blob: ed5e608074a6fd5e8e6417f745c4a52d1de7fc66 [file] [log] [blame]
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// type_traits.h
// -----------------------------------------------------------------------------
//
// This file contains C++11-compatible versions of standard <type_traits> API
// functions for determining the characteristics of types. Such traits can
// support type inference, classification, and transformation, as well as
// make it easier to write templates based on generic type behavior.
//
// See https://en.cppreference.com/w/cpp/header/type_traits
//
// WARNING: use of many of the constructs in this header will count as "complex
// template metaprogramming", so before proceeding, please carefully consider
// https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
//
// WARNING: using template metaprogramming to detect or depend on API
// features is brittle and not guaranteed. Neither the standard library nor
// Abseil provides any guarantee that APIs are stable in the face of template
// metaprogramming. Use with caution.
#ifndef ABSL_META_TYPE_TRAITS_H_
#define ABSL_META_TYPE_TRAITS_H_
#include <cstddef>
#include <functional>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
// Defines the default alignment. `__STDCPP_DEFAULT_NEW_ALIGNMENT__` is a C++17
// feature.
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
#define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT __STDCPP_DEFAULT_NEW_ALIGNMENT__
#else // defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
#define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT alignof(std::max_align_t)
#endif // defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace type_traits_internal {
template <typename... Ts>
struct VoidTImpl {
using type = void;
};
////////////////////////////////
// Library Fundamentals V2 TS //
////////////////////////////////
// NOTE: The `is_detected` family of templates here differ from the library
// fundamentals specification in that for library fundamentals, `Op<Args...>` is
// evaluated as soon as the type `is_detected<Op, Args...>` undergoes
// substitution, regardless of whether or not the `::value` is accessed. That
// is inconsistent with all other standard traits and prevents lazy evaluation
// in larger contexts (such as if the `is_detected` check is a trailing argument
// of a `conjunction`. This implementation opts to instead be lazy in the same
// way that the standard traits are (this "defect" of the detection idiom
// specifications has been reported).
template <class Enabler, template <class...> class Op, class... Args>
struct is_detected_impl {
using type = std::false_type;
};
template <template <class...> class Op, class... Args>
struct is_detected_impl<typename VoidTImpl<Op<Args...>>::type, Op, Args...> {
using type = std::true_type;
};
template <template <class...> class Op, class... Args>
struct is_detected : is_detected_impl<void, Op, Args...>::type {};
template <class Enabler, class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl {
using type = std::false_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl<
typename std::enable_if<std::is_convertible<Op<Args...>, To>::value>::type,
To, Op, Args...> {
using type = std::true_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible
: is_detected_convertible_impl<void, To, Op, Args...>::type {};
} // namespace type_traits_internal
// void_t()
//
// Ignores the type of any its arguments and returns `void`. In general, this
// metafunction allows you to create a general case that maps to `void` while
// allowing specializations that map to specific types.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::void_t` metafunction.
//
// NOTE: `absl::void_t` does not use the standard-specified implementation so
// that it can remain compatible with gcc < 5.1. This can introduce slightly
// different behavior, such as when ordering partial specializations.
template <typename... Ts>
using void_t = typename type_traits_internal::VoidTImpl<Ts...>::type;
// conjunction
//
// Performs a compile-time logical AND operation on the passed types (which
// must have `::value` members convertible to `bool`. Short-circuits if it
// encounters any `false` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::conjunction` metafunction.
template <typename... Ts>
struct conjunction : std::true_type {};
template <typename T, typename... Ts>
struct conjunction<T, Ts...>
: std::conditional<T::value, conjunction<Ts...>, T>::type {};
template <typename T>
struct conjunction<T> : T {};
// disjunction
//
// Performs a compile-time logical OR operation on the passed types (which
// must have `::value` members convertible to `bool`. Short-circuits if it
// encounters any `true` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::disjunction` metafunction.
template <typename... Ts>
struct disjunction : std::false_type {};
template <typename T, typename... Ts>
struct disjunction<T, Ts...>
: std::conditional<T::value, T, disjunction<Ts...>>::type {};
template <typename T>
struct disjunction<T> : T {};
// negation
//
// Performs a compile-time logical NOT operation on the passed type (which
// must have `::value` members convertible to `bool`.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::negation` metafunction.
template <typename T>
struct negation : std::integral_constant<bool, !T::value> {};
// is_function()
//
// Determines whether the passed type `T` is a function type.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_function()` metafunction for platforms that have incomplete C++11
// support (such as libstdc++ 4.x).
//
// This metafunction works because appending `const` to a type does nothing to
// function types and reference types (and forms a const-qualified type
// otherwise).
template <typename T>
struct is_function
: std::integral_constant<
bool, !(std::is_reference<T>::value ||
std::is_const<typename std::add_const<T>::type>::value)> {};
// is_copy_assignable()
// is_move_assignable()
// is_trivially_destructible()
// is_trivially_default_constructible()
// is_trivially_move_constructible()
// is_trivially_copy_constructible()
// is_trivially_move_assignable()
// is_trivially_copy_assignable()
//
// Historical note: Abseil once provided implementations of these type traits
// for platforms that lacked full support. New code should prefer to use the
// std variants.
//
// See the documentation for the STL <type_traits> header for more information:
// https://en.cppreference.com/w/cpp/header/type_traits
using std::is_copy_assignable;
using std::is_move_assignable;
using std::is_trivially_copy_assignable;
using std::is_trivially_copy_constructible;
using std::is_trivially_default_constructible;
using std::is_trivially_destructible;
using std::is_trivially_move_assignable;
using std::is_trivially_move_constructible;
#if defined(__cpp_lib_remove_cvref) && __cpp_lib_remove_cvref >= 201711L
template <typename T>
using remove_cvref = std::remove_cvref<T>;
template <typename T>
using remove_cvref_t = typename std::remove_cvref<T>::type;
#else
// remove_cvref()
//
// C++11 compatible implementation of std::remove_cvref which was added in
// C++20.
template <typename T>
struct remove_cvref {
using type =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
};
template <typename T>
using remove_cvref_t = typename remove_cvref<T>::type;
#endif
// -----------------------------------------------------------------------------
// C++14 "_t" trait aliases
// -----------------------------------------------------------------------------
template <typename T>
using remove_cv_t = typename std::remove_cv<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_volatile_t = typename std::remove_volatile<T>::type;
template <typename T>
using add_cv_t = typename std::add_cv<T>::type;
template <typename T>
using add_const_t = typename std::add_const<T>::type;
template <typename T>
using add_volatile_t = typename std::add_volatile<T>::type;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using add_lvalue_reference_t = typename std::add_lvalue_reference<T>::type;
template <typename T>
using add_rvalue_reference_t = typename std::add_rvalue_reference<T>::type;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename T>
using add_pointer_t = typename std::add_pointer<T>::type;
template <typename T>
using make_signed_t = typename std::make_signed<T>::type;
template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;
template <typename T>
using remove_extent_t = typename std::remove_extent<T>::type;
template <typename T>
using remove_all_extents_t = typename std::remove_all_extents<T>::type;
ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING
namespace type_traits_internal {
// This trick to retrieve a default alignment is necessary for our
// implementation of aligned_storage_t to be consistent with any
// implementation of std::aligned_storage.
template <size_t Len, typename T = std::aligned_storage<Len>>
struct default_alignment_of_aligned_storage;
template <size_t Len, size_t Align>
struct default_alignment_of_aligned_storage<
Len, std::aligned_storage<Len, Align>> {
static constexpr size_t value = Align;
};
} // namespace type_traits_internal
// TODO(b/260219225): std::aligned_storage(_t) is deprecated in C++23.
template <size_t Len, size_t Align = type_traits_internal::
default_alignment_of_aligned_storage<Len>::value>
using aligned_storage_t = typename std::aligned_storage<Len, Align>::type;
ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING
template <typename T>
using decay_t = typename std::decay<T>::type;
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <typename... T>
using common_type_t = typename std::common_type<T...>::type;
template <typename T>
using underlying_type_t = typename std::underlying_type<T>::type;
namespace type_traits_internal {
#if (defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703L) || \
(defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
// std::result_of is deprecated (C++17) or removed (C++20)
template <typename>
struct result_of;
template <typename F, typename... Args>
struct result_of<F(Args...)> : std::invoke_result<F, Args...> {};
#else
template <typename F>
using result_of = std::result_of<F>;
#endif
} // namespace type_traits_internal
template <typename F>
using result_of_t = typename type_traits_internal::result_of<F>::type;
namespace type_traits_internal {
// In MSVC we can't probe std::hash or stdext::hash because it triggers a
// static_assert instead of failing substitution. Libc++ prior to 4.0
// also used a static_assert.
//
#if defined(_MSC_VER) || (defined(_LIBCPP_VERSION) && \
_LIBCPP_VERSION < 4000 && _LIBCPP_STD_VER > 11)
#define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 0
#else
#define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 1
#endif
#if !ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
template <typename Key, typename = size_t>
struct IsHashable : std::true_type {};
#else // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
template <typename Key, typename = void>
struct IsHashable : std::false_type {};
template <typename Key>
struct IsHashable<
Key,
absl::enable_if_t<std::is_convertible<
decltype(std::declval<std::hash<Key>&>()(std::declval<Key const&>())),
std::size_t>::value>> : std::true_type {};
#endif // !ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
struct AssertHashEnabledHelper {
private:
static void Sink(...) {}
struct NAT {};
template <class Key>
static auto GetReturnType(int)
-> decltype(std::declval<std::hash<Key>>()(std::declval<Key const&>()));
template <class Key>
static NAT GetReturnType(...);
template <class Key>
static std::nullptr_t DoIt() {
static_assert(IsHashable<Key>::value,
"std::hash<Key> does not provide a call operator");
static_assert(
std::is_default_constructible<std::hash<Key>>::value,
"std::hash<Key> must be default constructible when it is enabled");
static_assert(
std::is_copy_constructible<std::hash<Key>>::value,
"std::hash<Key> must be copy constructible when it is enabled");
static_assert(absl::is_copy_assignable<std::hash<Key>>::value,
"std::hash<Key> must be copy assignable when it is enabled");
// is_destructible is unchecked as it's implied by each of the
// is_constructible checks.
using ReturnType = decltype(GetReturnType<Key>(0));
static_assert(std::is_same<ReturnType, NAT>::value ||
std::is_same<ReturnType, size_t>::value,
"std::hash<Key> must return size_t");
return nullptr;
}
template <class... Ts>
friend void AssertHashEnabled();
};
template <class... Ts>
inline void AssertHashEnabled() {
using Helper = AssertHashEnabledHelper;
Helper::Sink(Helper::DoIt<Ts>()...);
}
} // namespace type_traits_internal
// An internal namespace that is required to implement the C++17 swap traits.
// It is not further nested in type_traits_internal to avoid long symbol names.
namespace swap_internal {
// Necessary for the traits.
using std::swap;
// This declaration prevents global `swap` and `absl::swap` overloads from being
// considered unless ADL picks them up.
void swap();
template <class T>
using IsSwappableImpl = decltype(swap(std::declval<T&>(), std::declval<T&>()));
// NOTE: This dance with the default template parameter is for MSVC.
template <class T,
class IsNoexcept = std::integral_constant<
bool, noexcept(swap(std::declval<T&>(), std::declval<T&>()))>>
using IsNothrowSwappableImpl = typename std::enable_if<IsNoexcept::value>::type;
// IsSwappable
//
// Determines whether the standard swap idiom is a valid expression for
// arguments of type `T`.
template <class T>
struct IsSwappable
: absl::type_traits_internal::is_detected<IsSwappableImpl, T> {};
// IsNothrowSwappable
//
// Determines whether the standard swap idiom is a valid expression for
// arguments of type `T` and is noexcept.
template <class T>
struct IsNothrowSwappable
: absl::type_traits_internal::is_detected<IsNothrowSwappableImpl, T> {};
// Swap()
//
// Performs the swap idiom from a namespace where valid candidates may only be
// found in `std` or via ADL.
template <class T, absl::enable_if_t<IsSwappable<T>::value, int> = 0>
void Swap(T& lhs, T& rhs) noexcept(IsNothrowSwappable<T>::value) {
swap(lhs, rhs);
}
// StdSwapIsUnconstrained
//
// Some standard library implementations are broken in that they do not
// constrain `std::swap`. This will effectively tell us if we are dealing with
// one of those implementations.
using StdSwapIsUnconstrained = IsSwappable<void()>;
} // namespace swap_internal
namespace type_traits_internal {
// Make the swap-related traits/function accessible from this namespace.
using swap_internal::IsNothrowSwappable;
using swap_internal::IsSwappable;
using swap_internal::StdSwapIsUnconstrained;
using swap_internal::Swap;
} // namespace type_traits_internal
// absl::is_trivially_relocatable<T>
//
// Detects whether a type is known to be "trivially relocatable" -- meaning it
// can be relocated from one place to another as if by memcpy/memmove.
// This implies that its object representation doesn't depend on its address,
// and also none of its special member functions do anything strange.
//
// This trait is conservative. If it's true then the type is definitely
// trivially relocatable, but if it's false then the type may or may not be. For
// example, std::vector<int> is trivially relocatable on every known STL
// implementation, but absl::is_trivially_relocatable<std::vector<int>> remains
// false.
//
// Example:
//
// if constexpr (absl::is_trivially_relocatable<T>::value) {
// memcpy(new_location, old_location, sizeof(T));
// } else {
// new(new_location) T(std::move(*old_location));
// old_location->~T();
// }
//
// Upstream documentation:
//
// https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__is_trivially_relocatable
// If the compiler offers a builtin that tells us the answer, we can use that.
// This covers all of the cases in the fallback below, plus types that opt in
// using e.g. [[clang::trivial_abi]].
//
// Clang on Windows has the builtin, but it falsely claims types with a
// user-provided destructor are trivial (http://b/275003464). So we opt out
// there.
//
// TODO(b/275003464): remove the opt-out once the bug is fixed.
//
// Starting with Xcode 15, the Apple compiler will falsely say a type
// with a user-provided move constructor is trivially relocatable
// (b/324278148). We will opt out without a version check, due to
// the fluidity of Apple versions.
//
// TODO(b/324278148): If all versions we use have the bug fixed, then
// remove the condition.
//
// Clang on all platforms fails to detect that a type with a user-provided
// move-assignment operator is not trivially relocatable. So in fact we
// opt out of Clang altogether, for now.
//
// TODO(b/325479096): Remove the opt-out once Clang's behavior is fixed.
//
// According to https://github.com/abseil/abseil-cpp/issues/1479, this does not
// work with NVCC either.
#if ABSL_HAVE_BUILTIN(__is_trivially_relocatable) && \
(defined(__cpp_impl_trivially_relocatable) || \
(!defined(__clang__) && !defined(__APPLE__) && !defined(__NVCC__)))
template <class T>
struct is_trivially_relocatable
: std::integral_constant<bool, __is_trivially_relocatable(T)> {};
#else
// Otherwise we use a fallback that detects only those types we can feasibly
// detect. Any type that is trivially copyable is by definition trivially
// relocatable.
template <class T>
struct is_trivially_relocatable : std::is_trivially_copyable<T> {};
#endif
// absl::is_constant_evaluated()
//
// Detects whether the function call occurs within a constant-evaluated context.
// Returns true if the evaluation of the call occurs within the evaluation of an
// expression or conversion that is manifestly constant-evaluated; otherwise
// returns false.
//
// This function is implemented in terms of `std::is_constant_evaluated` for
// c++20 and up. For older c++ versions, the function is implemented in terms
// of `__builtin_is_constant_evaluated` if available, otherwise the function
// will fail to compile.
//
// Applications can inspect `ABSL_HAVE_CONSTANT_EVALUATED` at compile time
// to check if this function is supported.
//
// Example:
//
// constexpr MyClass::MyClass(int param) {
// #ifdef ABSL_HAVE_CONSTANT_EVALUATED
// if (!absl::is_constant_evaluated()) {
// ABSL_LOG(INFO) << "MyClass(" << param << ")";
// }
// #endif // ABSL_HAVE_CONSTANT_EVALUATED
// }
//
// Upstream documentation:
//
// http://en.cppreference.com/w/cpp/types/is_constant_evaluated
// http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#:~:text=__builtin_is_constant_evaluated
//
#if defined(ABSL_HAVE_CONSTANT_EVALUATED)
constexpr bool is_constant_evaluated() noexcept {
#ifdef __cpp_lib_is_constant_evaluated
return std::is_constant_evaluated();
#elif ABSL_HAVE_BUILTIN(__builtin_is_constant_evaluated)
return __builtin_is_constant_evaluated();
#endif
}
#endif // ABSL_HAVE_CONSTANT_EVALUATED
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_META_TYPE_TRAITS_H_