blob: 1acec695c5fd6e984bb833e0539860408672dfb1 [file] [log] [blame]
/****************************************************************************
*
* ttinterp.c
*
* TrueType bytecode interpreter (body).
*
* Copyright (C) 1996-2021 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
/* Greg Hitchcock from Microsoft has helped a lot in resolving unclear */
/* issues; many thanks! */
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftcalc.h>
#include <freetype/fttrigon.h>
#include <freetype/ftsystem.h>
#include <freetype/ftdriver.h>
#include <freetype/ftmm.h>
#include "ttinterp.h"
#include "tterrors.h"
#include "ttsubpix.h"
#ifdef TT_CONFIG_OPTION_GX_VAR_SUPPORT
#include "ttgxvar.h"
#endif
#ifdef TT_USE_BYTECODE_INTERPRETER
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT ttinterp
#define NO_SUBPIXEL_HINTING \
( ((TT_Driver)FT_FACE_DRIVER( exc->face ))->interpreter_version == \
TT_INTERPRETER_VERSION_35 )
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY
#define SUBPIXEL_HINTING_INFINALITY \
( ((TT_Driver)FT_FACE_DRIVER( exc->face ))->interpreter_version == \
TT_INTERPRETER_VERSION_38 )
#endif
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
#define SUBPIXEL_HINTING_MINIMAL \
( ((TT_Driver)FT_FACE_DRIVER( exc->face ))->interpreter_version == \
TT_INTERPRETER_VERSION_40 )
#endif
#define PROJECT( v1, v2 ) \
exc->func_project( exc, \
SUB_LONG( (v1)->x, (v2)->x ), \
SUB_LONG( (v1)->y, (v2)->y ) )
#define DUALPROJ( v1, v2 ) \
exc->func_dualproj( exc, \
SUB_LONG( (v1)->x, (v2)->x ), \
SUB_LONG( (v1)->y, (v2)->y ) )
#define FAST_PROJECT( v ) \
exc->func_project( exc, (v)->x, (v)->y )
#define FAST_DUALPROJ( v ) \
exc->func_dualproj( exc, (v)->x, (v)->y )
/**************************************************************************
*
* Two simple bounds-checking macros.
*/
#define BOUNDS( x, n ) ( (FT_UInt)(x) >= (FT_UInt)(n) )
#define BOUNDSL( x, n ) ( (FT_ULong)(x) >= (FT_ULong)(n) )
#undef SUCCESS
#define SUCCESS 0
#undef FAILURE
#define FAILURE 1
/**************************************************************************
*
* CODERANGE FUNCTIONS
*
*/
/**************************************************************************
*
* @Function:
* TT_Goto_CodeRange
*
* @Description:
* Switches to a new code range (updates the code related elements in
* `exec', and `IP').
*
* @Input:
* range ::
* The new execution code range.
*
* IP ::
* The new IP in the new code range.
*
* @InOut:
* exec ::
* The target execution context.
*/
FT_LOCAL_DEF( void )
TT_Goto_CodeRange( TT_ExecContext exec,
FT_Int range,
FT_Long IP )
{
TT_CodeRange* coderange;
FT_ASSERT( range >= 1 && range <= 3 );
coderange = &exec->codeRangeTable[range - 1];
FT_ASSERT( coderange->base );
/* NOTE: Because the last instruction of a program may be a CALL */
/* which will return to the first byte *after* the code */
/* range, we test for IP <= Size instead of IP < Size. */
/* */
FT_ASSERT( IP <= coderange->size );
exec->code = coderange->base;
exec->codeSize = coderange->size;
exec->IP = IP;
exec->curRange = range;
}
/**************************************************************************
*
* @Function:
* TT_Set_CodeRange
*
* @Description:
* Sets a code range.
*
* @Input:
* range ::
* The code range index.
*
* base ::
* The new code base.
*
* length ::
* The range size in bytes.
*
* @InOut:
* exec ::
* The target execution context.
*/
FT_LOCAL_DEF( void )
TT_Set_CodeRange( TT_ExecContext exec,
FT_Int range,
void* base,
FT_Long length )
{
FT_ASSERT( range >= 1 && range <= 3 );
exec->codeRangeTable[range - 1].base = (FT_Byte*)base;
exec->codeRangeTable[range - 1].size = length;
}
/**************************************************************************
*
* @Function:
* TT_Clear_CodeRange
*
* @Description:
* Clears a code range.
*
* @Input:
* range ::
* The code range index.
*
* @InOut:
* exec ::
* The target execution context.
*/
FT_LOCAL_DEF( void )
TT_Clear_CodeRange( TT_ExecContext exec,
FT_Int range )
{
FT_ASSERT( range >= 1 && range <= 3 );
exec->codeRangeTable[range - 1].base = NULL;
exec->codeRangeTable[range - 1].size = 0;
}
/**************************************************************************
*
* EXECUTION CONTEXT ROUTINES
*
*/
/**************************************************************************
*
* @Function:
* TT_Done_Context
*
* @Description:
* Destroys a given context.
*
* @Input:
* exec ::
* A handle to the target execution context.
*
* memory ::
* A handle to the parent memory object.
*
* @Note:
* Only the glyph loader and debugger should call this function.
*/
FT_LOCAL_DEF( void )
TT_Done_Context( TT_ExecContext exec )
{
FT_Memory memory = exec->memory;
/* points zone */
exec->maxPoints = 0;
exec->maxContours = 0;
/* free stack */
FT_FREE( exec->stack );
exec->stackSize = 0;
/* free glyf cvt working area */
FT_FREE( exec->glyfCvt );
exec->glyfCvtSize = 0;
/* free glyf storage working area */
FT_FREE( exec->glyfStorage );
exec->glyfStoreSize = 0;
/* free call stack */
FT_FREE( exec->callStack );
exec->callSize = 0;
exec->callTop = 0;
/* free glyph code range */
FT_FREE( exec->glyphIns );
exec->glyphSize = 0;
exec->size = NULL;
exec->face = NULL;
FT_FREE( exec );
}
/**************************************************************************
*
* @Function:
* Update_Max
*
* @Description:
* Checks the size of a buffer and reallocates it if necessary.
*
* @Input:
* memory ::
* A handle to the parent memory object.
*
* multiplier ::
* The size in bytes of each element in the buffer.
*
* new_max ::
* The new capacity (size) of the buffer.
*
* @InOut:
* size ::
* The address of the buffer's current size expressed
* in elements.
*
* buff ::
* The address of the buffer base pointer.
*
* @Return:
* FreeType error code. 0 means success.
*/
FT_LOCAL_DEF( FT_Error )
Update_Max( FT_Memory memory,
FT_ULong* size,
FT_ULong multiplier,
void* _pbuff,
FT_ULong new_max )
{
FT_Error error;
void** pbuff = (void**)_pbuff;
if ( *size < new_max )
{
if ( FT_QREALLOC( *pbuff, *size * multiplier, new_max * multiplier ) )
return error;
*size = new_max;
}
return FT_Err_Ok;
}
/**************************************************************************
*
* @Function:
* TT_Load_Context
*
* @Description:
* Prepare an execution context for glyph hinting.
*
* @Input:
* face ::
* A handle to the source face object.
*
* size ::
* A handle to the source size object.
*
* @InOut:
* exec ::
* A handle to the target execution context.
*
* @Return:
* FreeType error code. 0 means success.
*
* @Note:
* Only the glyph loader and debugger should call this function.
*
* Note that not all members of `TT_ExecContext` get initialized.
*/
FT_LOCAL_DEF( FT_Error )
TT_Load_Context( TT_ExecContext exec,
TT_Face face,
TT_Size size )
{
FT_Int i;
FT_ULong tmp;
TT_MaxProfile* maxp;
FT_Error error;
exec->face = face;
maxp = &face->max_profile;
exec->size = size;
if ( size )
{
exec->numFDefs = size->num_function_defs;
exec->maxFDefs = size->max_function_defs;
exec->numIDefs = size->num_instruction_defs;
exec->maxIDefs = size->max_instruction_defs;
exec->FDefs = size->function_defs;
exec->IDefs = size->instruction_defs;
exec->pointSize = size->point_size;
exec->tt_metrics = size->ttmetrics;
exec->metrics = *size->metrics;
exec->maxFunc = size->max_func;
exec->maxIns = size->max_ins;
for ( i = 0; i < TT_MAX_CODE_RANGES; i++ )
exec->codeRangeTable[i] = size->codeRangeTable[i];
/* set graphics state */
exec->GS = size->GS;
exec->cvtSize = size->cvt_size;
exec->cvt = size->cvt;
exec->storeSize = size->storage_size;
exec->storage = size->storage;
exec->twilight = size->twilight;
/* In case of multi-threading it can happen that the old size object */
/* no longer exists, thus we must clear all glyph zone references. */
FT_ZERO( &exec->zp0 );
exec->zp1 = exec->zp0;
exec->zp2 = exec->zp0;
}
/* XXX: We reserve a little more elements on the stack to deal safely */
/* with broken fonts like arialbs, courbs, timesbs, etc. */
tmp = (FT_ULong)exec->stackSize;
error = Update_Max( exec->memory,
&tmp,
sizeof ( FT_F26Dot6 ),
(void*)&exec->stack,
maxp->maxStackElements + 32 );
exec->stackSize = (FT_Long)tmp;
if ( error )
return error;
tmp = (FT_ULong)exec->glyphSize;
error = Update_Max( exec->memory,
&tmp,
sizeof ( FT_Byte ),
(void*)&exec->glyphIns,
maxp->maxSizeOfInstructions );
exec->glyphSize = (FT_UInt)tmp;
if ( error )
return error;
exec->pts.n_points = 0;
exec->pts.n_contours = 0;
exec->zp1 = exec->pts;
exec->zp2 = exec->pts;
exec->zp0 = exec->pts;
exec->instruction_trap = FALSE;
return FT_Err_Ok;
}
/**************************************************************************
*
* @Function:
* TT_Save_Context
*
* @Description:
* Saves the code ranges in a `size' object.
*
* @Input:
* exec ::
* A handle to the source execution context.
*
* @InOut:
* size ::
* A handle to the target size object.
*
* @Note:
* Only the glyph loader and debugger should call this function.
*/
FT_LOCAL_DEF( void )
TT_Save_Context( TT_ExecContext exec,
TT_Size size )
{
FT_Int i;
/* XXX: Will probably disappear soon with all the code range */
/* management, which is now rather obsolete. */
/* */
size->num_function_defs = exec->numFDefs;
size->num_instruction_defs = exec->numIDefs;
size->max_func = exec->maxFunc;
size->max_ins = exec->maxIns;
for ( i = 0; i < TT_MAX_CODE_RANGES; i++ )
size->codeRangeTable[i] = exec->codeRangeTable[i];
}
/**************************************************************************
*
* @Function:
* TT_Run_Context
*
* @Description:
* Executes one or more instructions in the execution context.
*
* @Input:
* exec ::
* A handle to the target execution context.
*
* @Return:
* TrueType error code. 0 means success.
*/
FT_LOCAL_DEF( FT_Error )
TT_Run_Context( TT_ExecContext exec )
{
TT_Goto_CodeRange( exec, tt_coderange_glyph, 0 );
exec->zp0 = exec->pts;
exec->zp1 = exec->pts;
exec->zp2 = exec->pts;
exec->GS.gep0 = 1;
exec->GS.gep1 = 1;
exec->GS.gep2 = 1;
exec->GS.projVector.x = 0x4000;
exec->GS.projVector.y = 0x0000;
exec->GS.freeVector = exec->GS.projVector;
exec->GS.dualVector = exec->GS.projVector;
exec->GS.round_state = 1;
exec->GS.loop = 1;
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY
exec->iup_called = FALSE;
#endif
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
exec->iupx_called = FALSE;
exec->iupy_called = FALSE;
#endif
/* some glyphs leave something on the stack. so we clean it */
/* before a new execution. */
exec->top = 0;
exec->callTop = 0;
return exec->face->interpreter( exec );
}
/* The default value for `scan_control' is documented as FALSE in the */
/* TrueType specification. This is confusing since it implies a */
/* Boolean value. However, this is not the case, thus both the */
/* default values of our `scan_type' and `scan_control' fields (which */
/* the documentation's `scan_control' variable is split into) are */
/* zero. */
const TT_GraphicsState tt_default_graphics_state =
{
0, 0, 0,
{ 0x4000, 0 },
{ 0x4000, 0 },
{ 0x4000, 0 },
1, 64, 1,
TRUE, 68, 0, 0, 9, 3,
0, FALSE, 0, 1, 1, 1
};
/* documentation is in ttinterp.h */
FT_EXPORT_DEF( TT_ExecContext )
TT_New_Context( TT_Driver driver )
{
FT_Memory memory;
FT_Error error;
TT_ExecContext exec = NULL;
if ( !driver )
goto Fail;
memory = driver->root.root.memory;
/* allocate object and zero everything inside */
if ( FT_NEW( exec ) )
goto Fail;
/* create callStack here, other allocations delayed */
exec->memory = memory;
exec->callSize = 32;
if ( FT_QNEW_ARRAY( exec->callStack, exec->callSize ) )
FT_FREE( exec );
Fail:
return exec;
}
/**************************************************************************
*
* Before an opcode is executed, the interpreter verifies that there are
* enough arguments on the stack, with the help of the `Pop_Push_Count'
* table.
*
* For each opcode, the first column gives the number of arguments that
* are popped from the stack; the second one gives the number of those
* that are pushed in result.
*
* Opcodes which have a varying number of parameters in the data stream
* (NPUSHB, NPUSHW) are handled specially; they have a negative value in
* the `opcode_length' table, and the value in `Pop_Push_Count' is set
* to zero.
*
*/
#undef PACK
#define PACK( x, y ) ( ( x << 4 ) | y )
static
const FT_Byte Pop_Push_Count[256] =
{
/* opcodes are gathered in groups of 16 */
/* please keep the spaces as they are */
/* 0x00 */
/* SVTCA[0] */ PACK( 0, 0 ),
/* SVTCA[1] */ PACK( 0, 0 ),
/* SPVTCA[0] */ PACK( 0, 0 ),
/* SPVTCA[1] */ PACK( 0, 0 ),
/* SFVTCA[0] */ PACK( 0, 0 ),
/* SFVTCA[1] */ PACK( 0, 0 ),
/* SPVTL[0] */ PACK( 2, 0 ),
/* SPVTL[1] */ PACK( 2, 0 ),
/* SFVTL[0] */ PACK( 2, 0 ),
/* SFVTL[1] */ PACK( 2, 0 ),
/* SPVFS */ PACK( 2, 0 ),
/* SFVFS */ PACK( 2, 0 ),
/* GPV */ PACK( 0, 2 ),
/* GFV */ PACK( 0, 2 ),
/* SFVTPV */ PACK( 0, 0 ),
/* ISECT */ PACK( 5, 0 ),
/* 0x10 */
/* SRP0 */ PACK( 1, 0 ),
/* SRP1 */ PACK( 1, 0 ),
/* SRP2 */ PACK( 1, 0 ),
/* SZP0 */ PACK( 1, 0 ),
/* SZP1 */ PACK( 1, 0 ),
/* SZP2 */ PACK( 1, 0 ),
/* SZPS */ PACK( 1, 0 ),
/* SLOOP */ PACK( 1, 0 ),
/* RTG */ PACK( 0, 0 ),
/* RTHG */ PACK( 0, 0 ),
/* SMD */ PACK( 1, 0 ),
/* ELSE */ PACK( 0, 0 ),
/* JMPR */ PACK( 1, 0 ),
/* SCVTCI */ PACK( 1, 0 ),
/* SSWCI */ PACK( 1, 0 ),
/* SSW */ PACK( 1, 0 ),
/* 0x20 */
/* DUP */ PACK( 1, 2 ),
/* POP */ PACK( 1, 0 ),
/* CLEAR */ PACK( 0, 0 ),
/* SWAP */ PACK( 2, 2 ),
/* DEPTH */ PACK( 0, 1 ),
/* CINDEX */ PACK( 1, 1 ),
/* MINDEX */ PACK( 1, 0 ),
/* ALIGNPTS */ PACK( 2, 0 ),
/* INS_$28 */ PACK( 0, 0 ),
/* UTP */ PACK( 1, 0 ),
/* LOOPCALL */ PACK( 2, 0 ),
/* CALL */ PACK( 1, 0 ),
/* FDEF */ PACK( 1, 0 ),
/* ENDF */ PACK( 0, 0 ),
/* MDAP[0] */ PACK( 1, 0 ),
/* MDAP[1] */ PACK( 1, 0 ),
/* 0x30 */
/* IUP[0] */ PACK( 0, 0 ),
/* IUP[1] */ PACK( 0, 0 ),
/* SHP[0] */ PACK( 0, 0 ), /* loops */
/* SHP[1] */ PACK( 0, 0 ), /* loops */
/* SHC[0] */ PACK( 1, 0 ),
/* SHC[1] */ PACK( 1, 0 ),
/* SHZ[0] */ PACK( 1, 0 ),
/* SHZ[1] */ PACK( 1, 0 ),
/* SHPIX */ PACK( 1, 0 ), /* loops */
/* IP */ PACK( 0, 0 ), /* loops */
/* MSIRP[0] */ PACK( 2, 0 ),
/* MSIRP[1] */ PACK( 2, 0 ),
/* ALIGNRP */ PACK( 0, 0 ), /* loops */
/* RTDG */ PACK( 0, 0 ),
/* MIAP[0] */ PACK( 2, 0 ),
/* MIAP[1] */ PACK( 2, 0 ),
/* 0x40 */
/* NPUSHB */ PACK( 0, 0 ),
/* NPUSHW */ PACK( 0, 0 ),
/* WS */ PACK( 2, 0 ),
/* RS */ PACK( 1, 1 ),
/* WCVTP */ PACK( 2, 0 ),
/* RCVT */ PACK( 1, 1 ),
/* GC[0] */ PACK( 1, 1 ),
/* GC[1] */ PACK( 1, 1 ),
/* SCFS */ PACK( 2, 0 ),
/* MD[0] */ PACK( 2, 1 ),
/* MD[1] */ PACK( 2, 1 ),
/* MPPEM */ PACK( 0, 1 ),
/* MPS */ PACK( 0, 1 ),
/* FLIPON */ PACK( 0, 0 ),
/* FLIPOFF */ PACK( 0, 0 ),
/* DEBUG */ PACK( 1, 0 ),
/* 0x50 */
/* LT */ PACK( 2, 1 ),
/* LTEQ */ PACK( 2, 1 ),
/* GT */ PACK( 2, 1 ),
/* GTEQ */ PACK( 2, 1 ),
/* EQ */ PACK( 2, 1 ),
/* NEQ */ PACK( 2, 1 ),
/* ODD */ PACK( 1, 1 ),
/* EVEN */ PACK( 1, 1 ),
/* IF */ PACK( 1, 0 ),
/* EIF */ PACK( 0, 0 ),
/* AND */ PACK( 2, 1 ),
/* OR */ PACK( 2, 1 ),
/* NOT */ PACK( 1, 1 ),
/* DELTAP1 */ PACK( 1, 0 ),
/* SDB */ PACK( 1, 0 ),
/* SDS */ PACK( 1, 0 ),
/* 0x60 */
/* ADD */ PACK( 2, 1 ),
/* SUB */ PACK( 2, 1 ),
/* DIV */ PACK( 2, 1 ),
/* MUL */ PACK( 2, 1 ),
/* ABS */ PACK( 1, 1 ),
/* NEG */ PACK( 1, 1 ),
/* FLOOR */ PACK( 1, 1 ),
/* CEILING */ PACK( 1, 1 ),
/* ROUND[0] */ PACK( 1, 1 ),
/* ROUND[1] */ PACK( 1, 1 ),
/* ROUND[2] */ PACK( 1, 1 ),
/* ROUND[3] */ PACK( 1, 1 ),
/* NROUND[0] */ PACK( 1, 1 ),
/* NROUND[1] */ PACK( 1, 1 ),
/* NROUND[2] */ PACK( 1, 1 ),
/* NROUND[3] */ PACK( 1, 1 ),
/* 0x70 */
/* WCVTF */ PACK( 2, 0 ),
/* DELTAP2 */ PACK( 1, 0 ),
/* DELTAP3 */ PACK( 1, 0 ),
/* DELTAC1 */ PACK( 1, 0 ),
/* DELTAC2 */ PACK( 1, 0 ),
/* DELTAC3 */ PACK( 1, 0 ),
/* SROUND */ PACK( 1, 0 ),
/* S45ROUND */ PACK( 1, 0 ),
/* JROT */ PACK( 2, 0 ),
/* JROF */ PACK( 2, 0 ),
/* ROFF */ PACK( 0, 0 ),
/* INS_$7B */ PACK( 0, 0 ),
/* RUTG */ PACK( 0, 0 ),
/* RDTG */ PACK( 0, 0 ),
/* SANGW */ PACK( 1, 0 ),
/* AA */ PACK( 1, 0 ),
/* 0x80 */
/* FLIPPT */ PACK( 0, 0 ), /* loops */
/* FLIPRGON */ PACK( 2, 0 ),
/* FLIPRGOFF */ PACK( 2, 0 ),
/* INS_$83 */ PACK( 0, 0 ),
/* INS_$84 */ PACK( 0, 0 ),
/* SCANCTRL */ PACK( 1, 0 ),
/* SDPVTL[0] */ PACK( 2, 0 ),
/* SDPVTL[1] */ PACK( 2, 0 ),
/* GETINFO */ PACK( 1, 1 ),
/* IDEF */ PACK( 1, 0 ),
/* ROLL */ PACK( 3, 3 ),
/* MAX */ PACK( 2, 1 ),
/* MIN */ PACK( 2, 1 ),
/* SCANTYPE */ PACK( 1, 0 ),
/* INSTCTRL */ PACK( 2, 0 ),
/* INS_$8F */ PACK( 0, 0 ),
/* 0x90 */
/* INS_$90 */ PACK( 0, 0 ),
/* GETVAR */ PACK( 0, 0 ), /* will be handled specially */
/* GETDATA */ PACK( 0, 1 ),
/* INS_$93 */ PACK( 0, 0 ),
/* INS_$94 */ PACK( 0, 0 ),
/* INS_$95 */ PACK( 0, 0 ),
/* INS_$96 */ PACK( 0, 0 ),
/* INS_$97 */ PACK( 0, 0 ),
/* INS_$98 */ PACK( 0, 0 ),
/* INS_$99 */ PACK( 0, 0 ),
/* INS_$9A */ PACK( 0, 0 ),
/* INS_$9B */ PACK( 0, 0 ),
/* INS_$9C */ PACK( 0, 0 ),
/* INS_$9D */ PACK( 0, 0 ),
/* INS_$9E */ PACK( 0, 0 ),
/* INS_$9F */ PACK( 0, 0 ),
/* 0xA0 */
/* INS_$A0 */ PACK( 0, 0 ),
/* INS_$A1 */ PACK( 0, 0 ),
/* INS_$A2 */ PACK( 0, 0 ),
/* INS_$A3 */ PACK( 0, 0 ),
/* INS_$A4 */ PACK( 0, 0 ),
/* INS_$A5 */ PACK( 0, 0 ),
/* INS_$A6 */ PACK( 0, 0 ),
/* INS_$A7 */ PACK( 0, 0 ),
/* INS_$A8 */ PACK( 0, 0 ),
/* INS_$A9 */ PACK( 0, 0 ),
/* INS_$AA */ PACK( 0, 0 ),
/* INS_$AB */ PACK( 0, 0 ),
/* INS_$AC */ PACK( 0, 0 ),
/* INS_$AD */ PACK( 0, 0 ),
/* INS_$AE */ PACK( 0, 0 ),
/* INS_$AF */ PACK( 0, 0 ),
/* 0xB0 */
/* PUSHB[0] */ PACK( 0, 1 ),
/* PUSHB[1] */ PACK( 0, 2 ),
/* PUSHB[2] */ PACK( 0, 3 ),
/* PUSHB[3] */ PACK( 0, 4 ),
/* PUSHB[4] */ PACK( 0, 5 ),
/* PUSHB[5] */ PACK( 0, 6 ),
/* PUSHB[6] */ PACK( 0, 7 ),
/* PUSHB[7] */ PACK( 0, 8 ),
/* PUSHW[0] */ PACK( 0, 1 ),
/* PUSHW[1] */ PACK( 0, 2 ),
/* PUSHW[2] */ PACK( 0, 3 ),
/* PUSHW[3] */ PACK( 0, 4 ),
/* PUSHW[4] */ PACK( 0, 5 ),
/* PUSHW[5] */ PACK( 0, 6 ),
/* PUSHW[6] */ PACK( 0, 7 ),
/* PUSHW[7] */ PACK( 0, 8 ),
/* 0xC0 */
/* MDRP[00] */ PACK( 1, 0 ),
/* MDRP[01] */ PACK( 1, 0 ),
/* MDRP[02] */ PACK( 1, 0 ),
/* MDRP[03] */ PACK( 1, 0 ),
/* MDRP[04] */ PACK( 1, 0 ),
/* MDRP[05] */ PACK( 1, 0 ),
/* MDRP[06] */ PACK( 1, 0 ),
/* MDRP[07] */ PACK( 1, 0 ),
/* MDRP[08] */ PACK( 1, 0 ),
/* MDRP[09] */ PACK( 1, 0 ),
/* MDRP[10] */ PACK( 1, 0 ),
/* MDRP[11] */ PACK( 1, 0 ),
/* MDRP[12] */ PACK( 1, 0 ),
/* MDRP[13] */ PACK( 1, 0 ),
/* MDRP[14] */ PACK( 1, 0 ),
/* MDRP[15] */ PACK( 1, 0 ),
/* 0xD0 */
/* MDRP[16] */ PACK( 1, 0 ),
/* MDRP[17] */ PACK( 1, 0 ),
/* MDRP[18] */ PACK( 1, 0 ),
/* MDRP[19] */ PACK( 1, 0 ),
/* MDRP[20] */ PACK( 1, 0 ),
/* MDRP[21] */ PACK( 1, 0 ),
/* MDRP[22] */ PACK( 1, 0 ),
/* MDRP[23] */ PACK( 1, 0 ),
/* MDRP[24] */ PACK( 1, 0 ),
/* MDRP[25] */ PACK( 1, 0 ),
/* MDRP[26] */ PACK( 1, 0 ),
/* MDRP[27] */ PACK( 1, 0 ),
/* MDRP[28] */ PACK( 1, 0 ),
/* MDRP[29] */ PACK( 1, 0 ),
/* MDRP[30] */ PACK( 1, 0 ),
/* MDRP[31] */ PACK( 1, 0 ),
/* 0xE0 */
/* MIRP[00] */ PACK( 2, 0 ),
/* MIRP[01] */ PACK( 2, 0 ),
/* MIRP[02] */ PACK( 2, 0 ),
/* MIRP[03] */ PACK( 2, 0 ),
/* MIRP[04] */ PACK( 2, 0 ),
/* MIRP[05] */ PACK( 2, 0 ),
/* MIRP[06] */ PACK( 2, 0 ),
/* MIRP[07] */ PACK( 2, 0 ),
/* MIRP[08] */ PACK( 2, 0 ),
/* MIRP[09] */ PACK( 2, 0 ),
/* MIRP[10] */ PACK( 2, 0 ),
/* MIRP[11] */ PACK( 2, 0 ),
/* MIRP[12] */ PACK( 2, 0 ),
/* MIRP[13] */ PACK( 2, 0 ),
/* MIRP[14] */ PACK( 2, 0 ),
/* MIRP[15] */ PACK( 2, 0 ),
/* 0xF0 */
/* MIRP[16] */ PACK( 2, 0 ),
/* MIRP[17] */ PACK( 2, 0 ),
/* MIRP[18] */ PACK( 2, 0 ),
/* MIRP[19] */ PACK( 2, 0 ),
/* MIRP[20] */ PACK( 2, 0 ),
/* MIRP[21] */ PACK( 2, 0 ),
/* MIRP[22] */ PACK( 2, 0 ),
/* MIRP[23] */ PACK( 2, 0 ),
/* MIRP[24] */ PACK( 2, 0 ),
/* MIRP[25] */ PACK( 2, 0 ),
/* MIRP[26] */ PACK( 2, 0 ),
/* MIRP[27] */ PACK( 2, 0 ),
/* MIRP[28] */ PACK( 2, 0 ),
/* MIRP[29] */ PACK( 2, 0 ),
/* MIRP[30] */ PACK( 2, 0 ),
/* MIRP[31] */ PACK( 2, 0 )
};
#ifdef FT_DEBUG_LEVEL_TRACE
/* the first hex digit gives the length of the opcode name; the space */
/* after the digit is here just to increase readability of the source */
/* code */
static
const char* const opcode_name[256] =
{
/* 0x00 */
"8 SVTCA[y]",
"8 SVTCA[x]",
"9 SPVTCA[y]",
"9 SPVTCA[x]",
"9 SFVTCA[y]",
"9 SFVTCA[x]",
"9 SPVTL[||]",
"8 SPVTL[+]",
"9 SFVTL[||]",
"8 SFVTL[+]",
"5 SPVFS",
"5 SFVFS",
"3 GPV",
"3 GFV",
"6 SFVTPV",
"5 ISECT",
/* 0x10 */
"4 SRP0",
"4 SRP1",
"4 SRP2",
"4 SZP0",
"4 SZP1",
"4 SZP2",
"4 SZPS",
"5 SLOOP",
"3 RTG",
"4 RTHG",
"3 SMD",
"4 ELSE",
"4 JMPR",
"6 SCVTCI",
"5 SSWCI",
"3 SSW",
/* 0x20 */
"3 DUP",
"3 POP",
"5 CLEAR",
"4 SWAP",
"5 DEPTH",
"6 CINDEX",
"6 MINDEX",
"8 ALIGNPTS",
"7 INS_$28",
"3 UTP",
"8 LOOPCALL",
"4 CALL",
"4 FDEF",
"4 ENDF",
"6 MDAP[]",
"9 MDAP[rnd]",
/* 0x30 */
"6 IUP[y]",
"6 IUP[x]",
"8 SHP[rp2]",
"8 SHP[rp1]",
"8 SHC[rp2]",
"8 SHC[rp1]",
"8 SHZ[rp2]",
"8 SHZ[rp1]",
"5 SHPIX",
"2 IP",
"7 MSIRP[]",
"A MSIRP[rp0]",
"7 ALIGNRP",
"4 RTDG",
"6 MIAP[]",
"9 MIAP[rnd]",
/* 0x40 */
"6 NPUSHB",
"6 NPUSHW",
"2 WS",
"2 RS",
"5 WCVTP",
"4 RCVT",
"8 GC[curr]",
"8 GC[orig]",
"4 SCFS",
"8 MD[curr]",
"8 MD[orig]",
"5 MPPEM",
"3 MPS",
"6 FLIPON",
"7 FLIPOFF",
"5 DEBUG",
/* 0x50 */
"2 LT",
"4 LTEQ",
"2 GT",
"4 GTEQ",
"2 EQ",
"3 NEQ",
"3 ODD",
"4 EVEN",
"2 IF",
"3 EIF",
"3 AND",
"2 OR",
"3 NOT",
"7 DELTAP1",
"3 SDB",
"3 SDS",
/* 0x60 */
"3 ADD",
"3 SUB",
"3 DIV",
"3 MUL",
"3 ABS",
"3 NEG",
"5 FLOOR",
"7 CEILING",
"8 ROUND[G]",
"8 ROUND[B]",
"8 ROUND[W]",
"7 ROUND[]",
"9 NROUND[G]",
"9 NROUND[B]",
"9 NROUND[W]",
"8 NROUND[]",
/* 0x70 */
"5 WCVTF",
"7 DELTAP2",
"7 DELTAP3",
"7 DELTAC1",
"7 DELTAC2",
"7 DELTAC3",
"6 SROUND",
"8 S45ROUND",
"4 JROT",
"4 JROF",
"4 ROFF",
"7 INS_$7B",
"4 RUTG",
"4 RDTG",
"5 SANGW",
"2 AA",
/* 0x80 */
"6 FLIPPT",
"8 FLIPRGON",
"9 FLIPRGOFF",
"7 INS_$83",
"7 INS_$84",
"8 SCANCTRL",
"A SDPVTL[||]",
"9 SDPVTL[+]",
"7 GETINFO",
"4 IDEF",
"4 ROLL",
"3 MAX",
"3 MIN",
"8 SCANTYPE",
"8 INSTCTRL",
"7 INS_$8F",
/* 0x90 */
"7 INS_$90",
#ifdef TT_CONFIG_OPTION_GX_VAR_SUPPORT
"C GETVARIATION",
"7 GETDATA",
#else
"7 INS_$91",
"7 INS_$92",
#endif
"7 INS_$93",
"7 INS_$94",
"7 INS_$95",
"7 INS_$96",
"7 INS_$97",
"7 INS_$98",
"7 INS_$99",
"7 INS_$9A",
"7 INS_$9B",
"7 INS_$9C",
"7 INS_$9D",
"7 INS_$9E",
"7 INS_$9F",
/* 0xA0 */
"7 INS_$A0",
"7 INS_$A1",
"7 INS_$A2",
"7 INS_$A3",
"7 INS_$A4",
"7 INS_$A5",
"7 INS_$A6",
"7 INS_$A7",
"7 INS_$A8",
"7 INS_$A9",
"7 INS_$AA",
"7 INS_$AB",
"7 INS_$AC",
"7 INS_$AD",
"7 INS_$AE",
"7 INS_$AF",
/* 0xB0 */
"8 PUSHB[0]",
"8 PUSHB[1]",
"8 PUSHB[2]",
"8 PUSHB[3]",
"8 PUSHB[4]",
"8 PUSHB[5]",
"8 PUSHB[6]",
"8 PUSHB[7]",
"8 PUSHW[0]",
"8 PUSHW[1]",
"8 PUSHW[2]",
"8 PUSHW[3]",
"8 PUSHW[4]",
"8 PUSHW[5]",
"8 PUSHW[6]",
"8 PUSHW[7]",
/* 0xC0 */
"7 MDRP[G]",
"7 MDRP[B]",
"7 MDRP[W]",
"6 MDRP[]",
"8 MDRP[rG]",
"8 MDRP[rB]",
"8 MDRP[rW]",
"7 MDRP[r]",
"8 MDRP[mG]",
"8 MDRP[mB]",
"8 MDRP[mW]",
"7 MDRP[m]",
"9 MDRP[mrG]",
"9 MDRP[mrB]",
"9 MDRP[mrW]",
"8 MDRP[mr]",
/* 0xD0 */
"8 MDRP[pG]",
"8 MDRP[pB]",
"8 MDRP[pW]",
"7 MDRP[p]",
"9 MDRP[prG]",
"9 MDRP[prB]",
"9 MDRP[prW]",
"8 MDRP[pr]",
"9 MDRP[pmG]",
"9 MDRP[pmB]",
"9 MDRP[pmW]",
"8 MDRP[pm]",
"A MDRP[pmrG]",
"A MDRP[pmrB]",
"A MDRP[pmrW]",
"9 MDRP[pmr]",
/* 0xE0 */
"7 MIRP[G]",
"7 MIRP[B]",
"7 MIRP[W]",
"6 MIRP[]",
"8 MIRP[rG]",
"8 MIRP[rB]",
"8 MIRP[rW]",
"7 MIRP[r]",
"8 MIRP[mG]",
"8 MIRP[mB]",
"8 MIRP[mW]",
"7 MIRP[m]",
"9 MIRP[mrG]",
"9 MIRP[mrB]",
"9 MIRP[mrW]",
"8 MIRP[mr]",
/* 0xF0 */
"8 MIRP[pG]",
"8 MIRP[pB]",
"8 MIRP[pW]",
"7 MIRP[p]",
"9 MIRP[prG]",
"9 MIRP[prB]",
"9 MIRP[prW]",
"8 MIRP[pr]",
"9 MIRP[pmG]",
"9 MIRP[pmB]",
"9 MIRP[pmW]",
"8 MIRP[pm]",
"A MIRP[pmrG]",
"A MIRP[pmrB]",
"A MIRP[pmrW]",
"9 MIRP[pmr]"
};
#endif /* FT_DEBUG_LEVEL_TRACE */
static
const FT_Char opcode_length[256] =
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8, 9, 3, 5, 7, 9, 11,13,15,17,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
#undef PACK
#ifndef FT_CONFIG_OPTION_NO_ASSEMBLER
#if defined( __arm__ ) && \
( defined( __thumb2__ ) || !defined( __thumb__ ) )
#define TT_MulFix14 TT_MulFix14_arm
static FT_Int32
TT_MulFix14_arm( FT_Int32 a,
FT_Int b )
{
FT_Int32 t, t2;
#if defined( __CC_ARM ) || defined( __ARMCC__ )
__asm
{
smull t2, t, b, a /* (lo=t2,hi=t) = a*b */
mov a, t, asr #31 /* a = (hi >> 31) */
add a, a, #0x2000 /* a += 0x2000 */
adds t2, t2, a /* t2 += a */
adc t, t, #0 /* t += carry */
mov a, t2, lsr #14 /* a = t2 >> 14 */
orr a, a, t, lsl #18 /* a |= t << 18 */
}
#elif defined( __GNUC__ )
__asm__ __volatile__ (
"smull %1, %2, %4, %3\n\t" /* (lo=%1,hi=%2) = a*b */
"mov %0, %2, asr #31\n\t" /* %0 = (hi >> 31) */
#if defined( __clang__ ) && defined( __thumb2__ )
"add.w %0, %0, #0x2000\n\t" /* %0 += 0x2000 */
#else
"add %0, %0, #0x2000\n\t" /* %0 += 0x2000 */
#endif
"adds %1, %1, %0\n\t" /* %1 += %0 */
"adc %2, %2, #0\n\t" /* %2 += carry */
"mov %0, %1, lsr #14\n\t" /* %0 = %1 >> 16 */
"orr %0, %0, %2, lsl #18\n\t" /* %0 |= %2 << 16 */
: "=r"(a), "=&r"(t2), "=&r"(t)
: "r"(a), "r"(b)
: "cc" );
#endif
return a;
}
#endif /* __arm__ && ( __thumb2__ || !__thumb__ ) */
#endif /* !FT_CONFIG_OPTION_NO_ASSEMBLER */
#if defined( __GNUC__ ) && \
( defined( __i386__ ) || defined( __x86_64__ ) )
#define TT_MulFix14 TT_MulFix14_long_long
/* Temporarily disable the warning that C90 doesn't support `long long'. */
#if ( __GNUC__ * 100 + __GNUC_MINOR__ ) >= 406
#pragma GCC diagnostic push
#endif
#pragma GCC diagnostic ignored "-Wlong-long"
/* This is declared `noinline' because inlining the function results */
/* in slower code. The `pure' attribute indicates that the result */
/* only depends on the parameters. */
static __attribute__(( noinline ))
__attribute__(( pure )) FT_Int32
TT_MulFix14_long_long( FT_Int32 a,
FT_Int b )
{
long long ret = (long long)a * b;
/* The following line assumes that right shifting of signed values */
/* will actually preserve the sign bit. The exact behaviour is */
/* undefined, but this is true on x86 and x86_64. */
long long tmp = ret >> 63;
ret += 0x2000 + tmp;
return (FT_Int32)( ret >> 14 );
}
#if ( __GNUC__ * 100 + __GNUC_MINOR__ ) >= 406
#pragma GCC diagnostic pop
#endif
#endif /* __GNUC__ && ( __i386__ || __x86_64__ ) */
#ifndef TT_MulFix14
/* Compute (a*b)/2^14 with maximum accuracy and rounding. */
/* This is optimized to be faster than calling FT_MulFix() */
/* for platforms where sizeof(int) == 2. */
static FT_Int32
TT_MulFix14( FT_Int32 a,
FT_Int b )
{
FT_Int32 sign;
FT_UInt32 ah, al, mid, lo, hi;
sign = a ^ b;
if ( a < 0 )
a = -a;
if ( b < 0 )
b = -b;
ah = (FT_UInt32)( ( a >> 16 ) & 0xFFFFU );
al = (FT_UInt32)( a & 0xFFFFU );
lo = al * b;
mid = ah * b;
hi = mid >> 16;
mid = ( mid << 16 ) + ( 1 << 13 ); /* rounding */
lo += mid;
if ( lo < mid )
hi += 1;
mid = ( lo >> 14 ) | ( hi << 18 );
return sign >= 0 ? (FT_Int32)mid : -(FT_Int32)mid;
}
#endif /* !TT_MulFix14 */
#if defined( __GNUC__ ) && \
( defined( __i386__ ) || \
defined( __x86_64__ ) || \
defined( __arm__ ) )
#define TT_DotFix14 TT_DotFix14_long_long
#if ( __GNUC__ * 100 + __GNUC_MINOR__ ) >= 406
#pragma GCC diagnostic push
#endif
#pragma GCC diagnostic ignored "-Wlong-long"
static __attribute__(( pure )) FT_Int32
TT_DotFix14_long_long( FT_Int32 ax,
FT_Int32 ay,
FT_Int bx,
FT_Int by )
{
/* Temporarily disable the warning that C90 doesn't support */
/* `long long'. */
long long temp1 = (long long)ax * bx;
long long temp2 = (long long)ay * by;
temp1 += temp2;
temp2 = temp1 >> 63;
temp1 += 0x2000 + temp2;
return (FT_Int32)( temp1 >> 14 );
}
#if ( __GNUC__ * 100 + __GNUC_MINOR__ ) >= 406
#pragma GCC diagnostic pop
#endif
#endif /* __GNUC__ && (__arm__ || __i386__ || __x86_64__) */
#ifndef TT_DotFix14
/* compute (ax*bx+ay*by)/2^14 with maximum accuracy and rounding */
static FT_Int32
TT_DotFix14( FT_Int32 ax,
FT_Int32 ay,
FT_Int bx,
FT_Int by )
{
FT_Int32 m, s, hi1, hi2, hi;
FT_UInt32 l, lo1, lo2, lo;
/* compute ax*bx as 64-bit value */
l = (FT_UInt32)( ( ax & 0xFFFFU ) * bx );
m = ( ax >> 16 ) * bx;
lo1 = l + ( (FT_UInt32)m << 16 );
hi1 = ( m >> 16 ) + ( (FT_Int32)l >> 31 ) + ( lo1 < l );
/* compute ay*by as 64-bit value */
l = (FT_UInt32)( ( ay & 0xFFFFU ) * by );
m = ( ay >> 16 ) * by;
lo2 = l + ( (FT_UInt32)m << 16 );
hi2 = ( m >> 16 ) + ( (FT_Int32)l >> 31 ) + ( lo2 < l );
/* add them */
lo = lo1 + lo2;
hi = hi1 + hi2 + ( lo < lo1 );
/* divide the result by 2^14 with rounding */
s = hi >> 31;
l = lo + (FT_UInt32)s;
hi += s + ( l < lo );
lo = l;
l = lo + 0x2000U;
hi += ( l < lo );
return (FT_Int32)( ( (FT_UInt32)hi << 18 ) | ( l >> 14 ) );
}
#endif /* TT_DotFix14 */
/**************************************************************************
*
* @Function:
* Current_Ratio
*
* @Description:
* Returns the current aspect ratio scaling factor depending on the
* projection vector's state and device resolutions.
*
* @Return:
* The aspect ratio in 16.16 format, always <= 1.0 .
*/
static FT_Long
Current_Ratio( TT_ExecContext exc )
{
if ( !exc->tt_metrics.ratio )
{
if ( exc->GS.projVector.y == 0 )
exc->tt_metrics.ratio = exc->tt_metrics.x_ratio;
else if ( exc->GS.projVector.x == 0 )
exc->tt_metrics.ratio = exc->tt_metrics.y_ratio;
else
{
FT_F26Dot6 x, y;
x = TT_MulFix14( exc->tt_metrics.x_ratio,
exc->GS.projVector.x );
y = TT_MulFix14( exc->tt_metrics.y_ratio,
exc->GS.projVector.y );
exc->tt_metrics.ratio = FT_Hypot( x, y );
}
}
return exc->tt_metrics.ratio;
}
FT_CALLBACK_DEF( FT_Long )
Current_Ppem( TT_ExecContext exc )
{
return exc->tt_metrics.ppem;
}
FT_CALLBACK_DEF( FT_Long )
Current_Ppem_Stretched( TT_ExecContext exc )
{
return FT_MulFix( exc->tt_metrics.ppem, Current_Ratio( exc ) );
}
/**************************************************************************
*
* Functions related to the control value table (CVT).
*
*/
FT_CALLBACK_DEF( FT_F26Dot6 )
Read_CVT( TT_ExecContext exc,
FT_ULong idx )
{
return exc->cvt[idx];
}
FT_CALLBACK_DEF( FT_F26Dot6 )
Read_CVT_Stretched( TT_ExecContext exc,
FT_ULong idx )
{
return FT_MulFix( exc->cvt[idx], Current_Ratio( exc ) );
}
static void
Modify_CVT_Check( TT_ExecContext exc )
{
/* TT_RunIns sets origCvt and restores cvt to origCvt when done. */
if ( exc->iniRange == tt_coderange_glyph &&
exc->cvt == exc->origCvt )
{
exc->error = Update_Max( exc->memory,
&exc->glyfCvtSize,
sizeof ( FT_Long ),
(void*)&exc->glyfCvt,
exc->cvtSize );
if ( exc->error )
return;
FT_ARRAY_COPY( exc->glyfCvt, exc->cvt, exc->glyfCvtSize );
exc->cvt = exc->glyfCvt;
}
}
FT_CALLBACK_DEF( void )
Write_CVT( TT_ExecContext exc,
FT_ULong idx,
FT_F26Dot6 value )
{
Modify_CVT_Check( exc );
if ( exc->error )
return;
exc->cvt[idx] = value;
}
FT_CALLBACK_DEF( void )
Write_CVT_Stretched( TT_ExecContext exc,
FT_ULong idx,
FT_F26Dot6 value )
{
Modify_CVT_Check( exc );
if ( exc->error )
return;
exc->cvt[idx] = FT_DivFix( value, Current_Ratio( exc ) );
}
FT_CALLBACK_DEF( void )
Move_CVT( TT_ExecContext exc,
FT_ULong idx,
FT_F26Dot6 value )
{
Modify_CVT_Check( exc );
if ( exc->error )
return;
exc->cvt[idx] = ADD_LONG( exc->cvt[idx], value );
}
FT_CALLBACK_DEF( void )
Move_CVT_Stretched( TT_ExecContext exc,
FT_ULong idx,
FT_F26Dot6 value )
{
Modify_CVT_Check( exc );
if ( exc->error )
return;
exc->cvt[idx] = ADD_LONG( exc->cvt[idx],
FT_DivFix( value, Current_Ratio( exc ) ) );
}
/**************************************************************************
*
* @Function:
* GetShortIns
*
* @Description:
* Returns a short integer taken from the instruction stream at
* address IP.
*
* @Return:
* Short read at code[IP].
*
* @Note:
* This one could become a macro.
*/
static FT_Short
GetShortIns( TT_ExecContext exc )
{
/* Reading a byte stream so there is no endianness (DaveP) */
exc->IP += 2;
return (FT_Short)( ( exc->code[exc->IP - 2] << 8 ) +
exc->code[exc->IP - 1] );
}
/**************************************************************************
*
* @Function:
* Ins_Goto_CodeRange
*
* @Description:
* Goes to a certain code range in the instruction stream.
*
* @Input:
* aRange ::
* The index of the code range.
*
* aIP ::
* The new IP address in the code range.
*
* @Return:
* SUCCESS or FAILURE.
*/
static FT_Bool
Ins_Goto_CodeRange( TT_ExecContext exc,
FT_Int aRange,
FT_Long aIP )
{
TT_CodeRange* range;
if ( aRange < 1 || aRange > 3 )
{
exc->error = FT_THROW( Bad_Argument );
return FAILURE;
}
range = &exc->codeRangeTable[aRange - 1];
if ( !range->base ) /* invalid coderange */
{
exc->error = FT_THROW( Invalid_CodeRange );
return FAILURE;
}
/* NOTE: Because the last instruction of a program may be a CALL */
/* which will return to the first byte *after* the code */
/* range, we test for aIP <= Size, instead of aIP < Size. */
if ( aIP > range->size )
{
exc->error = FT_THROW( Code_Overflow );
return FAILURE;
}
exc->code = range->base;
exc->codeSize = range->size;
exc->IP = aIP;
exc->curRange = aRange;
return SUCCESS;
}
/*
*
* Apple's TrueType specification at
*
* https://developer.apple.com/fonts/TrueType-Reference-Manual/RM02/Chap2.html#order
*
* gives the following order of operations in instructions that move
* points.
*
* - check single width cut-in (MIRP, MDRP)
*
* - check control value cut-in (MIRP, MIAP)
*
* - apply engine compensation (MIRP, MDRP)
*
* - round distance (MIRP, MDRP) or value (MIAP, MDAP)
*
* - check minimum distance (MIRP,MDRP)
*
* - move point (MIRP, MDRP, MIAP, MSIRP, MDAP)
*
* For rounding instructions, engine compensation happens before rounding.
*
*/
/**************************************************************************
*
* @Function:
* Direct_Move
*
* @Description:
* Moves a point by a given distance along the freedom vector. The
* point will be `touched'.
*
* @Input:
* point ::
* The index of the point to move.
*
* distance ::
* The distance to apply.
*
* @InOut:
* zone ::
* The affected glyph zone.
*
* @Note:
* See `ttinterp.h' for details on backward compatibility mode.
* `Touches' the point.
*/
static void
Direct_Move( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
FT_F26Dot6 v;
v = exc->GS.freeVector.x;
if ( v != 0 )
{
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY
if ( SUBPIXEL_HINTING_INFINALITY &&
( !exc->ignore_x_mode ||
( exc->sph_tweak_flags & SPH_TWEAK_ALLOW_X_DMOVE ) ) )
zone->cur[point].x = ADD_LONG( zone->cur[point].x,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
else
#endif /* TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY */
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
/* Exception to the post-IUP curfew: Allow the x component of */
/* diagonal moves, but only post-IUP. DejaVu tries to adjust */
/* diagonal stems like on `Z' and `z' post-IUP. */
if ( SUBPIXEL_HINTING_MINIMAL && !exc->backward_compatibility )
zone->cur[point].x = ADD_LONG( zone->cur[point].x,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
else
#endif
if ( NO_SUBPIXEL_HINTING )
zone->cur[point].x = ADD_LONG( zone->cur[point].x,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
zone->tags[point] |= FT_CURVE_TAG_TOUCH_X;
}
v = exc->GS.freeVector.y;
if ( v != 0 )
{
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
if ( !( SUBPIXEL_HINTING_MINIMAL &&
exc->backward_compatibility &&
exc->iupx_called &&
exc->iupy_called ) )
#endif
zone->cur[point].y = ADD_LONG( zone->cur[point].y,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
zone->tags[point] |= FT_CURVE_TAG_TOUCH_Y;
}
}
/**************************************************************************
*
* @Function:
* Direct_Move_Orig
*
* @Description:
* Moves the *original* position of a point by a given distance along
* the freedom vector. Obviously, the point will not be `touched'.
*
* @Input:
* point ::
* The index of the point to move.
*
* distance ::
* The distance to apply.
*
* @InOut:
* zone ::
* The affected glyph zone.
*/
static void
Direct_Move_Orig( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
FT_F26Dot6 v;
v = exc->GS.freeVector.x;
if ( v != 0 )
zone->org[point].x = ADD_LONG( zone->org[point].x,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
v = exc->GS.freeVector.y;
if ( v != 0 )
zone->org[point].y = ADD_LONG( zone->org[point].y,
FT_MulDiv( distance,
v,
exc->F_dot_P ) );
}
/**************************************************************************
*
* Special versions of Direct_Move()
*
* The following versions are used whenever both vectors are both
* along one of the coordinate unit vectors, i.e. in 90% of the cases.
* See `ttinterp.h' for details on backward compatibility mode.
*
*/
static void
Direct_Move_X( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY
if ( SUBPIXEL_HINTING_INFINALITY && !exc->ignore_x_mode )
zone->cur[point].x = ADD_LONG( zone->cur[point].x, distance );
else
#endif /* TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY */
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
if ( SUBPIXEL_HINTING_MINIMAL && !exc->backward_compatibility )
zone->cur[point].x = ADD_LONG( zone->cur[point].x, distance );
else
#endif
if ( NO_SUBPIXEL_HINTING )
zone->cur[point].x = ADD_LONG( zone->cur[point].x, distance );
zone->tags[point] |= FT_CURVE_TAG_TOUCH_X;
}
static void
Direct_Move_Y( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
FT_UNUSED( exc );
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_MINIMAL
if ( !( SUBPIXEL_HINTING_MINIMAL &&
exc->backward_compatibility &&
exc->iupx_called && exc->iupy_called ) )
#endif
zone->cur[point].y = ADD_LONG( zone->cur[point].y, distance );
zone->tags[point] |= FT_CURVE_TAG_TOUCH_Y;
}
/**************************************************************************
*
* Special versions of Direct_Move_Orig()
*
* The following versions are used whenever both vectors are both
* along one of the coordinate unit vectors, i.e. in 90% of the cases.
*
*/
static void
Direct_Move_Orig_X( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
FT_UNUSED( exc );
zone->org[point].x = ADD_LONG( zone->org[point].x, distance );
}
static void
Direct_Move_Orig_Y( TT_ExecContext exc,
TT_GlyphZone zone,
FT_UShort point,
FT_F26Dot6 distance )
{
FT_UNUSED( exc );
zone->org[point].y = ADD_LONG( zone->org[point].y, distance );
}
/**************************************************************************
*
* @Function:
* Round_None
*
* @Description:
* Does not round, but adds engine compensation.
*
* @Input:
* distance ::
* The distance (not) to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* The compensated distance.
*/
static FT_F26Dot6
Round_None( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = ADD_LONG( distance, compensation );
if ( val < 0 )
val = 0;
}
else
{
val = SUB_LONG( distance, compensation );
if ( val > 0 )
val = 0;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_To_Grid
*
* @Description:
* Rounds value to grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*/
static FT_F26Dot6
Round_To_Grid( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = FT_PIX_ROUND_LONG( ADD_LONG( distance, compensation ) );
if ( val < 0 )
val = 0;
}
else
{
val = NEG_LONG( FT_PIX_ROUND_LONG( SUB_LONG( compensation,
distance ) ) );
if ( val > 0 )
val = 0;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_To_Half_Grid
*
* @Description:
* Rounds value to half grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*/
static FT_F26Dot6
Round_To_Half_Grid( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = ADD_LONG( FT_PIX_FLOOR( ADD_LONG( distance, compensation ) ),
32 );
if ( val < 0 )
val = 32;
}
else
{
val = NEG_LONG( ADD_LONG( FT_PIX_FLOOR( SUB_LONG( compensation,
distance ) ),
32 ) );
if ( val > 0 )
val = -32;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_Down_To_Grid
*
* @Description:
* Rounds value down to grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*/
static FT_F26Dot6
Round_Down_To_Grid( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = FT_PIX_FLOOR( ADD_LONG( distance, compensation ) );
if ( val < 0 )
val = 0;
}
else
{
val = NEG_LONG( FT_PIX_FLOOR( SUB_LONG( compensation, distance ) ) );
if ( val > 0 )
val = 0;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_Up_To_Grid
*
* @Description:
* Rounds value up to grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*/
static FT_F26Dot6
Round_Up_To_Grid( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = FT_PIX_CEIL_LONG( ADD_LONG( distance, compensation ) );
if ( val < 0 )
val = 0;
}
else
{
val = NEG_LONG( FT_PIX_CEIL_LONG( SUB_LONG( compensation,
distance ) ) );
if ( val > 0 )
val = 0;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_To_Double_Grid
*
* @Description:
* Rounds value to double grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*/
static FT_F26Dot6
Round_To_Double_Grid( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = FT_PAD_ROUND_LONG( ADD_LONG( distance, compensation ), 32 );
if ( val < 0 )
val = 0;
}
else
{
val = NEG_LONG( FT_PAD_ROUND_LONG( SUB_LONG( compensation, distance ),
32 ) );
if ( val > 0 )
val = 0;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_Super
*
* @Description:
* Super-rounds value to grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*
* @Note:
* The TrueType specification says very little about the relationship
* between rounding and engine compensation. However, it seems from
* the description of super round that we should add the compensation
* before rounding.
*/
static FT_F26Dot6
Round_Super( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = ADD_LONG( distance,
exc->threshold - exc->phase + compensation ) &
-exc->period;
val = ADD_LONG( val, exc->phase );
if ( val < 0 )
val = exc->phase;
}
else
{
val = NEG_LONG( SUB_LONG( exc->threshold - exc->phase + compensation,
distance ) &
-exc->period );
val = SUB_LONG( val, exc->phase );
if ( val > 0 )
val = -exc->phase;
}
return val;
}
/**************************************************************************
*
* @Function:
* Round_Super_45
*
* @Description:
* Super-rounds value to grid after adding engine compensation.
*
* @Input:
* distance ::
* The distance to round.
*
* color ::
* The engine compensation color.
*
* @Return:
* Rounded distance.
*
* @Note:
* There is a separate function for Round_Super_45() as we may need
* greater precision.
*/
static FT_F26Dot6
Round_Super_45( TT_ExecContext exc,
FT_F26Dot6 distance,
FT_Int color )
{
FT_F26Dot6 compensation = exc->tt_metrics.compensations[color];
FT_F26Dot6 val;
if ( distance >= 0 )
{
val = ( ADD_LONG( distance,
exc->threshold - exc->phase + compensation ) /
exc->period ) * exc->period;
val = ADD_LONG( val, exc->phase );
if ( val < 0 )
val = exc->phase;
}
else
{
val = NEG_LONG( ( SUB_LONG( exc->threshold - exc->phase + compensation,
distance ) /
exc->period ) * exc->period );
val = SUB_LONG( val, exc->phase );
if ( val > 0 )
val = -exc->phase;
}
return val;
}
/**************************************************************************
*
* @Function:
* Compute_Round
*
* @Description:
* Sets the rounding mode.
*
* @Input:
* round_mode ::
* The rounding mode to be used.
*/
static void
Compute_Round( TT_ExecContext exc,
FT_Byte round_mode )
{
switch ( round_mode )
{
case TT_Round_Off:
exc->func_round = (TT_Round_Func)Round_None;
break;
case TT_Round_To_Grid:
exc->func_round = (TT_Round_Func)Round_To_Grid;
break;
case TT_Round_Up_To_Grid:
exc->func_round = (TT_Round_Func)Round_Up_To_Grid;
break;
case TT_Round_Down_To_Grid:
exc->func_round = (TT_Round_Func)Round_Down_To_Grid;
break;
case TT_Round_To_Half_Grid:
exc->func_round = (TT_Round_Func)Round_To_Half_Grid;
break;
case TT_Round_To_Double_Grid:
exc->func_round = (TT_Round_Func)Round_To_Double_Grid;
break;
case TT_Round_Super:
exc->func_round = (TT_Round_Func)Round_Super;
break;
case TT_Round_Super_45:
exc->func_round = (TT_Round_Func)Round_Super_45;
break;
}
}
/**************************************************************************
*
* @Function:
* SetSuperRound
*
* @Description:
* Sets Super Round parameters.
*
* @Input:
* GridPeriod ::
* The grid period.
*
* selector ::
* The SROUND opcode.
*/
static void
SetSuperRound( TT_ExecContext exc,
FT_F2Dot14 GridPeriod,
FT_Long selector )
{
switch ( (FT_Int)( selector & 0xC0 ) )
{
case 0:
exc->period = GridPeriod / 2;
break;
case 0x40:
exc->period = GridPeriod;
break;
case 0x80:
exc->period = GridPeriod * 2;
break;
/* This opcode is reserved, but... */
case 0xC0:
exc->period = GridPeriod;
break;
}
switch ( (FT_Int)( selector & 0x30 ) )
{
case 0:
exc->phase = 0;
break;
case 0x10:
exc->phase = exc->period / 4;
break;
case 0x20:
exc->phase = exc->period / 2;
break;
case 0x30:
exc->phase = exc->period * 3 / 4;
break;
}
if ( ( selector & 0x0F ) == 0 )
exc->threshold = exc->period - 1;
else
exc->threshold = ( (FT_Int)( selector & 0x0F ) - 4 ) * exc->period / 8;
/* convert to F26Dot6 format */
exc->period >>= 8;
exc->phase >>= 8;
exc->threshold >>= 8;
}
/**************************************************************************
*
* @Function:
* Project
*
* @Description:
* Computes the projection of vector given by (v2-v1) along the
* current projection vector.
*
* @Input:
* v1 ::
* First input vector.
* v2 ::
* Second input vector.
*
* @Return:
* The distance in F26dot6 format.
*/
static FT_F26Dot6
Project( TT_ExecContext exc,
FT_Pos dx,
FT_Pos dy )
{
return TT_DotFix14( dx, dy,
exc->GS.projVector.x,
exc->GS.projVector.y );
}
/**************************************************************************
*
* @Function:
* Dual_Project
*
* @Description:
* Computes the projection of the vector given by (v2-v1) along the
* current dual vector.
*
* @Input:
* v1 ::
* First input vector.
* v2 ::
* Second input vector.
*
* @Return:
* The distance in F26dot6 format.
*/
static FT_F26Dot6
Dual_Project( TT_ExecContext exc,
FT_Pos dx,
FT_Pos dy )
{
return TT_DotFix14( dx, dy,
exc->GS.dualVector.x,
exc->GS.dualVector.y );
}
/**************************************************************************
*
* @Function:
* Project_x
*
* @Description:
* Computes the projection of the vector given by (v2-v1) along the
* horizontal axis.
*
* @Input:
* v1 ::
* First input vector.
* v2 ::
* Second input vector.
*
* @Return:
* The distance in F26dot6 format.
*/
static FT_F26Dot6
Project_x( TT_ExecContext exc,
FT_Pos dx,
FT_Pos dy )
{
FT_UNUSED( exc );
FT_UNUSED( dy );
return dx;
}
/**************************************************************************
*
* @Function:
* Project_y
*
* @Description:
* Computes the projection of the vector given by (v2-v1) along the
* vertical axis.
*
* @Input:
* v1 ::
* First input vector.
* v2 ::
* Second input vector.
*
* @Return:
* The distance in F26dot6 format.
*/
static FT_F26Dot6
Project_y( TT_ExecContext exc,
FT_Pos dx,
FT_Pos dy )
{
FT_UNUSED( exc );
FT_UNUSED( dx );
return dy;
}
/**************************************************************************
*
* @Function:
* Compute_Funcs
*
* @Description:
* Computes the projection and movement function pointers according
* to the current graphics state.
*/
static void
Compute_Funcs( TT_ExecContext exc )
{
if ( exc->GS.freeVector.x == 0x4000 )
exc->F_dot_P = exc->GS.projVector.x;
else if ( exc->GS.freeVector.y == 0x4000 )
exc->F_dot_P = exc->GS.projVector.y;
else
exc->F_dot_P =
( (FT_Long)exc->GS.projVector.x * exc->GS.freeVector.x +
(FT_Long)exc->GS.projVector.y * exc->GS.freeVector.y ) >> 14;
if ( exc->GS.projVector.x == 0x4000 )
exc->func_project = (TT_Project_Func)Project_x;
else if ( exc->GS.projVector.y == 0x4000 )
exc->func_project = (TT_Project_Func)Project_y;
else
exc->func_project = (TT_Project_Func)Project;
if ( exc->GS.dualVector.x == 0x4000 )
exc->func_dualproj = (TT_Project_Func)Project_x;
else if ( exc->GS.dualVector.y == 0x4000 )
exc->func_dualproj = (TT_Project_Func)Project_y;
else
exc->func_dualproj = (TT_Project_Func)Dual_Project;
exc->func_move = (TT_Move_Func)Direct_Move;
exc->func_move_orig = (TT_Move_Func)Direct_Move_Orig;
if ( exc->F_dot_P == 0x4000L )
{
if ( exc->GS.freeVector.x == 0x4000 )
{
exc->func_move = (TT_Move_Func)Direct_Move_X;
exc->func_move_orig = (TT_Move_Func)Direct_Move_Orig_X;
}
else if ( exc->GS.freeVector.y == 0x4000 )
{
exc->func_move = (TT_Move_Func)Direct_Move_Y;
exc->func_move_orig = (TT_Move_Func)Direct_Move_Orig_Y;
}
}
/* at small sizes, F_dot_P can become too small, resulting */
/* in overflows and `spikes' in a number of glyphs like `w'. */
if ( FT_ABS( exc->F_dot_P ) < 0x400L )
exc->F_dot_P = 0x4000L;
/* Disable cached aspect ratio */
exc->tt_metrics.ratio = 0;
}
/**************************************************************************
*
* @Function:
* Normalize
*
* @Description:
* Norms a vector.
*
* @Input:
* Vx ::
* The horizontal input vector coordinate.
* Vy ::
* The vertical input vector coordinate.
*
* @Output:
* R ::
* The normed unit vector.
*
* @Return:
* Returns FAILURE if a vector parameter is zero.
*
* @Note:
* In case Vx and Vy are both zero, `Normalize' returns SUCCESS, and
* R is undefined.
*/
static FT_Bool
Normalize( FT_F26Dot6 Vx,
FT_F26Dot6 Vy,
FT_UnitVector* R )
{
FT_Vector V;
if ( Vx == 0 && Vy == 0 )
{
/* XXX: UNDOCUMENTED! It seems that it is possible to try */
/* to normalize the vector (0,0). Return immediately. */
return SUCCESS;
}
V.x = Vx;
V.y = Vy;
FT_Vector_NormLen( &V );
R->x = (FT_F2Dot14)( V.x / 4 );
R->y = (FT_F2Dot14)( V.y / 4 );
return SUCCESS;
}
/**************************************************************************
*
* Here we start with the implementation of the various opcodes.
*
*/
#define ARRAY_BOUND_ERROR \
do \
{ \
exc->error = FT_THROW( Invalid_Reference ); \
return; \
} while (0)
/**************************************************************************
*
* MPPEM[]: Measure Pixel Per EM
* Opcode range: 0x4B
* Stack: --> Euint16
*/
static void
Ins_MPPEM( TT_ExecContext exc,
FT_Long* args )
{
args[0] = exc->func_cur_ppem( exc );
}
/**************************************************************************
*
* MPS[]: Measure Point Size
* Opcode range: 0x4C
* Stack: --> Euint16
*/
static void
Ins_MPS( TT_ExecContext exc,
FT_Long* args )
{
if ( NO_SUBPIXEL_HINTING )
{
/* Microsoft's GDI bytecode interpreter always returns value 12; */
/* we return the current PPEM value instead. */
args[0] = exc->func_cur_ppem( exc );
}
else
{
/* A possible practical application of the MPS instruction is to */
/* implement optical scaling and similar features, which should be */
/* based on perceptual attributes, thus independent of the */
/* resolution. */
args[0] = exc->pointSize;
}
}
/**************************************************************************
*
* DUP[]: DUPlicate the stack's top element
* Opcode range: 0x20
* Stack: StkElt --> StkElt StkElt
*/
static void
Ins_DUP( FT_Long* args )
{
args[1] = args[0];
}
/**************************************************************************
*
* POP[]: POP the stack's top element
* Opcode range: 0x21
* Stack: StkElt -->
*/
static void
Ins_POP( void )
{
/* nothing to do */
}
/**************************************************************************
*
* CLEAR[]: CLEAR the entire stack
* Opcode range: 0x22
* Stack: StkElt... -->
*/
static void
Ins_CLEAR( TT_ExecContext exc )
{
exc->new_top = 0;
}
/**************************************************************************
*
* SWAP[]: SWAP the stack's top two elements
* Opcode range: 0x23
* Stack: 2 * StkElt --> 2 * StkElt
*/
static void
Ins_SWAP( FT_Long* args )
{
FT_Long L;
L = args[0];
args[0] = args[1];
args[1] = L;
}
/**************************************************************************
*
* DEPTH[]: return the stack DEPTH
* Opcode range: 0x24
* Stack: --> uint32
*/
static void
Ins_DEPTH( TT_ExecContext exc,
FT_Long* args )
{
args[0] = exc->top;
}
/**************************************************************************
*
* LT[]: Less Than
* Opcode range: 0x50
* Stack: int32? int32? --> bool
*/
static void
Ins_LT( FT_Long* args )
{
args[0] = ( args[0] < args[1] );
}
/**************************************************************************
*
* LTEQ[]: Less Than or EQual
* Opcode range: 0x51
* Stack: int32? int32? --> bool
*/
static void
Ins_LTEQ( FT_Long* args )
{
args[0] = ( args[0] <= args[1] );
}
/**************************************************************************
*
* GT[]: Greater Than
* Opcode range: 0x52
* Stack: int32? int32? --> bool
*/
static void
Ins_GT( FT_Long* args )
{
args[0] = ( args[0] > args[1] );
}
/**************************************************************************
*
* GTEQ[]: Greater Than or EQual
* Opcode range: 0x53
* Stack: int32? int32? --> bool
*/
static void
Ins_GTEQ( FT_Long* args )
{
args[0] = ( args[0] >= args[1] );
}
/**************************************************************************
*
* EQ[]: EQual
* Opcode range: 0x54
* Stack: StkElt StkElt --> bool
*/
static void
Ins_EQ( FT_Long* args )
{
args[0] = ( args[0] == args[1] );
}
/**************************************************************************
*
* NEQ[]: Not EQual
* Opcode range: 0x55
* Stack: StkElt StkElt --> bool
*/
static void
Ins_NEQ( FT_Long* args )
{
args[0] = ( args[0] != args[1] );
}
/**************************************************************************
*
* ODD[]: Is ODD
* Opcode range: 0x56
* Stack: f26.6 --> bool
*/
static void
Ins_ODD( TT_ExecContext exc,
FT_Long* args )
{
args[0] = ( ( exc->func_round( exc, args[0], 3 ) & 127 ) == 64 );
}
/**************************************************************************
*
* EVEN[]: Is EVEN
* Opcode range: 0x57
* Stack: f26.6 --> bool
*/
static void
Ins_EVEN( TT_ExecContext exc,
FT_Long* args )
{
args[0] = ( ( exc->func_round( exc, args[0], 3 ) & 127 ) == 0 );
}
/**************************************************************************
*
* AND[]: logical AND
* Opcode range: 0x5A
* Stack: uint32 uint32 --> uint32
*/
static void
Ins_AND( FT_Long* args )
{
args[0] = ( args[0] && args[1] );
}
/**************************************************************************
*
* OR[]: logical OR
* Opcode range: 0x5B
* Stack: uint32 uint32 --> uint32
*/
static void
Ins_OR( FT_Long* args )
{
args[0] = ( args[0] || args[1] );
}
/**************************************************************************
*
* NOT[]: logical NOT
* Opcode range: 0x5C
* Stack: StkElt --> uint32
*/
static void
Ins_NOT( FT_Long* args )
{
args[0] = !args[0];
}
/**************************************************************************
*
* ADD[]: ADD
* Opcode range: 0x60
* Stack: f26.6 f26.6 --> f26.6
*/
static void
Ins_ADD( FT_Long* args )
{
args[0] = ADD_LONG( args[0], args[1] );
}
/**************************************************************************
*
* SUB[]: SUBtract
* Opcode range: 0x61
* Stack: f26.6 f26.6 --> f26.6
*/
static void
Ins_SUB( FT_Long* args )
{
args[0] = SUB_LONG( args[0], args[1] );
}
/**************************************************************************
*
* DIV[]: DIVide
* Opcode range: 0x62
* Stack: f26.6 f26.6 --> f26.6
*/
static void
Ins_DIV( TT_ExecContext exc,
FT_Long* args )
{
if ( args[1] == 0 )
exc->error = FT_THROW( Divide_By_Zero );
else
args[0] = FT_MulDiv_No_Round( args[0], 64L, args[1] );
}
/**************************************************************************
*
* MUL[]: MULtiply
* Opcode range: 0x63
* Stack: f26.6 f26.6 --> f26.6
*/
static void
Ins_MUL( FT_Long* args )
{
args[0] = FT_MulDiv( args[0], args[1], 64L );
}
/**************************************************************************
*
* ABS[]: ABSolute value
* Opcode range: 0x64
* Stack: f26.6 --> f26.6
*/
static void
Ins_ABS( FT_Long* args )
{
if ( args[0] < 0 )
args[0] = NEG_LONG( args[0] );
}
/**************************************************************************
*
* NEG[]: NEGate
* Opcode range: 0x65
* Stack: f26.6 --> f26.6
*/
static void
Ins_NEG( FT_Long* args )
{
args[0] = NEG_LONG( args[0] );
}
/**************************************************************************
*
* FLOOR[]: FLOOR
* Opcode range: 0x66
* Stack: f26.6 --> f26.6
*/
static void
Ins_FLOOR( FT_Long* args )
{
args[0] = FT_PIX_FLOOR( args[0] );
}
/**************************************************************************
*
* CEILING[]: CEILING
* Opcode range: 0x67
* Stack: f26.6 --> f26.6
*/
static void
Ins_CEILING( FT_Long* args )
{
args[0] = FT_PIX_CEIL_LONG( args[0] );
}
/**************************************************************************
*
* RS[]: Read Store
* Opcode range: 0x43
* Stack: uint32 --> uint32
*/
static void
Ins_RS( TT_ExecContext exc,
FT_Long* args )
{
FT_ULong I = (FT_ULong)args[0];
if ( BOUNDSL( I, exc->storeSize ) )
{
if ( exc->pedantic_hinting )
ARRAY_BOUND_ERROR;
else
args[0] = 0;
}
else
{
#ifdef TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY
/* subpixel hinting - avoid Typeman Dstroke and */
/* IStroke and Vacuform rounds */
if ( SUBPIXEL_HINTING_INFINALITY &&
exc->ignore_x_mode &&
( ( I == 24 &&
( exc->face->sph_found_func_flags &
( SPH_FDEF_SPACING_1 |
SPH_FDEF_SPACING_2 ) ) ) ||
( I == 22 &&
( exc->sph_in_func_flags &
SPH_FDEF_TYPEMAN_STROKES ) ) ||
( I == 8 &&
( exc->face->sph_found_func_flags &
SPH_FDEF_VACUFORM_ROUND_1 ) &&
exc->iup_called ) ) )
args[0] = 0;
else
#endif /* TT_SUPPORT_SUBPIXEL_HINTING_INFINALITY */
args[0] = exc->storage[I];
}
}
/**************************************************************************
*
* WS[]: Write Store
* Opcode range: 0x42
* Stack: uint32 uint32 -->
*/
static void
Ins_WS( TT_ExecContext exc,
FT_Long* args )
{
FT_ULong I = (FT_ULong)args[0];
if ( BOUNDSL( I, exc->storeSize ) )
{
if ( exc->pedantic_hinting )
ARRAY_BOUND_ERROR;
}
else
{
/* TT_RunIns sets origStorage and restores storage to origStorage */
/* when done. */
if ( exc->iniRange == tt_coderange_glyph &&
exc->storage == exc->origStorage )
{
FT_ULong tmp = (FT_ULong)exc->glyfStoreSize;
exc->error = Update_Max( exc->memory,
&tmp,
sizeof ( FT_Long ),
(void*)&exc->glyfStorage,
exc->storeSize );
exc->glyfStoreSize = (FT_UShort)tmp;
if ( exc->error )
return;
FT_ARRAY_COPY( exc->glyfStorage, exc->storage, exc->glyfStoreSize );
exc->storage = exc->glyfStorage;
}
exc->storage[I] = args[1];
}
}
/**************************************************************************
*
* WCVTP[]: Write CVT in Pixel units
* Opcode range: 0x44
* Stack: f26.6 uint32 -->
*/
static void
Ins_WCVTP( TT_ExecContext exc,
FT_Long* args )
{
FT_ULong I = (FT_ULong)args[0];
if ( BOUNDSL( I, exc->cvtSize ) )
{
if ( exc->pedantic_hinting )
ARRAY_BOUND_ERROR;
}
else
exc->func_write_cvt( exc, I, args[1] );
}
/**************************************************************************
*
* WCVTF[]: Write CVT in Funits
* Opcode range: 0x70
* Stack: uint32 uint32 -->
*/
static void
Ins_WCVTF( TT_ExecContext exc,
FT_Long* args )
{
FT_ULong I = (FT_ULong)args[0];
if ( BOUNDSL( I, exc->cvtSize ) )
{
if ( exc->pedantic_hinting )
ARRAY_BOUND_ERROR;
}
else
exc->cvt[I] = FT_MulFix( args[1], exc->tt_metrics.scale );
}
/**************************************************************************
*
* RCVT[]: Read CVT
* Opcode range: 0x45
* Stack: uint32 --> f26.6
*/
static void
Ins_RCVT( TT_ExecContext exc,
FT_Long* args )
{
FT_ULong I = (FT_ULong)args[0];
if ( BOUNDSL( I, exc->cvtSize ) )
{
if ( exc->pedantic_hinting )
ARRAY_BOUND_ERROR;
else
args[0] = 0;
}
else
args[0] = exc->func_read_cvt( exc, I );
}
/**************************************************************************
*
* AA[]: Adjust Angle
* Opcode range: 0x7F
* Stack: uint32 -->
*/
static void
Ins_AA( void )
{
/* intentionally no longer supported */
}
/**************************************************************************
*
* DEBUG[]: DEBUG. Unsupported.
* Opcode range: 0x4F
* Stack: uint32 -->
*
* Note: The original instruction pops a value from the stack.
*/
static void
Ins_DEBUG( TT_ExecContext exc )
{
exc->error = FT_THROW( Debug_OpCode );
}
/**************************************************************************
*
* ROUND[ab]: ROUND value
* Opcode range: 0x68-0x6B
* Stack: f26.6 --> f26.6
*/
static void
Ins_ROUND( TT_ExecContext exc,
FT_Long* args )
{
args[0] = exc->func_round( exc, args[0], exc->opcode & 3 );
}
/**************************************************************************
*
* NROUND[ab]: No ROUNDing of value
* Opcode range: 0x6C-0x6F
* Stack: f26.6 --> f26.6
*/
static void
Ins_NROUND( TT_ExecContext exc,
FT_Long* args )
{
args[0] = Round_None( exc, args[0], exc->opcode & 3 );
}
/**************************************************************************
*
* MAX[]: MAXimum
* Opcode range: 0x8B
* Stack: int32? int32? --> int32
*/
static void
Ins_MAX( FT_Long* args )
{
if ( args[1] > args[0] )
args[0] = args[1];
}
/**************************************************************************
*
* MIN[]: MINimum
* Opcode range: 0x8C
* Stack: int32? int32? --> int32
*/
static void
Ins_MIN( FT_Long* args )
{
if ( args[1] < args[0] )
args[0] = args[1];
}
/**************************************************************************
*
* MINDEX[]: Move INDEXed element
* Opcode range: 0x26
* Stack: int32? --> StkElt
*/
static void
Ins_MINDEX( TT_ExecContext exc,
FT_Long* args )
{
FT_Long L, K;
L = args[0];
if (