By default, enum values are serialized to JSON as integers. In some cases this could result in undesired behavior. If an enum is modified or re-ordered after data has been serialized to JSON, the later de-serialized JSON data may be undefined or a different enum value than was originally intended.
It is possible to more precisely specify how a given enum is mapped to and from JSON as shown below:
// example enum type declaration enum TaskState { TS_STOPPED, TS_RUNNING, TS_COMPLETED, TS_INVALID=-1, }; // map TaskState values to JSON as strings NLOHMANN_JSON_SERIALIZE_ENUM( TaskState, { {TS_INVALID, nullptr}, {TS_STOPPED, "stopped"}, {TS_RUNNING, "running"}, {TS_COMPLETED, "completed"}, })
The NLOHMANN_JSON_SERIALIZE_ENUM()
macro declares a set of to_json()
/ from_json()
functions for type TaskState
while avoiding repetition and boilerplate serialization code.
// enum to JSON as string json j = TS_STOPPED; assert(j == "stopped"); // json string to enum json j3 = "running"; assert(j3.get<TaskState>() == TS_RUNNING); // undefined json value to enum (where the first map entry above is the default) json jPi = 3.14; assert(jPi.get<TaskState>() == TS_INVALID );
Just as in Arbitrary Type Conversions above,
NLOHMANN_JSON_SERIALIZE_ENUM()
MUST be declared in your enum type's namespace (which can be the global namespace), or the library will not be able to locate it and it will default to integer serialization.Other Important points:
get<ENUM_TYPE>()
, undefined JSON values will default to the first pair specified in your map. Select this default pair carefully.