| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // UNSUPPORTED: c++98, c++03 |
| |
| // <tuple> |
| |
| // template <class... Types> class tuple; |
| |
| // template <class ...UTypes> |
| // EXPLICIT(...) tuple(UTypes&&...) |
| |
| // Check that the UTypes... ctor is properly disabled before evaluating any |
| // SFINAE when the tuple-like copy/move ctor should *clearly* be selected |
| // instead. This happens 'sizeof...(UTypes) == 1' and the first element of |
| // 'UTypes...' is an instance of the tuple itself. See PR23256. |
| |
| #include <tuple> |
| #include <memory> |
| #include <type_traits> |
| |
| |
| struct UnconstrainedCtor { |
| int value_; |
| |
| UnconstrainedCtor() : value_(0) {} |
| |
| // Blows up when instantiated for any type other than int. Because the ctor |
| // is constexpr it is instantiated by 'is_constructible' and 'is_convertible' |
| // for Clang based compilers. GCC does not instantiate the ctor body |
| // but it does instantiate the noexcept specifier and it will blow up there. |
| template <typename T> |
| constexpr UnconstrainedCtor(T value) noexcept(noexcept(value_ = value)) |
| : value_(static_cast<int>(value)) |
| { |
| static_assert(std::is_same<int, T>::value, ""); |
| } |
| }; |
| |
| struct ExplicitUnconstrainedCtor { |
| int value_; |
| |
| ExplicitUnconstrainedCtor() : value_(0) {} |
| |
| template <typename T> |
| constexpr explicit ExplicitUnconstrainedCtor(T value) |
| noexcept(noexcept(value_ = value)) |
| : value_(static_cast<int>(value)) |
| { |
| static_assert(std::is_same<int, T>::value, ""); |
| } |
| |
| }; |
| |
| int main() { |
| typedef UnconstrainedCtor A; |
| typedef ExplicitUnconstrainedCtor ExplicitA; |
| { |
| static_assert(std::is_copy_constructible<std::tuple<A>>::value, ""); |
| static_assert(std::is_move_constructible<std::tuple<A>>::value, ""); |
| static_assert(std::is_copy_constructible<std::tuple<ExplicitA>>::value, ""); |
| static_assert(std::is_move_constructible<std::tuple<ExplicitA>>::value, ""); |
| } |
| { |
| static_assert(std::is_constructible< |
| std::tuple<A>, |
| std::allocator_arg_t, std::allocator<void>, |
| std::tuple<A> const& |
| >::value, ""); |
| static_assert(std::is_constructible< |
| std::tuple<A>, |
| std::allocator_arg_t, std::allocator<void>, |
| std::tuple<A> && |
| >::value, ""); |
| static_assert(std::is_constructible< |
| std::tuple<ExplicitA>, |
| std::allocator_arg_t, std::allocator<void>, |
| std::tuple<ExplicitA> const& |
| >::value, ""); |
| static_assert(std::is_constructible< |
| std::tuple<ExplicitA>, |
| std::allocator_arg_t, std::allocator<void>, |
| std::tuple<ExplicitA> && |
| >::value, ""); |
| } |
| { |
| std::tuple<A&&> t(std::forward_as_tuple(A{})); |
| std::tuple<ExplicitA&&> t2(std::forward_as_tuple(ExplicitA{})); |
| } |
| } |