blob: 61ce4dd542b3f88172bc16ac916264845340fb23 [file] [log] [blame]
/*
* xusb: Generic USB test program
* Copyright © 2009-2012 Pete Batard <pete@akeo.ie>
* Contributions to Mass Storage by Alan Stern.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "libusb.h"
#if defined(_MSC_VER)
#define snprintf _snprintf
#define putenv _putenv
#endif
// Future versions of libusb will use usb_interface instead of interface
// in libusb_config_descriptor => catter for that
#define usb_interface interface
// Global variables
static bool binary_dump = false;
static bool extra_info = false;
static bool force_device_request = false; // For WCID descriptor queries
static const char* binary_name = NULL;
static inline void msleep(int msecs)
{
#if defined(_WIN32)
Sleep(msecs);
#else
const struct timespec ts = { msecs / 1000, (msecs % 1000) * 1000000L };
nanosleep(&ts, NULL);
#endif
}
static void perr(char const *format, ...)
{
va_list args;
va_start (args, format);
vfprintf(stderr, format, args);
va_end(args);
}
#define ERR_EXIT(errcode) do { perr(" %s\n", libusb_strerror((enum libusb_error)errcode)); return -1; } while (0)
#define CALL_CHECK(fcall) do { int _r=fcall; if (_r < 0) ERR_EXIT(_r); } while (0)
#define CALL_CHECK_CLOSE(fcall, hdl) do { int _r=fcall; if (_r < 0) { libusb_close(hdl); ERR_EXIT(_r); } } while (0)
#define B(x) (((x)!=0)?1:0)
#define be_to_int32(buf) (((buf)[0]<<24)|((buf)[1]<<16)|((buf)[2]<<8)|(buf)[3])
#define RETRY_MAX 5
#define REQUEST_SENSE_LENGTH 0x12
#define INQUIRY_LENGTH 0x24
#define READ_CAPACITY_LENGTH 0x08
// HID Class-Specific Requests values. See section 7.2 of the HID specifications
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
#define HID_REPORT_TYPE_INPUT 0x01
#define HID_REPORT_TYPE_OUTPUT 0x02
#define HID_REPORT_TYPE_FEATURE 0x03
// Mass Storage Requests values. See section 3 of the Bulk-Only Mass Storage Class specifications
#define BOMS_RESET 0xFF
#define BOMS_GET_MAX_LUN 0xFE
// Microsoft OS Descriptor
#define MS_OS_DESC_STRING_INDEX 0xEE
#define MS_OS_DESC_STRING_LENGTH 0x12
#define MS_OS_DESC_VENDOR_CODE_OFFSET 0x10
static const uint8_t ms_os_desc_string[] = {
MS_OS_DESC_STRING_LENGTH,
LIBUSB_DT_STRING,
'M', 0, 'S', 0, 'F', 0, 'T', 0, '1', 0, '0', 0, '0', 0,
};
// Section 5.1: Command Block Wrapper (CBW)
struct command_block_wrapper {
uint8_t dCBWSignature[4];
uint32_t dCBWTag;
uint32_t dCBWDataTransferLength;
uint8_t bmCBWFlags;
uint8_t bCBWLUN;
uint8_t bCBWCBLength;
uint8_t CBWCB[16];
};
// Section 5.2: Command Status Wrapper (CSW)
struct command_status_wrapper {
uint8_t dCSWSignature[4];
uint32_t dCSWTag;
uint32_t dCSWDataResidue;
uint8_t bCSWStatus;
};
static const uint8_t cdb_length[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 0
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 1
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 2
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 3
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 4
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 5
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 6
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 7
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 8
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 9
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // A
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // B
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // C
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // D
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // E
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // F
};
static enum test_type {
USE_GENERIC,
USE_PS3,
USE_XBOX,
USE_SCSI,
USE_HID,
} test_mode;
static uint16_t VID, PID;
static void display_buffer_hex(unsigned char *buffer, unsigned size)
{
unsigned i, j, k;
for (i=0; i<size; i+=16) {
printf("\n %08x ", i);
for(j=0,k=0; k<16; j++,k++) {
if (i+j < size) {
printf("%02x", buffer[i+j]);
} else {
printf(" ");
}
printf(" ");
}
printf(" ");
for(j=0,k=0; k<16; j++,k++) {
if (i+j < size) {
if ((buffer[i+j] < 32) || (buffer[i+j] > 126)) {
printf(".");
} else {
printf("%c", buffer[i+j]);
}
}
}
}
printf("\n" );
}
static char* uuid_to_string(const uint8_t* uuid)
{
static char uuid_string[40];
if (uuid == NULL) return NULL;
snprintf(uuid_string, sizeof(uuid_string),
"{%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x}",
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]);
return uuid_string;
}
// The PS3 Controller is really a HID device that got its HID Report Descriptors
// removed by Sony
static int display_ps3_status(libusb_device_handle *handle)
{
uint8_t input_report[49];
uint8_t master_bt_address[8];
uint8_t device_bt_address[18];
// Get the controller's bluetooth address of its master device
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, 0x03f5, 0, master_bt_address, sizeof(master_bt_address), 100));
printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", master_bt_address[2], master_bt_address[3],
master_bt_address[4], master_bt_address[5], master_bt_address[6], master_bt_address[7]);
// Get the controller's bluetooth address
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, 0x03f2, 0, device_bt_address, sizeof(device_bt_address), 100));
printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", device_bt_address[4], device_bt_address[5],
device_bt_address[6], device_bt_address[7], device_bt_address[8], device_bt_address[9]);
// Get the status of the controller's buttons via its HID report
printf("\nReading PS3 Input Report...\n");
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x01, 0, input_report, sizeof(input_report), 1000));
switch(input_report[2]){ /** Direction pad plus start, select, and joystick buttons */
case 0x01:
printf("\tSELECT pressed\n");
break;
case 0x02:
printf("\tLEFT 3 pressed\n");
break;
case 0x04:
printf("\tRIGHT 3 pressed\n");
break;
case 0x08:
printf("\tSTART presed\n");
break;
case 0x10:
printf("\tUP pressed\n");
break;
case 0x20:
printf("\tRIGHT pressed\n");
break;
case 0x40:
printf("\tDOWN pressed\n");
break;
case 0x80:
printf("\tLEFT pressed\n");
break;
}
switch(input_report[3]){ /** Shapes plus top right and left buttons */
case 0x01:
printf("\tLEFT 2 pressed\n");
break;
case 0x02:
printf("\tRIGHT 2 pressed\n");
break;
case 0x04:
printf("\tLEFT 1 pressed\n");
break;
case 0x08:
printf("\tRIGHT 1 presed\n");
break;
case 0x10:
printf("\tTRIANGLE pressed\n");
break;
case 0x20:
printf("\tCIRCLE pressed\n");
break;
case 0x40:
printf("\tCROSS pressed\n");
break;
case 0x80:
printf("\tSQUARE pressed\n");
break;
}
printf("\tPS button: %d\n", input_report[4]);
printf("\tLeft Analog (X,Y): (%d,%d)\n", input_report[6], input_report[7]);
printf("\tRight Analog (X,Y): (%d,%d)\n", input_report[8], input_report[9]);
printf("\tL2 Value: %d\tR2 Value: %d\n", input_report[18], input_report[19]);
printf("\tL1 Value: %d\tR1 Value: %d\n", input_report[20], input_report[21]);
printf("\tRoll (x axis): %d Yaw (y axis): %d Pitch (z axis) %d\n",
//(((input_report[42] + 128) % 256) - 128),
(int8_t)(input_report[42]),
(int8_t)(input_report[44]),
(int8_t)(input_report[46]));
printf("\tAcceleration: %d\n\n", (int8_t)(input_report[48]));
return 0;
}
// The XBOX Controller is really a HID device that got its HID Report Descriptors
// removed by Microsoft.
// Input/Output reports described at http://euc.jp/periphs/xbox-controller.ja.html
static int display_xbox_status(libusb_device_handle *handle)
{
uint8_t input_report[20];
printf("\nReading XBox Input Report...\n");
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, input_report, 20, 1000));
printf(" D-pad: %02X\n", input_report[2]&0x0F);
printf(" Start:%d, Back:%d, Left Stick Press:%d, Right Stick Press:%d\n", B(input_report[2]&0x10), B(input_report[2]&0x20),
B(input_report[2]&0x40), B(input_report[2]&0x80));
// A, B, X, Y, Black, White are pressure sensitive
printf(" A:%d, B:%d, X:%d, Y:%d, White:%d, Black:%d\n", input_report[4], input_report[5],
input_report[6], input_report[7], input_report[9], input_report[8]);
printf(" Left Trigger: %d, Right Trigger: %d\n", input_report[10], input_report[11]);
printf(" Left Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[13]<<8)|input_report[12]),
(int16_t)((input_report[15]<<8)|input_report[14]));
printf(" Right Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[17]<<8)|input_report[16]),
(int16_t)((input_report[19]<<8)|input_report[18]));
return 0;
}
static int set_xbox_actuators(libusb_device_handle *handle, uint8_t left, uint8_t right)
{
uint8_t output_report[6];
printf("\nWriting XBox Controller Output Report...\n");
memset(output_report, 0, sizeof(output_report));
output_report[1] = sizeof(output_report);
output_report[3] = left;
output_report[5] = right;
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_OUT|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_SET_REPORT, (HID_REPORT_TYPE_OUTPUT<<8)|0x00, 0, output_report, 06, 1000));
return 0;
}
static int send_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint, uint8_t lun,
uint8_t *cdb, uint8_t direction, int data_length, uint32_t *ret_tag)
{
static uint32_t tag = 1;
uint8_t cdb_len;
int i, r, size;
struct command_block_wrapper cbw;
if (cdb == NULL) {
return -1;
}
if (endpoint & LIBUSB_ENDPOINT_IN) {
perr("send_mass_storage_command: cannot send command on IN endpoint\n");
return -1;
}
cdb_len = cdb_length[cdb[0]];
if ((cdb_len == 0) || (cdb_len > sizeof(cbw.CBWCB))) {
perr("send_mass_storage_command: don't know how to handle this command (%02X, length %d)\n",
cdb[0], cdb_len);
return -1;
}
memset(&cbw, 0, sizeof(cbw));
cbw.dCBWSignature[0] = 'U';
cbw.dCBWSignature[1] = 'S';
cbw.dCBWSignature[2] = 'B';
cbw.dCBWSignature[3] = 'C';
*ret_tag = tag;
cbw.dCBWTag = tag++;
cbw.dCBWDataTransferLength = data_length;
cbw.bmCBWFlags = direction;
cbw.bCBWLUN = lun;
// Subclass is 1 or 6 => cdb_len
cbw.bCBWCBLength = cdb_len;
memcpy(cbw.CBWCB, cdb, cdb_len);
i = 0;
do {
// The transfer length must always be exactly 31 bytes.
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&cbw, 31, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" send_mass_storage_command: %s\n", libusb_strerror((enum libusb_error)r));
return -1;
}
printf(" sent %d CDB bytes\n", cdb_len);
return 0;
}
static int get_mass_storage_status(libusb_device_handle *handle, uint8_t endpoint, uint32_t expected_tag)
{
int i, r, size;
struct command_status_wrapper csw;
// The device is allowed to STALL this transfer. If it does, you have to
// clear the stall and try again.
i = 0;
do {
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&csw, 13, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" get_mass_storage_status: %s\n", libusb_strerror((enum libusb_error)r));
return -1;
}
if (size != 13) {
perr(" get_mass_storage_status: received %d bytes (expected 13)\n", size);
return -1;
}
if (csw.dCSWTag != expected_tag) {
perr(" get_mass_storage_status: mismatched tags (expected %08X, received %08X)\n",
expected_tag, csw.dCSWTag);
return -1;
}
// For this test, we ignore the dCSWSignature check for validity...
printf(" Mass Storage Status: %02X (%s)\n", csw.bCSWStatus, csw.bCSWStatus?"FAILED":"Success");
if (csw.dCSWTag != expected_tag)
return -1;
if (csw.bCSWStatus) {
// REQUEST SENSE is appropriate only if bCSWStatus is 1, meaning that the
// command failed somehow. Larger values (2 in particular) mean that
// the command couldn't be understood.
if (csw.bCSWStatus == 1)
return -2; // request Get Sense
else
return -1;
}
// In theory we also should check dCSWDataResidue. But lots of devices
// set it wrongly.
return 0;
}
static void get_sense(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t sense[18];
uint32_t expected_tag;
int size;
int rc;
// Request Sense
printf("Request Sense:\n");
memset(sense, 0, sizeof(sense));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x03; // Request Sense
cdb[4] = REQUEST_SENSE_LENGTH;
send_mass_storage_command(handle, endpoint_out, 0, cdb, LIBUSB_ENDPOINT_IN, REQUEST_SENSE_LENGTH, &expected_tag);
rc = libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&sense, REQUEST_SENSE_LENGTH, &size, 1000);
if (rc < 0)
{
printf("libusb_bulk_transfer failed: %s\n", libusb_error_name(rc));
return;
}
printf(" received %d bytes\n", size);
if ((sense[0] != 0x70) && (sense[0] != 0x71)) {
perr(" ERROR No sense data\n");
} else {
perr(" ERROR Sense: %02X %02X %02X\n", sense[2]&0x0F, sense[12], sense[13]);
}
// Strictly speaking, the get_mass_storage_status() call should come
// before these perr() lines. If the status is nonzero then we must
// assume there's no data in the buffer. For xusb it doesn't matter.
get_mass_storage_status(handle, endpoint_in, expected_tag);
}
// Mass Storage device to test bulk transfers (non destructive test)
static int test_mass_storage(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
int r, size;
uint8_t lun;
uint32_t expected_tag;
uint32_t i, max_lba, block_size;
double device_size;
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t buffer[64];
char vid[9], pid[9], rev[5];
unsigned char *data;
FILE *fd;
printf("Reading Max LUN:\n");
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
BOMS_GET_MAX_LUN, 0, 0, &lun, 1, 1000);
// Some devices send a STALL instead of the actual value.
// In such cases we should set lun to 0.
if (r == 0) {
lun = 0;
} else if (r < 0) {
perr(" Failed: %s", libusb_strerror((enum libusb_error)r));
}
printf(" Max LUN = %d\n", lun);
// Send Inquiry
printf("Sending Inquiry:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x12; // Inquiry
cdb[4] = INQUIRY_LENGTH;
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, INQUIRY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, INQUIRY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
// The following strings are not zero terminated
for (i=0; i<8; i++) {
vid[i] = buffer[8+i];
pid[i] = buffer[16+i];
rev[i/2] = buffer[32+i/2]; // instead of another loop
}
vid[8] = 0;
pid[8] = 0;
rev[4] = 0;
printf(" VID:PID:REV \"%8s\":\"%8s\":\"%4s\"\n", vid, pid, rev);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
// Read capacity
printf("Reading Capacity:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x25; // Read Capacity
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, READ_CAPACITY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, READ_CAPACITY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
max_lba = be_to_int32(&buffer[0]);
block_size = be_to_int32(&buffer[4]);
device_size = ((double)(max_lba+1))*block_size/(1024*1024*1024);
printf(" Max LBA: %08X, Block Size: %08X (%.2f GB)\n", max_lba, block_size, device_size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
// coverity[tainted_data]
data = (unsigned char*) calloc(1, block_size);
if (data == NULL) {
perr(" unable to allocate data buffer\n");
return -1;
}
// Send Read
printf("Attempting to read %u bytes:\n", block_size);
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x28; // Read(10)
cdb[8] = 0x01; // 1 block
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, block_size, &expected_tag);
libusb_bulk_transfer(handle, endpoint_in, data, block_size, &size, 5000);
printf(" READ: received %d bytes\n", size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
} else {
display_buffer_hex(data, size);
if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) {
if (fwrite(data, 1, (size_t)size, fd) != (unsigned int)size) {
perr(" unable to write binary data\n");
}
fclose(fd);
}
}
free(data);
return 0;
}
// HID
static int get_hid_record_size(uint8_t *hid_report_descriptor, int size, int type)
{
uint8_t i, j = 0;
uint8_t offset;
int record_size[3] = {0, 0, 0};
int nb_bits = 0, nb_items = 0;
bool found_record_marker;
found_record_marker = false;
for (i = hid_report_descriptor[0]+1; i < size; i += offset) {
offset = (hid_report_descriptor[i]&0x03) + 1;
if (offset == 4)
offset = 5;
switch (hid_report_descriptor[i] & 0xFC) {
case 0x74: // bitsize
nb_bits = hid_report_descriptor[i+1];
break;
case 0x94: // count
nb_items = 0;
for (j=1; j<offset; j++) {
nb_items = ((uint32_t)hid_report_descriptor[i+j]) << (8*(j-1));
}
break;
case 0x80: // input
found_record_marker = true;
j = 0;
break;
case 0x90: // output
found_record_marker = true;
j = 1;
break;
case 0xb0: // feature
found_record_marker = true;
j = 2;
break;
case 0xC0: // end of collection
nb_items = 0;
nb_bits = 0;
break;
default:
continue;
}
if (found_record_marker) {
found_record_marker = false;
record_size[j] += nb_items*nb_bits;
}
}
if ((type < HID_REPORT_TYPE_INPUT) || (type > HID_REPORT_TYPE_FEATURE)) {
return 0;
} else {
return (record_size[type - HID_REPORT_TYPE_INPUT]+7)/8;
}
}
static int test_hid(libusb_device_handle *handle, uint8_t endpoint_in)
{
int r, size, descriptor_size;
uint8_t hid_report_descriptor[256];
uint8_t *report_buffer;
FILE *fd;
printf("\nReading HID Report Descriptors:\n");
descriptor_size = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_STANDARD|LIBUSB_RECIPIENT_INTERFACE,
LIBUSB_REQUEST_GET_DESCRIPTOR, LIBUSB_DT_REPORT<<8, 0, hid_report_descriptor, sizeof(hid_report_descriptor), 1000);
if (descriptor_size < 0) {
printf(" Failed\n");
return -1;
}
display_buffer_hex(hid_report_descriptor, descriptor_size);
if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) {
if (fwrite(hid_report_descriptor, 1, descriptor_size, fd) != (size_t)descriptor_size) {
printf(" Error writing descriptor to file\n");
}
fclose(fd);
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_FEATURE);
if (size <= 0) {
printf("\nSkipping Feature Report readout (None detected)\n");
} else {
report_buffer = (uint8_t*) calloc(size, 1);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Feature Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_FEATURE<<8)|0, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
switch(r) {
case LIBUSB_ERROR_NOT_FOUND:
printf(" No Feature Report available for this device\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror((enum libusb_error)r));
break;
}
}
free(report_buffer);
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_INPUT);
if (size <= 0) {
printf("\nSkipping Input Report readout (None detected)\n");
} else {
report_buffer = (uint8_t*) calloc(size, 1);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Input Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
switch(r) {
case LIBUSB_ERROR_TIMEOUT:
printf(" Timeout! Please make sure you act on the device within the 5 seconds allocated...\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror((enum libusb_error)r));
break;
}
}
// Attempt a bulk read from endpoint 0 (this should just return a raw input report)
printf("\nTesting interrupt read using endpoint %02X...\n", endpoint_in);
r = libusb_interrupt_transfer(handle, endpoint_in, report_buffer, size, &size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
printf(" %s\n", libusb_strerror((enum libusb_error)r));
}
free(report_buffer);
}
return 0;
}
// Read the MS WinUSB Feature Descriptors, that are used on Windows 8 for automated driver installation
static void read_ms_winsub_feature_descriptors(libusb_device_handle *handle, uint8_t bRequest, int iface_number)
{
#define MAX_OS_FD_LENGTH 256
int i, r;
uint8_t os_desc[MAX_OS_FD_LENGTH];
uint32_t length;
void* le_type_punning_IS_fine;
struct {
const char* desc;
uint8_t recipient;
uint16_t index;
uint16_t header_size;
} os_fd[2] = {
{"Extended Compat ID", LIBUSB_RECIPIENT_DEVICE, 0x0004, 0x10},
{"Extended Properties", LIBUSB_RECIPIENT_INTERFACE, 0x0005, 0x0A}
};
if (iface_number < 0) return;
// WinUSB has a limitation that forces wIndex to the interface number when issuing
// an Interface Request. To work around that, we can force a Device Request for
// the Extended Properties, assuming the device answers both equally.
if (force_device_request)
os_fd[1].recipient = LIBUSB_RECIPIENT_DEVICE;
for (i=0; i<2; i++) {
printf("\nReading %s OS Feature Descriptor (wIndex = 0x%04d):\n", os_fd[i].desc, os_fd[i].index);
// Read the header part
r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient),
bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, os_fd[i].header_size, 1000);
if (r < os_fd[i].header_size) {
perr(" Failed: %s", (r<0)?libusb_strerror((enum libusb_error)r):"header size is too small");
return;
}
le_type_punning_IS_fine = (void*)os_desc;
length = *((uint32_t*)le_type_punning_IS_fine);
if (length > MAX_OS_FD_LENGTH) {
length = MAX_OS_FD_LENGTH;
}
// Read the full feature descriptor
r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient),
bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, (uint16_t)length, 1000);
if (r < 0) {
perr(" Failed: %s", libusb_strerror((enum libusb_error)r));
return;
} else {
display_buffer_hex(os_desc, r);
}
}
}
static void print_device_cap(struct libusb_bos_dev_capability_descriptor *dev_cap)
{
switch(dev_cap->bDevCapabilityType) {
case LIBUSB_BT_USB_2_0_EXTENSION: {
struct libusb_usb_2_0_extension_descriptor *usb_2_0_ext = NULL;
libusb_get_usb_2_0_extension_descriptor(NULL, dev_cap, &usb_2_0_ext);
if (usb_2_0_ext) {
printf(" USB 2.0 extension:\n");
printf(" attributes : %02X\n", usb_2_0_ext->bmAttributes);
libusb_free_usb_2_0_extension_descriptor(usb_2_0_ext);
}
break;
}
case LIBUSB_BT_SS_USB_DEVICE_CAPABILITY: {
struct libusb_ss_usb_device_capability_descriptor *ss_usb_device_cap = NULL;
libusb_get_ss_usb_device_capability_descriptor(NULL, dev_cap, &ss_usb_device_cap);
if (ss_usb_device_cap) {
printf(" USB 3.0 capabilities:\n");
printf(" attributes : %02X\n", ss_usb_device_cap->bmAttributes);
printf(" supported speeds : %04X\n", ss_usb_device_cap->wSpeedSupported);
printf(" supported functionality: %02X\n", ss_usb_device_cap->bFunctionalitySupport);
libusb_free_ss_usb_device_capability_descriptor(ss_usb_device_cap);
}
break;
}
case LIBUSB_BT_CONTAINER_ID: {
struct libusb_container_id_descriptor *container_id = NULL;
libusb_get_container_id_descriptor(NULL, dev_cap, &container_id);
if (container_id) {
printf(" Container ID:\n %s\n", uuid_to_string(container_id->ContainerID));
libusb_free_container_id_descriptor(container_id);
}
break;
}
default:
printf(" Unknown BOS device capability %02x:\n", dev_cap->bDevCapabilityType);
}
}
static int test_device(uint16_t vid, uint16_t pid)
{
libusb_device_handle *handle;
libusb_device *dev;
uint8_t bus, port_path[8];
struct libusb_bos_descriptor *bos_desc;
struct libusb_config_descriptor *conf_desc;
const struct libusb_endpoint_descriptor *endpoint;
int i, j, k, r;
int iface, nb_ifaces, first_iface = -1;
struct libusb_device_descriptor dev_desc;
const char* const speed_name[6] = { "Unknown", "1.5 Mbit/s (USB LowSpeed)", "12 Mbit/s (USB FullSpeed)",
"480 Mbit/s (USB HighSpeed)", "5000 Mbit/s (USB SuperSpeed)", "10000 Mbit/s (USB SuperSpeedPlus)" };
char string[128];
uint8_t string_index[3]; // indexes of the string descriptors
uint8_t endpoint_in = 0, endpoint_out = 0; // default IN and OUT endpoints
printf("Opening device %04X:%04X...\n", vid, pid);
handle = libusb_open_device_with_vid_pid(NULL, vid, pid);
if (handle == NULL) {
perr(" Failed.\n");
return -1;
}
dev = libusb_get_device(handle);
bus = libusb_get_bus_number(dev);
if (extra_info) {
r = libusb_get_port_numbers(dev, port_path, sizeof(port_path));
if (r > 0) {
printf("\nDevice properties:\n");
printf(" bus number: %d\n", bus);
printf(" port path: %d", port_path[0]);
for (i=1; i<r; i++) {
printf("->%d", port_path[i]);
}
printf(" (from root hub)\n");
}
r = libusb_get_device_speed(dev);
if ((r<0) || (r>5)) r=0;
printf(" speed: %s\n", speed_name[r]);
}
printf("\nReading device descriptor:\n");
CALL_CHECK_CLOSE(libusb_get_device_descriptor(dev, &dev_desc), handle);
printf(" length: %d\n", dev_desc.bLength);
printf(" device class: %d\n", dev_desc.bDeviceClass);
printf(" S/N: %d\n", dev_desc.iSerialNumber);
printf(" VID:PID: %04X:%04X\n", dev_desc.idVendor, dev_desc.idProduct);
printf(" bcdDevice: %04X\n", dev_desc.bcdDevice);
printf(" iMan:iProd:iSer: %d:%d:%d\n", dev_desc.iManufacturer, dev_desc.iProduct, dev_desc.iSerialNumber);
printf(" nb confs: %d\n", dev_desc.bNumConfigurations);
// Copy the string descriptors for easier parsing
string_index[0] = dev_desc.iManufacturer;
string_index[1] = dev_desc.iProduct;
string_index[2] = dev_desc.iSerialNumber;
printf("\nReading BOS descriptor: ");
if (libusb_get_bos_descriptor(handle, &bos_desc) == LIBUSB_SUCCESS) {
printf("%d caps\n", bos_desc->bNumDeviceCaps);
for (i = 0; i < bos_desc->bNumDeviceCaps; i++)
print_device_cap(bos_desc->dev_capability[i]);
libusb_free_bos_descriptor(bos_desc);
} else {
printf("no descriptor\n");
}
printf("\nReading first configuration descriptor:\n");
CALL_CHECK_CLOSE(libusb_get_config_descriptor(dev, 0, &conf_desc), handle);
nb_ifaces = conf_desc->bNumInterfaces;
printf(" nb interfaces: %d\n", nb_ifaces);
if (nb_ifaces > 0)
first_iface = conf_desc->usb_interface[0].altsetting[0].bInterfaceNumber;
for (i=0; i<nb_ifaces; i++) {
printf(" interface[%d]: id = %d\n", i,
conf_desc->usb_interface[i].altsetting[0].bInterfaceNumber);
for (j=0; j<conf_desc->usb_interface[i].num_altsetting; j++) {
printf("interface[%d].altsetting[%d]: num endpoints = %d\n",
i, j, conf_desc->usb_interface[i].altsetting[j].bNumEndpoints);
printf(" Class.SubClass.Protocol: %02X.%02X.%02X\n",
conf_desc->usb_interface[i].altsetting[j].bInterfaceClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol);
if ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceClass == LIBUSB_CLASS_MASS_STORAGE)
&& ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x01)
|| (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x06) )
&& (conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol == 0x50) ) {
// Mass storage devices that can use basic SCSI commands
test_mode = USE_SCSI;
}
for (k=0; k<conf_desc->usb_interface[i].altsetting[j].bNumEndpoints; k++) {
struct libusb_ss_endpoint_companion_descriptor *ep_comp = NULL;
endpoint = &conf_desc->usb_interface[i].altsetting[j].endpoint[k];
printf(" endpoint[%d].address: %02X\n", k, endpoint->bEndpointAddress);
// Use the first interrupt or bulk IN/OUT endpoints as default for testing
if ((endpoint->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) & (LIBUSB_TRANSFER_TYPE_BULK | LIBUSB_TRANSFER_TYPE_INTERRUPT)) {
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
if (!endpoint_in)
endpoint_in = endpoint->bEndpointAddress;
} else {
if (!endpoint_out)
endpoint_out = endpoint->bEndpointAddress;
}
}
printf(" max packet size: %04X\n", endpoint->wMaxPacketSize);
printf(" polling interval: %02X\n", endpoint->bInterval);
libusb_get_ss_endpoint_companion_descriptor(NULL, endpoint, &ep_comp);
if (ep_comp) {
printf(" max burst: %02X (USB 3.0)\n", ep_comp->bMaxBurst);
printf(" bytes per interval: %04X (USB 3.0)\n", ep_comp->wBytesPerInterval);
libusb_free_ss_endpoint_companion_descriptor(ep_comp);
}
}
}
}
libusb_free_config_descriptor(conf_desc);
libusb_set_auto_detach_kernel_driver(handle, 1);
for (iface = 0; iface < nb_ifaces; iface++)
{
int ret = libusb_kernel_driver_active(handle, iface);
printf("\nKernel driver attached for interface %d: %d\n", iface, ret);
printf("\nClaiming interface %d...\n", iface);
r = libusb_claim_interface(handle, iface);
if (r != LIBUSB_SUCCESS) {
perr(" Failed.\n");
}
}
printf("\nReading string descriptors:\n");
for (i=0; i<3; i++) {
if (string_index[i] == 0) {
continue;
}
if (libusb_get_string_descriptor_ascii(handle, string_index[i], (unsigned char*)string, sizeof(string)) > 0) {
printf(" String (0x%02X): \"%s\"\n", string_index[i], string);
}
}
// Read the OS String Descriptor
r = libusb_get_string_descriptor(handle, MS_OS_DESC_STRING_INDEX, 0, (unsigned char*)string, MS_OS_DESC_STRING_LENGTH);
if (r == MS_OS_DESC_STRING_LENGTH && memcmp(ms_os_desc_string, string, sizeof(ms_os_desc_string)) == 0) {
// If this is a Microsoft OS String Descriptor,
// attempt to read the WinUSB extended Feature Descriptors
read_ms_winsub_feature_descriptors(handle, string[MS_OS_DESC_VENDOR_CODE_OFFSET], first_iface);
}
switch(test_mode) {
case USE_PS3:
CALL_CHECK_CLOSE(display_ps3_status(handle), handle);
break;
case USE_XBOX:
CALL_CHECK_CLOSE(display_xbox_status(handle), handle);
CALL_CHECK_CLOSE(set_xbox_actuators(handle, 128, 222), handle);
msleep(2000);
CALL_CHECK_CLOSE(set_xbox_actuators(handle, 0, 0), handle);
break;
case USE_HID:
test_hid(handle, endpoint_in);
break;
case USE_SCSI:
CALL_CHECK_CLOSE(test_mass_storage(handle, endpoint_in, endpoint_out), handle);
case USE_GENERIC:
break;
}
printf("\n");
for (iface = 0; iface<nb_ifaces; iface++) {
printf("Releasing interface %d...\n", iface);
libusb_release_interface(handle, iface);
}
printf("Closing device...\n");
libusb_close(handle);
return 0;
}
int main(int argc, char** argv)
{
static char debug_env_str[] = "LIBUSB_DEBUG=4"; // LIBUSB_LOG_LEVEL_DEBUG
bool show_help = false;
bool debug_mode = false;
const struct libusb_version* version;
int j, r;
size_t i, arglen;
unsigned tmp_vid, tmp_pid;
uint16_t endian_test = 0xBE00;
char *error_lang = NULL, *old_dbg_str = NULL, str[256];
// Default to generic, expecting VID:PID
VID = 0;
PID = 0;
test_mode = USE_GENERIC;
if (((uint8_t*)&endian_test)[0] == 0xBE) {
printf("Despite their natural superiority for end users, big endian\n"
"CPUs are not supported with this program, sorry.\n");
return 0;
}
if (argc >= 2) {
for (j = 1; j<argc; j++) {
arglen = strlen(argv[j]);
if ( ((argv[j][0] == '-') || (argv[j][0] == '/'))
&& (arglen >= 2) ) {
switch(argv[j][1]) {
case 'd':
debug_mode = true;
break;
case 'i':
extra_info = true;
break;
case 'w':
force_device_request = true;
break;
case 'b':
if ((j+1 >= argc) || (argv[j+1][0] == '-') || (argv[j+1][0] == '/')) {
printf(" Option -b requires a file name\n");
return 1;
}
binary_name = argv[++j];
binary_dump = true;
break;
case 'l':
if ((j+1 >= argc) || (argv[j+1][0] == '-') || (argv[j+1][0] == '/')) {
printf(" Option -l requires an ISO 639-1 language parameter\n");
return 1;
}
error_lang = argv[++j];
break;
case 'j':
// OLIMEX ARM-USB-TINY JTAG, 2 channel composite device - 2 interfaces
if (!VID && !PID) {
VID = 0x15BA;
PID = 0x0004;
}
break;
case 'k':
// Generic 2 GB USB Key (SCSI Transparent/Bulk Only) - 1 interface
if (!VID && !PID) {
VID = 0x0204;
PID = 0x6025;
}
break;
// The following tests will force VID:PID if already provided
case 'p':
// Sony PS3 Controller - 1 interface
VID = 0x054C;
PID = 0x0268;
test_mode = USE_PS3;
break;
case 's':
// Microsoft Sidewinder Precision Pro Joystick - 1 HID interface
VID = 0x045E;
PID = 0x0008;
test_mode = USE_HID;
break;
case 'x':
// Microsoft XBox Controller Type S - 1 interface
VID = 0x045E;
PID = 0x0289;
test_mode = USE_XBOX;
break;
default:
show_help = true;
break;
}
} else {
for (i=0; i<arglen; i++) {
if (argv[j][i] == ':')
break;
}
if (i != arglen) {
if (sscanf(argv[j], "%x:%x" , &tmp_vid, &tmp_pid) != 2) {
printf(" Please specify VID & PID as \"vid:pid\" in hexadecimal format\n");
return 1;
}
VID = (uint16_t)tmp_vid;
PID = (uint16_t)tmp_pid;
} else {
show_help = true;
}
}
}
}
if ((show_help) || (argc == 1) || (argc > 7)) {
printf("usage: %s [-h] [-d] [-i] [-k] [-b file] [-l lang] [-j] [-x] [-s] [-p] [-w] [vid:pid]\n", argv[0]);
printf(" -h : display usage\n");
printf(" -d : enable debug output\n");
printf(" -i : print topology and speed info\n");
printf(" -j : test composite FTDI based JTAG device\n");
printf(" -k : test Mass Storage device\n");
printf(" -b file : dump Mass Storage data to file 'file'\n");
printf(" -p : test Sony PS3 SixAxis controller\n");
printf(" -s : test Microsoft Sidewinder Precision Pro (HID)\n");
printf(" -x : test Microsoft XBox Controller Type S\n");
printf(" -l lang : language to report errors in (ISO 639-1)\n");
printf(" -w : force the use of device requests when querying WCID descriptors\n");
printf("If only the vid:pid is provided, xusb attempts to run the most appropriate test\n");
return 0;
}
// xusb is commonly used as a debug tool, so it's convenient to have debug output during libusb_init(),
// but since we can't call on libusb_set_option() before libusb_init(), we use the env variable method
old_dbg_str = getenv("LIBUSB_DEBUG");
if (debug_mode) {
if (putenv(debug_env_str) != 0)
printf("Unable to set debug level\n");
}
version = libusb_get_version();
printf("Using libusb v%d.%d.%d.%d\n\n", version->major, version->minor, version->micro, version->nano);
r = libusb_init(NULL);
if (r < 0)
return r;
// If not set externally, and no debug option was given, use info log level
if ((old_dbg_str == NULL) && (!debug_mode))
libusb_set_option(NULL, LIBUSB_OPTION_LOG_LEVEL, LIBUSB_LOG_LEVEL_INFO);
if (error_lang != NULL) {
r = libusb_setlocale(error_lang);
if (r < 0)
printf("Invalid or unsupported locale '%s': %s\n", error_lang, libusb_strerror((enum libusb_error)r));
}
test_device(VID, PID);
libusb_exit(NULL);
if (debug_mode) {
snprintf(str, sizeof(str), "LIBUSB_DEBUG=%s", (old_dbg_str == NULL)?"":old_dbg_str);
str[sizeof(str) - 1] = 0; // Windows may not NUL terminate the string
}
return 0;
}