE_TESTING. |
| #ifndef NODESIZE_TESTING |
| #ifdef BIG_TYPE_TESTING |
| BIG_TYPE_BENCHMARKS(1, 4); |
| BIG_TYPE_BENCHMARKS(4, 1); |
| BIG_TYPE_BENCHMARKS(4, 4); |
| BIG_TYPE_BENCHMARKS(1, 8); |
| BIG_TYPE_BENCHMARKS(8, 1); |
| BIG_TYPE_BENCHMARKS(8, 8); |
| BIG_TYPE_BENCHMARKS(1, 16); |
| BIG_TYPE_BENCHMARKS(16, 1); |
| BIG_TYPE_BENCHMARKS(16, 16); |
| BIG_TYPE_BENCHMARKS(1, 32); |
| BIG_TYPE_BENCHMARKS(32, 1); |
| BIG_TYPE_BENCHMARKS(32, 32); |
| #else |
| BIG_TYPE_BENCHMARKS(32, 32); |
| #endif |
| #endif |
| |
| // Benchmark using unique_ptrs to large value types. In order to be able to use |
| // the same benchmark code as the other types, use a type that holds a |
| // unique_ptr and has a copy constructor. |
| template <int Size> |
| struct BigTypePtr { |
| BigTypePtr() : BigTypePtr(0) {} |
| explicit BigTypePtr(int x) { |
| ptr = absl::make_unique<BigType<Size, Size>>(x); |
| } |
| BigTypePtr(const BigTypePtr& other) { |
| ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); |
| } |
| BigTypePtr(BigTypePtr&& other) noexcept = default; |
| BigTypePtr& operator=(const BigTypePtr& other) { |
| ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); |
| } |
| BigTypePtr& operator=(BigTypePtr&& other) noexcept = default; |
| |
| bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; } |
| bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; } |
| |
| std::unique_ptr<BigType<Size, Size>> ptr; |
| }; |
| |
| template <int Size> |
| double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) { |
| const double bytes_used = |
| b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); |
| const double bytes_per_value = bytes_used / b.size(); |
| BtreeContainerInfoLog(b, bytes_used, bytes_per_value); |
| return bytes_per_value; |
| } |
| template <int Size> |
| double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) { |
| const double bytes_used = |
| b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); |
| const double bytes_per_value = bytes_used / b.size(); |
| BtreeContainerInfoLog(b, bytes_used, bytes_per_value); |
| return bytes_per_value; |
| } |
| |
| #define BIG_TYPE_PTR_BENCHMARKS(SIZE) \ |
| using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \ |
| using stl_map_size##SIZE##copies##SIZE##ptr = \ |
| std::map<int, BigType<SIZE, SIZE>>; \ |
| using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \ |
| std::unordered_set<BigType<SIZE, SIZE>, \ |
| absl::Hash<BigType<SIZE, SIZE>>>; \ |
| using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \ |
| std::unordered_map<int, BigType<SIZE, SIZE>>; \ |
| using flat_hash_set_size##SIZE##copies##SIZE##ptr = \ |
| flat_hash_set<BigType<SIZE, SIZE>>; \ |
| using flat_hash_map_size##SIZE##copies##SIZE##ptr = \ |
| flat_hash_map<int, BigTypePtr<SIZE>>; \ |
| using btree_256_set_size##SIZE##copies##SIZE##ptr = \ |
| btree_set<BigTypePtr<SIZE>>; \ |
| using btree_256_map_size##SIZE##copies##SIZE##ptr = \ |
| btree_map<int, BigTypePtr<SIZE>>; \ |
| MY_BENCHMARK3_STL(stl_set_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3_STL(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3_STL(stl_map_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3_STL(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \ |
| MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr) |
| |
| BIG_TYPE_PTR_BENCHMARKS(32); |
| |
| } // namespace |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |