blob: 1acd75ac0f6c828596157284779def535bd99183 [file] [log] [blame] [edit]
/*
* Copyright © 2020 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Garret Rieger
*/
#include <string>
#include "hb-repacker.hh"
#include "hb-open-type.hh"
#include "graph/serialize.hh"
static void extend (const char* value,
unsigned len,
hb_serialize_context_t* c)
{
char* obj = c->allocate_size<char> (len);
memcpy (obj, value, len);
}
static void start_object(const char* tag,
unsigned len,
hb_serialize_context_t* c)
{
c->push ();
extend (tag, len, c);
}
static unsigned add_object(const char* tag,
unsigned len,
hb_serialize_context_t* c)
{
start_object (tag, len, c);
return c->pop_pack (false);
}
static void add_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset16* offset = c->start_embed<OT::Offset16> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void add_24_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset24* offset = c->start_embed<OT::Offset24> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void add_wide_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset32* offset = c->start_embed<OT::Offset32> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void run_resolve_overflow_test (const char* name,
hb_serialize_context_t& overflowing,
hb_serialize_context_t& expected,
unsigned num_iterations = 0,
bool recalculate_extensions = false)
{
printf (">>> Testing overflowing resolution for %s\n",
name);
graph_t graph (overflowing.object_graph ());
assert (overflowing.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (overflowing.object_graph (),
HB_TAG ('G', 'S', 'U', 'B'),
num_iterations,
recalculate_extensions);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (!expected.offset_overflow ());
hb_bytes_t expected_result = expected.copy_bytes ();
assert (result.length == expected_result.length);
bool equal = true;
for (unsigned i = 0; i < expected_result.length; i++)
{
if (result[i] != expected_result[i])
{
equal = false;
uint8_t a = result[i];
uint8_t b = expected_result[i];
printf("%08u: %x != %x\n", i, a, b);
}
}
assert (equal);
expected_result.fini ();
hb_blob_destroy (out);
}
static void add_virtual_offset (unsigned id,
hb_serialize_context_t* c)
{
c->add_virtual_link (id);
}
static void
populate_serializer_simple (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_1 = add_object ("ghi", 3, c);
unsigned obj_2 = add_object ("def", 3, c);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_overflow (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_1 = add_object (large_string.c_str(), 10000, c);
unsigned obj_2 = add_object (large_string.c_str(), 20000, c);
unsigned obj_3 = add_object (large_string.c_str(), 50000, c);
start_object ("abc", 3, c);
add_offset (obj_3, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_priority_overflow (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
unsigned obj_d = add_object ("d", 1, c);
start_object (large_string.c_str (), 50000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 20000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_priority_overflow_expected (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 50000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
unsigned obj_d = add_object ("d", 1, c);
start_object (large_string.c_str (), 20000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_dedup_overflow (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_1 = add_object ("def", 3, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_1, c);
unsigned obj_2 = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_4 = add_object ("4", 1, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_4, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("1", 1, c);
add_wide_offset (obj_3, c);
add_offset (obj_2, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_complex (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d, c);
unsigned obj_h = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_offset (obj_g, c);
add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_complex_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
// space 1
unsigned obj_f_prime = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f_prime, c);
unsigned obj_e_prime = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_d_prime = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d_prime, c);
unsigned obj_h = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
// space 0
unsigned obj_f = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_offset (obj_g, c);
add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_spaces (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_d = add_object ("f", 1, c);
unsigned obj_e = add_object ("f", 1, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack ();
start_object (large_string.c_str(), 60000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack ();
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack ();
c->end_serialize();
}
static void
populate_serializer_spaces (hb_serialize_context_t* c, bool with_overflow)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_i;
if (with_overflow)
obj_i = add_object ("i", 1, c);
// Space 2
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_h, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
// Space 1
if (!with_overflow)
obj_i = add_object ("i", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_g, c);
unsigned obj_d = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_f, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g = add_object ("g", 1, c);
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h, c);
unsigned obj_f = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g_prime = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g_prime, c);
unsigned obj_e_prime = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
unsigned obj_h_prime = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h_prime, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_g = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
unsigned obj_h = add_object ("h", 1, c);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize ();
}
static void
populate_serializer_short_and_wide_subgraph_root (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_short_and_wide_subgraph_root_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e_prime = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e_prime, c);
unsigned obj_c_prime = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c_prime, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c_prime, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
// Space 2
unsigned obj_f_double_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_double_prime, c);
unsigned obj_d_prime = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d_prime, c);
unsigned obj_b_prime = c->pop_pack (false);
// Space 1
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
// Space 0
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
// Root
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b_prime, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_complex_2 (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_5 = add_object ("mn", 2, c);
unsigned obj_4 = add_object ("jkl", 3, c);
start_object ("ghi", 3, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object ("def", 3, c);
add_offset (obj_3, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_4, c);
add_offset (obj_5, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_complex_3 (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_6 = add_object ("opqrst", 6, c);
unsigned obj_5 = add_object ("mn", 2, c);
start_object ("jkl", 3, c);
add_offset (obj_6, c);
unsigned obj_4 = c->pop_pack (false);
start_object ("ghi", 3, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object ("def", 3, c);
add_offset (obj_3, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_4, c);
add_offset (obj_5, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_virtual_link (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_d = add_object ("d", 1, c);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("e", 1, c);
add_virtual_offset (obj_b, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_24_and_32_bit_offsets (hb_serialize_context_t* c)
{
std::string large_string(60000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
unsigned obj_g = add_object ("g", 1, c);
unsigned obj_j = add_object ("j", 1, c);
unsigned obj_k = add_object ("k", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_f, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_j, c);
unsigned obj_h = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_k, c);
unsigned obj_i = c->pop_pack (false);
start_object ("e", 1, c);
add_wide_offset (obj_h, c);
add_wide_offset (obj_i, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_24_offset (obj_c, c);
add_24_offset (obj_d, c);
add_24_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_24_offset (obj_b, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_extension_promotion (hb_serialize_context_t* c,
int num_extensions = 0)
{
constexpr int num_lookups = 5;
constexpr int num_subtables = num_lookups * 2;
unsigned int lookups[num_lookups];
unsigned int subtables[num_subtables];
unsigned int extensions[num_subtables];
std::string large_string(60000, 'a');
c->start_serialize<char> ();
for (int i = num_subtables - 1; i >= 0; i--)
subtables[i] = add_object(large_string.c_str (), 15000, c);
for (int i = num_subtables - 1;
i >= (num_lookups - num_extensions) * 2;
i--)
{
char ext[] = {
0, 1,
0, 5
};
unsigned ext_index = i - (num_lookups - num_extensions) * 2; // 5
unsigned subtable_index = num_subtables - ext_index - 1; // 10 - 5 - 1 = 4
start_object (ext, 4, c);
add_wide_offset (subtables[subtable_index], c);
extensions[i] = c->pop_pack (false);
}
for (int i = num_lookups - 1; i >= 0; i--)
{
bool is_ext = (i >= (num_lookups - num_extensions));
char lookup[] = {
0, is_ext ? (char) 7 : (char) 5, // type
0, 0, // flag
0, 2, // num subtables
};
start_object (lookup, 6, c);
if (is_ext) {
add_offset (extensions[i * 2], c);
add_offset (extensions[i * 2 + 1], c);
} else {
add_offset (subtables[i * 2], c);
add_offset (subtables[i * 2 + 1], c);
}
char filter[] = {0, 0};
extend (filter, 2, c);
lookups[i] = c->pop_pack (false);
}
char lookup_count[] = {0, num_lookups};
start_object ((char *) &lookup_count, 2, c);
for (int i = 0; i < num_lookups; i++)
add_offset (lookups[i], c);
unsigned lookup_list = c->pop_pack (false);
char gsub_header[] = {
0, 1, // major
0, 0, // minor
0, 0, // script list
0, 0, // feature list
};
start_object (gsub_header, 8, c);
add_offset (lookup_list, c);
c->pop_pack (false);
c->end_serialize();
}
static void test_sort_shortest ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
graph.sort_shortest_distance ();
assert(strncmp (graph.object (4).head, "abc", 3) == 0);
assert(graph.object (4).real_links.length == 3);
assert(graph.object (4).real_links[0].objidx == 2);
assert(graph.object (4).real_links[1].objidx == 0);
assert(graph.object (4).real_links[2].objidx == 3);
assert(strncmp (graph.object (3).head, "mn", 2) == 0);
assert(graph.object (3).real_links.length == 0);
assert(strncmp (graph.object (2).head, "def", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 1);
assert(strncmp (graph.object (1).head, "ghi", 3) == 0);
assert(graph.object (1).real_links.length == 1);
assert(graph.object (1).real_links[0].objidx == 0);
assert(strncmp (graph.object (0).head, "jkl", 3) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void test_duplicate_leaf ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
graph.duplicate (4, 1);
assert(strncmp (graph.object (5).head, "abc", 3) == 0);
assert(graph.object (5).real_links.length == 3);
assert(graph.object (5).real_links[0].objidx == 3);
assert(graph.object (5).real_links[1].objidx == 4);
assert(graph.object (5).real_links[2].objidx == 0);
assert(strncmp (graph.object (4).head, "jkl", 3) == 0);
assert(graph.object (4).real_links.length == 0);
assert(strncmp (graph.object (3).head, "def", 3) == 0);
assert(graph.object (3).real_links.length == 1);
assert(graph.object (3).real_links[0].objidx == 2);
assert(strncmp (graph.object (2).head, "ghi", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 1);
assert(strncmp (graph.object (1).head, "jkl", 3) == 0);
assert(graph.object (1).real_links.length == 0);
assert(strncmp (graph.object (0).head, "mn", 2) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void test_duplicate_interior ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_3 (&c);
graph_t graph (c.object_graph ());
graph.duplicate (3, 2);
assert(strncmp (graph.object (6).head, "abc", 3) == 0);
assert(graph.object (6).real_links.length == 3);
assert(graph.object (6).real_links[0].objidx == 4);
assert(graph.object (6).real_links[1].objidx == 2);
assert(graph.object (6).real_links[2].objidx == 1);
assert(strncmp (graph.object (5).head, "jkl", 3) == 0);
assert(graph.object (5).real_links.length == 1);
assert(graph.object (5).real_links[0].objidx == 0);
assert(strncmp (graph.object (4).head, "def", 3) == 0);
assert(graph.object (4).real_links.length == 1);
assert(graph.object (4).real_links[0].objidx == 3);
assert(strncmp (graph.object (3).head, "ghi", 3) == 0);
assert(graph.object (3).real_links.length == 1);
assert(graph.object (3).real_links[0].objidx == 5);
assert(strncmp (graph.object (2).head, "jkl", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 0);
assert(strncmp (graph.object (1).head, "mn", 2) == 0);
assert(graph.object (1).real_links.length == 0);
assert(strncmp (graph.object (0).head, "opqrst", 6) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void
test_serialize ()
{
size_t buffer_size = 100;
void* buffer_1 = malloc (buffer_size);
hb_serialize_context_t c1 (buffer_1, buffer_size);
populate_serializer_simple (&c1);
hb_bytes_t expected = c1.copy_bytes ();
graph_t graph (c1.object_graph ());
hb_blob_t* out = graph::serialize (graph);
free (buffer_1);
hb_bytes_t actual = out->as_bytes ();
assert (actual == expected);
expected.fini ();
hb_blob_destroy (out);
}
static void test_will_overflow_1 ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
assert (!graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_will_overflow_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_overflow (&c);
graph_t graph (c.object_graph ());
assert (graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_will_overflow_3 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_dedup_overflow (&c);
graph_t graph (c.object_graph ());
assert (graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_resolve_overflows_via_sort ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_overflow (&c);
graph_t graph (c.object_graph ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (80000 + 3 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_duplication ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_dedup_overflow (&c);
graph_t graph (c.object_graph ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (10000 + 2 * 2 + 60000 + 2 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_space_assignment ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces (&c, true);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces (&e, false);
run_resolve_overflow_test ("test_resolve_overflows_via_space_assignment",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolation ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (1 + 10000 + 60000 + 1 + 1
+ 4 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_isolation_with_recursive_duplication ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow_complex (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_isolation_overflow_complex_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolation_with_recursive_duplication",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolating_16bit_space ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces_16bit_connection (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces_16bit_connection_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolating_16bit_space_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space_2",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolation_spaces ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow_spaces (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
unsigned expected_length = 3 + 2 * 60000; // objects
expected_length += 2 * 4 + 2 * 2; // links
assert (result.length == expected_length);
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_mixed_overflows_via_isolation_spaces ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_24_and_32_bit_offsets (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
unsigned expected_length =
// Objects
7 +
4 * 40000;
expected_length +=
// Links
2 * 4 + // 32
4 * 3 + // 24
4 * 2; // 16
assert (result.length == expected_length);
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_with_extension_promotion ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_extension_promotion (&c);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_extension_promotion (&e, 3);
run_resolve_overflow_test ("test_resolve_with_extension_promotion",
c,
e,
20,
true);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_splitting_spaces ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_splitting_spaces_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces_2 (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected_2 (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces_2",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_priority ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_priority_overflow (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_priority_overflow_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_priority",
c,
e,
3);
free (buffer);
free (expected_buffer);
}
static void test_virtual_link ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_virtual_link (&c);
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == 5 + 4 * 2);
assert (result[0] == 'a');
assert (result[5] == 'c');
assert (result[8] == 'e');
assert (result[9] == 'b');
assert (result[12] == 'd');
free (buffer);
hb_blob_destroy (out);
}
static void
test_shared_node_with_virtual_links ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
c.start_serialize<char> ();
unsigned obj_b = add_object ("b", 1, &c);
unsigned obj_c = add_object ("c", 1, &c);
start_object ("d", 1, &c);
add_virtual_offset (obj_b, &c);
unsigned obj_d_1 = c.pop_pack ();
start_object ("d", 1, &c);
add_virtual_offset (obj_c, &c);
unsigned obj_d_2 = c.pop_pack ();
assert (obj_d_1 == obj_d_2);
start_object ("a", 1, &c);
add_offset (obj_b, &c);
add_offset (obj_c, &c);
add_offset (obj_d_1, &c);
add_offset (obj_d_2, &c);
c.pop_pack ();
c.end_serialize ();
assert(c.object_graph() [obj_d_1]->virtual_links.length == 2);
assert(c.object_graph() [obj_d_1]->virtual_links[0].objidx == obj_b);
assert(c.object_graph() [obj_d_1]->virtual_links[1].objidx == obj_c);
free(buffer);
}
// TODO(garretrieger): update will_overflow tests to check the overflows array.
// TODO(garretrieger): add tests for priority raising.
int
main (int argc, char **argv)
{
test_serialize ();
test_sort_shortest ();
test_will_overflow_1 ();
test_will_overflow_2 ();
test_will_overflow_3 ();
test_resolve_overflows_via_sort ();
test_resolve_overflows_via_duplication ();
test_resolve_overflows_via_priority ();
test_resolve_overflows_via_space_assignment ();
test_resolve_overflows_via_isolation ();
test_resolve_overflows_via_isolation_with_recursive_duplication ();
test_resolve_overflows_via_isolation_spaces ();
test_resolve_overflows_via_isolating_16bit_space ();
test_resolve_overflows_via_isolating_16bit_space_2 ();
test_resolve_overflows_via_splitting_spaces ();
test_resolve_overflows_via_splitting_spaces_2 ();
test_resolve_mixed_overflows_via_isolation_spaces ();
test_duplicate_leaf ();
test_duplicate_interior ();
test_virtual_link ();
test_shared_node_with_virtual_links ();
test_resolve_with_extension_promotion ();
// TODO(grieger): test with extensions already mixed in as well.
// TODO(grieger): test two layer ext promotion setup.
// TODO(grieger): test sorting by subtables per byte in ext. promotion.
}