blob: 7175b354905af785793bc034cef5b609f1799d9d [file] [log] [blame]
/* -*- Mode: C; c-basic-offset:8 ; indent-tabs-mode:t -*- */
/*
* Linux usbfs backend for libusb
* Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
* Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
* Copyright © 2013 Nathan Hjelm <hjelmn@mac.com>
* Copyright © 2012-2013 Hans de Goede <hdegoede@redhat.com>
* Copyright © 2020 Chris Dickens <christopher.a.dickens@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libusbi.h"
#include "linux_usbfs.h"
#include <alloca.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <sys/vfs.h>
#include <unistd.h>
/* sysfs vs usbfs:
* opening a usbfs node causes the device to be resumed, so we attempt to
* avoid this during enumeration.
*
* sysfs allows us to read the kernel's in-memory copies of device descriptors
* and so forth, avoiding the need to open the device:
* - The binary "descriptors" file contains all config descriptors since
* 2.6.26, commit 217a9081d8e69026186067711131b77f0ce219ed
* - The binary "descriptors" file was added in 2.6.23, commit
* 69d42a78f935d19384d1f6e4f94b65bb162b36df, but it only contains the
* active config descriptors
* - The "busnum" file was added in 2.6.22, commit
* 83f7d958eab2fbc6b159ee92bf1493924e1d0f72
* - The "devnum" file has been present since pre-2.6.18
* - the "bConfigurationValue" file has been present since pre-2.6.18
*
* If we have bConfigurationValue, busnum, and devnum, then we can determine
* the active configuration without having to open the usbfs node in RDWR mode.
* The busnum file is important as that is the only way we can relate sysfs
* devices to usbfs nodes.
*
* If we also have all descriptors, we can obtain the device descriptor and
* configuration without touching usbfs at all.
*/
/* endianness for multi-byte fields:
*
* Descriptors exposed by usbfs have the multi-byte fields in the device
* descriptor as host endian. Multi-byte fields in the other descriptors are
* bus-endian. The kernel documentation says otherwise, but it is wrong.
*
* In sysfs all descriptors are bus-endian.
*/
#define USBDEV_PATH "/dev"
#define USB_DEVTMPFS_PATH "/dev/bus/usb"
/* use usbdev*.* device names in /dev instead of the usbfs bus directories */
static int usbdev_names = 0;
/* Linux has changed the maximum length of an individual isochronous packet
* over time. Initially this limit was 1,023 bytes, but Linux 2.6.18
* (commit 3612242e527eb47ee4756b5350f8bdf791aa5ede) increased this value to
* 8,192 bytes to support higher bandwidth devices. Linux 3.10
* (commit e2e2f0ea1c935edcf53feb4c4c8fdb4f86d57dd9) further increased this
* value to 49,152 bytes to support super speed devices. Linux 5.2
* (commit 8a1dbc8d91d3d1602282c7e6b4222c7759c916fa) even further increased
* this value to 98,304 bytes to support super speed plus devices.
*/
static unsigned int max_iso_packet_len = 0;
/* is sysfs available (mounted) ? */
static int sysfs_available = -1;
/* how many times have we initted (and not exited) ? */
static int init_count = 0;
#ifdef __ANDROID__
/* have no authority to operate usb device directly */
static int weak_authority = 0;
#endif
/* Serialize hotplug start/stop */
static usbi_mutex_static_t linux_hotplug_startstop_lock = USBI_MUTEX_INITIALIZER;
/* Serialize scan-devices, event-thread, and poll */
usbi_mutex_static_t linux_hotplug_lock = USBI_MUTEX_INITIALIZER;
static int linux_scan_devices(struct libusb_context *ctx);
static int detach_kernel_driver_and_claim(struct libusb_device_handle *, uint8_t);
#if !defined(HAVE_LIBUDEV)
static int linux_default_scan_devices(struct libusb_context *ctx);
#endif
struct kernel_version {
int major;
int minor;
int sublevel;
};
struct config_descriptor {
struct usbi_configuration_descriptor *desc;
size_t actual_len;
};
struct linux_device_priv {
char *sysfs_dir;
void *descriptors;
size_t descriptors_len;
struct config_descriptor *config_descriptors;
uint8_t active_config; /* cache val for !sysfs_available */
};
struct linux_device_handle_priv {
int fd;
int fd_removed;
int fd_keep;
uint32_t caps;
};
enum reap_action {
NORMAL = 0,
/* submission failed after the first URB, so await cancellation/completion
* of all the others */
SUBMIT_FAILED,
/* cancelled by user or timeout */
CANCELLED,
/* completed multi-URB transfer in non-final URB */
COMPLETED_EARLY,
/* one or more urbs encountered a low-level error */
ERROR,
};
struct linux_transfer_priv {
union {
struct usbfs_urb *urbs;
struct usbfs_urb **iso_urbs;
};
enum reap_action reap_action;
int num_urbs;
int num_retired;
enum libusb_transfer_status reap_status;
/* next iso packet in user-supplied transfer to be populated */
int iso_packet_offset;
};
static int get_usbfs_fd(struct libusb_device *dev, mode_t mode, int silent)
{
struct libusb_context *ctx = DEVICE_CTX(dev);
char path[24];
int fd;
if (usbdev_names)
sprintf(path, USBDEV_PATH "/usbdev%u.%u",
dev->bus_number, dev->device_address);
else
sprintf(path, USB_DEVTMPFS_PATH "/%03u/%03u",
dev->bus_number, dev->device_address);
fd = open(path, mode | O_CLOEXEC);
if (fd != -1)
return fd; /* Success */
if (errno == ENOENT) {
const long delay_ms = 10L;
const struct timespec delay_ts = { 0L, delay_ms * 1000L * 1000L };
if (!silent)
usbi_err(ctx, "File doesn't exist, wait %ld ms and try again", delay_ms);
/* Wait 10ms for USB device path creation.*/
nanosleep(&delay_ts, NULL);
fd = open(path, mode | O_CLOEXEC);
if (fd != -1)
return fd; /* Success */
}
if (!silent) {
usbi_err(ctx, "libusb couldn't open USB device %s, errno=%d", path, errno);
if (errno == EACCES && mode == O_RDWR)
usbi_err(ctx, "libusb requires write access to USB device nodes");
}
if (errno == EACCES)
return LIBUSB_ERROR_ACCESS;
if (errno == ENOENT)
return LIBUSB_ERROR_NO_DEVICE;
return LIBUSB_ERROR_IO;
}
/* check dirent for a /dev/usbdev%d.%d name
* optionally return bus/device on success */
static int is_usbdev_entry(const char *name, uint8_t *bus_p, uint8_t *dev_p)
{
int busnum, devnum;
if (sscanf(name, "usbdev%d.%d", &busnum, &devnum) != 2)
return 0;
if (busnum < 0 || busnum > UINT8_MAX || devnum < 0 || devnum > UINT8_MAX) {
usbi_dbg("invalid usbdev format '%s'", name);
return 0;
}
usbi_dbg("found: %s", name);
if (bus_p)
*bus_p = (uint8_t)busnum;
if (dev_p)
*dev_p = (uint8_t)devnum;
return 1;
}
static const char *find_usbfs_path(void)
{
const char *path;
DIR *dir;
struct dirent *entry;
path = USB_DEVTMPFS_PATH;
dir = opendir(path);
if (dir) {
while ((entry = readdir(dir))) {
if (entry->d_name[0] == '.')
continue;
/* We assume if we find any files that it must be the right place */
break;
}
closedir(dir);
if (entry)
return path;
}
/* look for /dev/usbdev*.* if the normal place fails */
path = USBDEV_PATH;
dir = opendir(path);
if (dir) {
while ((entry = readdir(dir))) {
if (entry->d_name[0] == '.')
continue;
if (is_usbdev_entry(entry->d_name, NULL, NULL)) {
/* found one; that's enough */
break;
}
}
closedir(dir);
if (entry) {
usbdev_names = 1;
return path;
}
}
/* On udev based systems without any usb-devices /dev/bus/usb will not
* exist. So if we've not found anything and we're using udev for hotplug
* simply assume /dev/bus/usb rather then making libusb_init fail.
* Make the same assumption for Android where SELinux policies might block us
* from reading /dev on newer devices. */
#if defined(HAVE_LIBUDEV) || defined(__ANDROID__)
return USB_DEVTMPFS_PATH;
#else
return NULL;
#endif
}
static int get_kernel_version(struct libusb_context *ctx,
struct kernel_version *ver)
{
struct utsname uts;
int atoms;
if (uname(&uts) < 0) {
usbi_err(ctx, "uname failed, errno=%d", errno);
return -1;
}
atoms = sscanf(uts.release, "%d.%d.%d", &ver->major, &ver->minor, &ver->sublevel);
if (atoms < 2) {
usbi_err(ctx, "failed to parse uname release '%s'", uts.release);
return -1;
}
if (atoms < 3)
ver->sublevel = -1;
usbi_dbg("reported kernel version is %s", uts.release);
return 0;
}
static int kernel_version_ge(const struct kernel_version *ver,
int major, int minor, int sublevel)
{
if (ver->major > major)
return 1;
else if (ver->major < major)
return 0;
/* kmajor == major */
if (ver->minor > minor)
return 1;
else if (ver->minor < minor)
return 0;
/* kminor == minor */
if (ver->sublevel == -1)
return sublevel == 0;
return ver->sublevel >= sublevel;
}
static int op_init(struct libusb_context *ctx)
{
struct kernel_version kversion;
const char *usbfs_path;
int r;
if (get_kernel_version(ctx, &kversion) < 0)
return LIBUSB_ERROR_OTHER;
if (!kernel_version_ge(&kversion, 2, 6, 32)) {
usbi_err(ctx, "kernel version is too old (reported as %d.%d.%d)",
kversion.major, kversion.minor,
kversion.sublevel != -1 ? kversion.sublevel : 0);
return LIBUSB_ERROR_NOT_SUPPORTED;
}
usbfs_path = find_usbfs_path();
if (!usbfs_path) {
usbi_err(ctx, "could not find usbfs");
return LIBUSB_ERROR_OTHER;
}
usbi_dbg("found usbfs at %s", usbfs_path);
if (!max_iso_packet_len) {
if (kernel_version_ge(&kversion, 5, 2, 0))
max_iso_packet_len = 98304;
else if (kernel_version_ge(&kversion, 3, 10, 0))
max_iso_packet_len = 49152;
else
max_iso_packet_len = 8192;
}
usbi_dbg("max iso packet length is (likely) %u bytes", max_iso_packet_len);
if (sysfs_available == -1) {
struct statfs statfsbuf;
r = statfs(SYSFS_MOUNT_PATH, &statfsbuf);
if (r == 0 && statfsbuf.f_type == SYSFS_MAGIC) {
usbi_dbg("sysfs is available");
sysfs_available = 1;
} else {
usbi_warn(ctx, "sysfs not mounted");
sysfs_available = 0;
}
}
#ifdef __ANDROID__
if (weak_authority) {
return LIBUSB_SUCCESS;
}
#endif
usbi_mutex_static_lock(&linux_hotplug_startstop_lock);
r = LIBUSB_SUCCESS;
if (init_count == 0) {
/* start up hotplug event handler */
r = linux_start_event_monitor();
}
if (r == LIBUSB_SUCCESS) {
r = linux_scan_devices(ctx);
if (r == LIBUSB_SUCCESS)
init_count++;
else if (init_count == 0)
linux_stop_event_monitor();
} else {
usbi_err(ctx, "error starting hotplug event monitor");
}
usbi_mutex_static_unlock(&linux_hotplug_startstop_lock);
return r;
}
static void op_exit(struct libusb_context *ctx)
{
UNUSED(ctx);
usbi_mutex_static_lock(&linux_hotplug_startstop_lock);
assert(init_count != 0);
if (!--init_count) {
/* tear down event handler */
linux_stop_event_monitor();
}
usbi_mutex_static_unlock(&linux_hotplug_startstop_lock);
}
static int op_set_option(struct libusb_context *ctx, enum libusb_option option, va_list ap)
{
UNUSED(ctx);
UNUSED(ap);
#ifdef __ANDROID__
if (option == LIBUSB_OPTION_WEAK_AUTHORITY) {
usbi_dbg("set libusb has weak authority");
weak_authority = 1;
return LIBUSB_SUCCESS;
}
#else
UNUSED(option);
#endif
return LIBUSB_ERROR_NOT_SUPPORTED;
}
static int linux_scan_devices(struct libusb_context *ctx)
{
int ret;
usbi_mutex_static_lock(&linux_hotplug_lock);
#if defined(HAVE_LIBUDEV)
ret = linux_udev_scan_devices(ctx);
#else
ret = linux_default_scan_devices(ctx);
#endif
usbi_mutex_static_unlock(&linux_hotplug_lock);
return ret;
}
static void op_hotplug_poll(void)
{
linux_hotplug_poll();
}
static int open_sysfs_attr(struct libusb_context *ctx,
const char *sysfs_dir, const char *attr)
{
char filename[256];
int fd;
snprintf(filename, sizeof(filename), SYSFS_DEVICE_PATH "/%s/%s", sysfs_dir, attr);
fd = open(filename, O_RDONLY | O_CLOEXEC);
if (fd < 0) {
if (errno == ENOENT) {
/* File doesn't exist. Assume the device has been
disconnected (see trac ticket #70). */
return LIBUSB_ERROR_NO_DEVICE;
}
usbi_err(ctx, "open %s failed, errno=%d", filename, errno);
return LIBUSB_ERROR_IO;
}
return fd;
}
/* Note only suitable for attributes which always read >= 0, < 0 is error */
static int read_sysfs_attr(struct libusb_context *ctx,
const char *sysfs_dir, const char *attr, int max_value, int *value_p)
{
char buf[20], *endptr;
long value;
ssize_t r;
int fd;
fd = open_sysfs_attr(ctx, sysfs_dir, attr);
if (fd < 0)
return fd;
r = read(fd, buf, sizeof(buf));
if (r < 0) {
r = errno;
close(fd);
if (r == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(ctx, "attribute %s read failed, errno=%zd", attr, r);
return LIBUSB_ERROR_IO;
}
close(fd);
if (r == 0) {
/* Certain attributes (e.g. bConfigurationValue) are not
* populated if the device is not configured. */
*value_p = -1;
return 0;
}
/* The kernel does *not* NULL-terminate the string, but every attribute
* should be terminated with a newline character. */
if (!isdigit(buf[0])) {
usbi_err(ctx, "attribute %s doesn't have numeric value?", attr);
return LIBUSB_ERROR_IO;
} else if (buf[r - 1] != '\n') {
usbi_err(ctx, "attribute %s doesn't end with newline?", attr);
return LIBUSB_ERROR_IO;
}
buf[r - 1] = '\0';
errno = 0;
value = strtol(buf, &endptr, 10);
if (value < 0 || value > (long)max_value || errno) {
usbi_err(ctx, "attribute %s contains an invalid value: '%s'", attr, buf);
return LIBUSB_ERROR_INVALID_PARAM;
} else if (*endptr != '\0') {
/* Consider the value to be valid if the remainder is a '.'
* character followed by numbers. This occurs, for example,
* when reading the "speed" attribute for a low-speed device
* (e.g. "1.5") */
if (*endptr == '.' && isdigit(*(endptr + 1))) {
endptr++;
while (isdigit(*endptr))
endptr++;
}
if (*endptr != '\0') {
usbi_err(ctx, "attribute %s contains an invalid value: '%s'", attr, buf);
return LIBUSB_ERROR_INVALID_PARAM;
}
}
*value_p = (int)value;
return 0;
}
static int sysfs_scan_device(struct libusb_context *ctx, const char *devname)
{
uint8_t busnum, devaddr;
int ret;
ret = linux_get_device_address(ctx, 0, &busnum, &devaddr, NULL, devname, -1);
if (ret != LIBUSB_SUCCESS)
return ret;
return linux_enumerate_device(ctx, busnum, devaddr, devname);
}
/* read the bConfigurationValue for a device */
static int sysfs_get_active_config(struct libusb_device *dev, uint8_t *config)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
int ret, tmp;
ret = read_sysfs_attr(DEVICE_CTX(dev), priv->sysfs_dir, "bConfigurationValue",
UINT8_MAX, &tmp);
if (ret < 0)
return ret;
if (tmp == -1)
tmp = 0; /* unconfigured */
*config = (uint8_t)tmp;
return 0;
}
int linux_get_device_address(struct libusb_context *ctx, int detached,
uint8_t *busnum, uint8_t *devaddr, const char *dev_node,
const char *sys_name, int fd)
{
int sysfs_val;
int r;
usbi_dbg("getting address for device: %s detached: %d", sys_name, detached);
/* can't use sysfs to read the bus and device number if the
* device has been detached */
if (!sysfs_available || detached || !sys_name) {
if (!dev_node && fd >= 0) {
char *fd_path = alloca(PATH_MAX);
char proc_path[32];
/* try to retrieve the device node from fd */
sprintf(proc_path, "/proc/self/fd/%d", fd);
r = readlink(proc_path, fd_path, PATH_MAX - 1);
if (r > 0) {
fd_path[r] = '\0';
dev_node = fd_path;
}
}
if (!dev_node)
return LIBUSB_ERROR_OTHER;
/* will this work with all supported kernel versions? */
if (!strncmp(dev_node, "/dev/bus/usb", 12))
sscanf(dev_node, "/dev/bus/usb/%hhu/%hhu", busnum, devaddr);
else
return LIBUSB_ERROR_OTHER;
return LIBUSB_SUCCESS;
}
usbi_dbg("scan %s", sys_name);
r = read_sysfs_attr(ctx, sys_name, "busnum", UINT8_MAX, &sysfs_val);
if (r < 0)
return r;
*busnum = (uint8_t)sysfs_val;
r = read_sysfs_attr(ctx, sys_name, "devnum", UINT8_MAX, &sysfs_val);
if (r < 0)
return r;
*devaddr = (uint8_t)sysfs_val;
usbi_dbg("bus=%u dev=%u", *busnum, *devaddr);
return LIBUSB_SUCCESS;
}
/* Return offset of the next config descriptor */
static int seek_to_next_config(struct libusb_context *ctx,
uint8_t *buffer, size_t len)
{
struct usbi_descriptor_header *header;
int offset;
/* Start seeking past the config descriptor */
offset = LIBUSB_DT_CONFIG_SIZE;
buffer += LIBUSB_DT_CONFIG_SIZE;
len -= LIBUSB_DT_CONFIG_SIZE;
while (len > 0) {
if (len < 2) {
usbi_err(ctx, "short descriptor read %zu/2", len);
return LIBUSB_ERROR_IO;
}
header = (struct usbi_descriptor_header *)buffer;
if (header->bDescriptorType == LIBUSB_DT_CONFIG)
return offset;
if (len < header->bLength) {
usbi_err(ctx, "bLength overflow by %zu bytes",
(size_t)header->bLength - len);
return LIBUSB_ERROR_IO;
}
offset += header->bLength;
buffer += header->bLength;
len -= header->bLength;
}
usbi_err(ctx, "config descriptor not found");
return LIBUSB_ERROR_IO;
}
static int parse_config_descriptors(struct libusb_device *dev)
{
struct libusb_context *ctx = DEVICE_CTX(dev);
struct linux_device_priv *priv = usbi_get_device_priv(dev);
struct usbi_device_descriptor *device_desc;
uint8_t idx, num_configs;
uint8_t *buffer;
size_t remaining;
device_desc = priv->descriptors;
num_configs = device_desc->bNumConfigurations;
if (num_configs == 0)
return 0; /* no configurations? */
priv->config_descriptors = malloc(num_configs * sizeof(priv->config_descriptors[0]));
if (!priv->config_descriptors)
return LIBUSB_ERROR_NO_MEM;
buffer = (uint8_t *)priv->descriptors + LIBUSB_DT_DEVICE_SIZE;
remaining = priv->descriptors_len - LIBUSB_DT_DEVICE_SIZE;
for (idx = 0; idx < num_configs; idx++) {
struct usbi_configuration_descriptor *config_desc;
uint16_t config_len;
if (remaining < LIBUSB_DT_CONFIG_SIZE) {
usbi_err(ctx, "short descriptor read %zu/%d",
remaining, LIBUSB_DT_CONFIG_SIZE);
return LIBUSB_ERROR_IO;
}
config_desc = (struct usbi_configuration_descriptor *)buffer;
if (config_desc->bDescriptorType != LIBUSB_DT_CONFIG) {
usbi_err(ctx, "descriptor is not a config desc (type 0x%02x)",
config_desc->bDescriptorType);
return LIBUSB_ERROR_IO;
} else if (config_desc->bLength < LIBUSB_DT_CONFIG_SIZE) {
usbi_err(ctx, "invalid descriptor bLength %u",
config_desc->bLength);
return LIBUSB_ERROR_IO;
}
config_len = libusb_le16_to_cpu(config_desc->wTotalLength);
if (config_len < LIBUSB_DT_CONFIG_SIZE) {
usbi_err(ctx, "invalid wTotalLength %u", config_len);
return LIBUSB_ERROR_IO;
}
if (priv->sysfs_dir) {
/*
* In sysfs wTotalLength is ignored, instead the kernel returns a
* config descriptor with verified bLength fields, with descriptors
* with an invalid bLength removed.
*/
uint16_t sysfs_config_len;
int offset;
if (num_configs > 1 && idx < num_configs - 1) {
offset = seek_to_next_config(ctx, buffer, remaining);
if (offset < 0)
return offset;
sysfs_config_len = (uint16_t)offset;
} else {
sysfs_config_len = (uint16_t)remaining;
}
if (config_len != sysfs_config_len) {
usbi_warn(ctx, "config length mismatch wTotalLength %u real %u",
config_len, sysfs_config_len);
config_len = sysfs_config_len;
}
} else {
/*
* In usbfs the config descriptors are wTotalLength bytes apart,
* with any short reads from the device appearing as holes in the file.
*/
if (config_len > remaining) {
usbi_warn(ctx, "short descriptor read %zu/%u", remaining, config_len);
config_len = (uint16_t)remaining;
}
}
priv->config_descriptors[idx].desc = config_desc;
priv->config_descriptors[idx].actual_len = config_len;
buffer += config_len;
remaining -= config_len;
}
return LIBUSB_SUCCESS;
}
static int op_get_config_descriptor_by_value(struct libusb_device *dev,
uint8_t value, void **buffer)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
struct config_descriptor *config;
uint8_t idx;
for (idx = 0; idx < dev->device_descriptor.bNumConfigurations; idx++) {
config = &priv->config_descriptors[idx];
if (config->desc->bConfigurationValue == value) {
*buffer = config->desc;
return (int)config->actual_len;
}
}
return LIBUSB_ERROR_NOT_FOUND;
}
static int op_get_active_config_descriptor(struct libusb_device *dev,
void *buffer, size_t len)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
void *config_desc;
uint8_t active_config;
int r;
if (priv->sysfs_dir) {
r = sysfs_get_active_config(dev, &active_config);
if (r < 0)
return r;
} else {
/* Use cached bConfigurationValue */
active_config = priv->active_config;
}
if (active_config == 0) {
usbi_err(DEVICE_CTX(dev), "device unconfigured");
return LIBUSB_ERROR_NOT_FOUND;
}
r = op_get_config_descriptor_by_value(dev, active_config, &config_desc);
if (r < 0)
return r;
len = MIN(len, (size_t)r);
memcpy(buffer, config_desc, len);
return len;
}
static int op_get_config_descriptor(struct libusb_device *dev,
uint8_t config_index, void *buffer, size_t len)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
struct config_descriptor *config;
if (config_index >= dev->device_descriptor.bNumConfigurations)
return LIBUSB_ERROR_NOT_FOUND;
config = &priv->config_descriptors[config_index];
len = MIN(len, config->actual_len);
memcpy(buffer, config->desc, len);
return len;
}
/* send a control message to retrieve active configuration */
static int usbfs_get_active_config(struct libusb_device *dev, int fd)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
uint8_t active_config = 0;
int r;
struct usbfs_ctrltransfer ctrl = {
.bmRequestType = LIBUSB_ENDPOINT_IN,
.bRequest = LIBUSB_REQUEST_GET_CONFIGURATION,
.wValue = 0,
.wIndex = 0,
.wLength = 1,
.timeout = 1000,
.data = &active_config
};
r = ioctl(fd, IOCTL_USBFS_CONTROL, &ctrl);
if (r < 0) {
if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
/* we hit this error path frequently with buggy devices :( */
usbi_warn(DEVICE_CTX(dev), "get configuration failed, errno=%d", errno);
} else if (active_config == 0) {
/* some buggy devices have a configuration 0, but we're
* reaching into the corner of a corner case here, so let's
* not support buggy devices in these circumstances.
* stick to the specs: a configuration value of 0 means
* unconfigured. */
usbi_warn(DEVICE_CTX(dev), "active cfg 0? assuming unconfigured device");
}
priv->active_config = active_config;
return LIBUSB_SUCCESS;
}
static enum libusb_speed usbfs_get_speed(struct libusb_context *ctx, int fd)
{
int r;
r = ioctl(fd, IOCTL_USBFS_GET_SPEED, NULL);
switch (r) {
case USBFS_SPEED_UNKNOWN: return LIBUSB_SPEED_UNKNOWN;
case USBFS_SPEED_LOW: return LIBUSB_SPEED_LOW;
case USBFS_SPEED_FULL: return LIBUSB_SPEED_FULL;
case USBFS_SPEED_HIGH: return LIBUSB_SPEED_HIGH;
case USBFS_SPEED_WIRELESS: return LIBUSB_SPEED_HIGH;
case USBFS_SPEED_SUPER: return LIBUSB_SPEED_SUPER;
case USBFS_SPEED_SUPER_PLUS: return LIBUSB_SPEED_SUPER_PLUS;
default:
usbi_warn(ctx, "Error getting device speed: %d", r);
}
return LIBUSB_SPEED_UNKNOWN;
}
static int initialize_device(struct libusb_device *dev, uint8_t busnum,
uint8_t devaddr, const char *sysfs_dir, int wrapped_fd)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
struct libusb_context *ctx = DEVICE_CTX(dev);
size_t alloc_len;
int fd, speed, r;
ssize_t nb;
dev->bus_number = busnum;
dev->device_address = devaddr;
if (sysfs_dir) {
priv->sysfs_dir = strdup(sysfs_dir);
if (!priv->sysfs_dir)
return LIBUSB_ERROR_NO_MEM;
/* Note speed can contain 1.5, in this case read_sysfs_attr()
will stop parsing at the '.' and return 1 */
if (read_sysfs_attr(ctx, sysfs_dir, "speed", INT_MAX, &speed) == 0) {
switch (speed) {
case 1: dev->speed = LIBUSB_SPEED_LOW; break;
case 12: dev->speed = LIBUSB_SPEED_FULL; break;
case 480: dev->speed = LIBUSB_SPEED_HIGH; break;
case 5000: dev->speed = LIBUSB_SPEED_SUPER; break;
case 10000: dev->speed = LIBUSB_SPEED_SUPER_PLUS; break;
default:
usbi_warn(ctx, "unknown device speed: %d Mbps", speed);
}
}
} else if (wrapped_fd >= 0) {
dev->speed = usbfs_get_speed(ctx, wrapped_fd);
}
/* cache descriptors in memory */
if (sysfs_dir) {
fd = open_sysfs_attr(ctx, sysfs_dir, "descriptors");
} else if (wrapped_fd < 0) {
fd = get_usbfs_fd(dev, O_RDONLY, 0);
} else {
fd = wrapped_fd;
r = lseek(fd, 0, SEEK_SET);
if (r < 0) {
usbi_err(ctx, "lseek failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
}
if (fd < 0)
return fd;
alloc_len = 0;
do {
const size_t desc_read_length = 256;
uint8_t *read_ptr;
alloc_len += desc_read_length;
priv->descriptors = usbi_reallocf(priv->descriptors, alloc_len);
if (!priv->descriptors) {
if (fd != wrapped_fd)
close(fd);
return LIBUSB_ERROR_NO_MEM;
}
read_ptr = (uint8_t *)priv->descriptors + priv->descriptors_len;
/* usbfs has holes in the file */
if (!sysfs_dir)
memset(read_ptr, 0, desc_read_length);
nb = read(fd, read_ptr, desc_read_length);
if (nb < 0) {
usbi_err(ctx, "read descriptor failed, errno=%d", errno);
if (fd != wrapped_fd)
close(fd);
return LIBUSB_ERROR_IO;
}
priv->descriptors_len += (size_t)nb;
} while (priv->descriptors_len == alloc_len);
if (fd != wrapped_fd)
close(fd);
if (priv->descriptors_len < LIBUSB_DT_DEVICE_SIZE) {
usbi_err(ctx, "short descriptor read (%zu)", priv->descriptors_len);
return LIBUSB_ERROR_IO;
}
r = parse_config_descriptors(dev);
if (r < 0)
return r;
memcpy(&dev->device_descriptor, priv->descriptors, LIBUSB_DT_DEVICE_SIZE);
if (sysfs_dir) {
/* sysfs descriptors are in bus-endian format */
usbi_localize_device_descriptor(&dev->device_descriptor);
return LIBUSB_SUCCESS;
}
/* cache active config */
if (wrapped_fd < 0)
fd = get_usbfs_fd(dev, O_RDWR, 1);
else
fd = wrapped_fd;
if (fd < 0) {
/* cannot send a control message to determine the active
* config. just assume the first one is active. */
usbi_warn(ctx, "Missing rw usbfs access; cannot determine "
"active configuration descriptor");
if (priv->config_descriptors)
priv->active_config = priv->config_descriptors[0].desc->bConfigurationValue;
else
priv->active_config = 0; /* No config dt */
return LIBUSB_SUCCESS;
}
r = usbfs_get_active_config(dev, fd);
if (fd != wrapped_fd)
close(fd);
return r;
}
static int linux_get_parent_info(struct libusb_device *dev, const char *sysfs_dir)
{
struct libusb_context *ctx = DEVICE_CTX(dev);
struct libusb_device *it;
char *parent_sysfs_dir, *tmp;
int ret, add_parent = 1;
/* XXX -- can we figure out the topology when using usbfs? */
if (!sysfs_dir || !strncmp(sysfs_dir, "usb", 3)) {
/* either using usbfs or finding the parent of a root hub */
return LIBUSB_SUCCESS;
}
parent_sysfs_dir = strdup(sysfs_dir);
if (!parent_sysfs_dir)
return LIBUSB_ERROR_NO_MEM;
if ((tmp = strrchr(parent_sysfs_dir, '.')) ||
(tmp = strrchr(parent_sysfs_dir, '-'))) {
dev->port_number = atoi(tmp + 1);
*tmp = '\0';
} else {
usbi_warn(ctx, "Can not parse sysfs_dir: %s, no parent info",
parent_sysfs_dir);
free(parent_sysfs_dir);
return LIBUSB_SUCCESS;
}
/* is the parent a root hub? */
if (!strchr(parent_sysfs_dir, '-')) {
tmp = parent_sysfs_dir;
ret = asprintf(&parent_sysfs_dir, "usb%s", tmp);
free(tmp);
if (ret < 0)
return LIBUSB_ERROR_NO_MEM;
}
retry:
/* find the parent in the context */
usbi_mutex_lock(&ctx->usb_devs_lock);
for_each_device(ctx, it) {
struct linux_device_priv *priv = usbi_get_device_priv(it);
if (priv->sysfs_dir) {
if (!strcmp(priv->sysfs_dir, parent_sysfs_dir)) {
dev->parent_dev = libusb_ref_device(it);
break;
}
}
}
usbi_mutex_unlock(&ctx->usb_devs_lock);
if (!dev->parent_dev && add_parent) {
usbi_dbg("parent_dev %s not enumerated yet, enumerating now",
parent_sysfs_dir);
sysfs_scan_device(ctx, parent_sysfs_dir);
add_parent = 0;
goto retry;
}
usbi_dbg("dev %p (%s) has parent %p (%s) port %u", dev, sysfs_dir,
dev->parent_dev, parent_sysfs_dir, dev->port_number);
free(parent_sysfs_dir);
return LIBUSB_SUCCESS;
}
int linux_enumerate_device(struct libusb_context *ctx,
uint8_t busnum, uint8_t devaddr, const char *sysfs_dir)
{
unsigned long session_id;
struct libusb_device *dev;
int r;
/* FIXME: session ID is not guaranteed unique as addresses can wrap and
* will be reused. instead we should add a simple sysfs attribute with
* a session ID. */
session_id = busnum << 8 | devaddr;
usbi_dbg("busnum %u devaddr %u session_id %lu", busnum, devaddr, session_id);
dev = usbi_get_device_by_session_id(ctx, session_id);
if (dev) {
/* device already exists in the context */
usbi_dbg("session_id %lu already exists", session_id);
libusb_unref_device(dev);
return LIBUSB_SUCCESS;
}
usbi_dbg("allocating new device for %u/%u (session %lu)",
busnum, devaddr, session_id);
dev = usbi_alloc_device(ctx, session_id);
if (!dev)
return LIBUSB_ERROR_NO_MEM;
r = initialize_device(dev, busnum, devaddr, sysfs_dir, -1);
if (r < 0)
goto out;
r = usbi_sanitize_device(dev);
if (r < 0)
goto out;
r = linux_get_parent_info(dev, sysfs_dir);
if (r < 0)
goto out;
out:
if (r < 0)
libusb_unref_device(dev);
else
usbi_connect_device(dev);
return r;
}
void linux_hotplug_enumerate(uint8_t busnum, uint8_t devaddr, const char *sys_name)
{
struct libusb_context *ctx;
usbi_mutex_static_lock(&active_contexts_lock);
for_each_context(ctx) {
linux_enumerate_device(ctx, busnum, devaddr, sys_name);
}
usbi_mutex_static_unlock(&active_contexts_lock);
}
void linux_device_disconnected(uint8_t busnum, uint8_t devaddr)
{
struct libusb_context *ctx;
struct libusb_device *dev;
unsigned long session_id = busnum << 8 | devaddr;
usbi_mutex_static_lock(&active_contexts_lock);
for_each_context(ctx) {
dev = usbi_get_device_by_session_id(ctx, session_id);
if (dev) {
usbi_disconnect_device(dev);
libusb_unref_device(dev);
} else {
usbi_dbg("device not found for session %lx", session_id);
}
}
usbi_mutex_static_unlock(&active_contexts_lock);
}
#if !defined(HAVE_LIBUDEV)
static int parse_u8(const char *str, uint8_t *val_p)
{
char *endptr;
long num;
errno = 0;
num = strtol(str, &endptr, 10);
if (num < 0 || num > UINT8_MAX || errno)
return 0;
if (endptr == str || *endptr != '\0')
return 0;
*val_p = (uint8_t)num;
return 1;
}
/* open a bus directory and adds all discovered devices to the context */
static int usbfs_scan_busdir(struct libusb_context *ctx, uint8_t busnum)
{
DIR *dir;
char dirpath[20];
struct dirent *entry;
int r = LIBUSB_ERROR_IO;
sprintf(dirpath, USB_DEVTMPFS_PATH "/%03u", busnum);
usbi_dbg("%s", dirpath);
dir = opendir(dirpath);
if (!dir) {
usbi_err(ctx, "opendir '%s' failed, errno=%d", dirpath, errno);
/* FIXME: should handle valid race conditions like hub unplugged
* during directory iteration - this is not an error */
return r;
}
while ((entry = readdir(dir))) {
uint8_t devaddr;
if (entry->d_name[0] == '.')
continue;
if (!parse_u8(entry->d_name, &devaddr)) {
usbi_dbg("unknown dir entry %s", entry->d_name);
continue;
}
if (linux_enumerate_device(ctx, busnum, devaddr, NULL)) {
usbi_dbg("failed to enumerate dir entry %s", entry->d_name);
continue;
}
r = 0;
}
closedir(dir);
return r;
}
static int usbfs_get_device_list(struct libusb_context *ctx)
{
struct dirent *entry;
DIR *buses;
uint8_t busnum, devaddr;
int r = 0;
if (usbdev_names)
buses = opendir(USBDEV_PATH);
else
buses = opendir(USB_DEVTMPFS_PATH);
if (!buses) {
usbi_err(ctx, "opendir buses failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
while ((entry = readdir(buses))) {
if (entry->d_name[0] == '.')
continue;
if (usbdev_names) {
if (!is_usbdev_entry(entry->d_name, &busnum, &devaddr))
continue;
r = linux_enumerate_device(ctx, busnum, devaddr, NULL);
if (r < 0) {
usbi_dbg("failed to enumerate dir entry %s", entry->d_name);
continue;
}
} else {
if (!parse_u8(entry->d_name, &busnum)) {
usbi_dbg("unknown dir entry %s", entry->d_name);
continue;
}
r = usbfs_scan_busdir(ctx, busnum);
if (r < 0)
break;
}
}
closedir(buses);
return r;
}
static int sysfs_get_device_list(struct libusb_context *ctx)
{
DIR *devices = opendir(SYSFS_DEVICE_PATH);
struct dirent *entry;
int num_devices = 0;
int num_enumerated = 0;
if (!devices) {
usbi_err(ctx, "opendir devices failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
while ((entry = readdir(devices))) {
if ((!isdigit(entry->d_name[0]) && strncmp(entry->d_name, "usb", 3))
|| strchr(entry->d_name, ':'))
continue;
num_devices++;
if (sysfs_scan_device(ctx, entry->d_name)) {
usbi_dbg("failed to enumerate dir entry %s", entry->d_name);
continue;
}
num_enumerated++;
}
closedir(devices);
/* successful if at least one device was enumerated or no devices were found */
if (num_enumerated || !num_devices)
return LIBUSB_SUCCESS;
else
return LIBUSB_ERROR_IO;
}
static int linux_default_scan_devices(struct libusb_context *ctx)
{
/* we can retrieve device list and descriptors from sysfs or usbfs.
* sysfs is preferable, because if we use usbfs we end up resuming
* any autosuspended USB devices. however, sysfs is not available
* everywhere, so we need a usbfs fallback too.
*/
if (sysfs_available)
return sysfs_get_device_list(ctx);
else
return usbfs_get_device_list(ctx);
}
#endif
static int initialize_handle(struct libusb_device_handle *handle, int fd)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int r;
hpriv->fd = fd;
r = ioctl(fd, IOCTL_USBFS_GET_CAPABILITIES, &hpriv->caps);
if (r < 0) {
if (errno == ENOTTY)
usbi_dbg("getcap not available");
else
usbi_err(HANDLE_CTX(handle), "getcap failed, errno=%d", errno);
hpriv->caps = USBFS_CAP_BULK_CONTINUATION;
}
return usbi_add_event_source(HANDLE_CTX(handle), hpriv->fd, POLLOUT);
}
static int op_wrap_sys_device(struct libusb_context *ctx,
struct libusb_device_handle *handle, intptr_t sys_dev)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = (int)sys_dev;
uint8_t busnum, devaddr;
struct usbfs_connectinfo ci;
struct libusb_device *dev;
int r;
r = linux_get_device_address(ctx, 1, &busnum, &devaddr, NULL, NULL, fd);
if (r < 0) {
r = ioctl(fd, IOCTL_USBFS_CONNECTINFO, &ci);
if (r < 0) {
usbi_err(ctx, "connectinfo failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
/* There is no ioctl to get the bus number. We choose 0 here
* as linux starts numbering buses from 1. */
busnum = 0;
devaddr = ci.devnum;
}
/* Session id is unused as we do not add the device to the list of
* connected devices. */
usbi_dbg("allocating new device for fd %d", fd);
dev = usbi_alloc_device(ctx, 0);
if (!dev)
return LIBUSB_ERROR_NO_MEM;
r = initialize_device(dev, busnum, devaddr, NULL, fd);
if (r < 0)
goto out;
r = usbi_sanitize_device(dev);
if (r < 0)
goto out;
/* Consider the device as connected, but do not add it to the managed
* device list. */
usbi_atomic_store(&dev->attached, 1);
handle->dev = dev;
r = initialize_handle(handle, fd);
hpriv->fd_keep = 1;
out:
if (r < 0)
libusb_unref_device(dev);
return r;
}
static int op_open(struct libusb_device_handle *handle)
{
int fd, r;
fd = get_usbfs_fd(handle->dev, O_RDWR, 0);
if (fd < 0) {
if (fd == LIBUSB_ERROR_NO_DEVICE) {
/* device will still be marked as attached if hotplug monitor thread
* hasn't processed remove event yet */
usbi_mutex_static_lock(&linux_hotplug_lock);
if (usbi_atomic_load(&handle->dev->attached)) {
usbi_dbg("open failed with no device, but device still attached");
linux_device_disconnected(handle->dev->bus_number,
handle->dev->device_address);
}
usbi_mutex_static_unlock(&linux_hotplug_lock);
}
return fd;
}
r = initialize_handle(handle, fd);
if (r < 0)
close(fd);
return r;
}
static void op_close(struct libusb_device_handle *dev_handle)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(dev_handle);
/* fd may have already been removed by POLLERR condition in op_handle_events() */
if (!hpriv->fd_removed)
usbi_remove_event_source(HANDLE_CTX(dev_handle), hpriv->fd);
if (!hpriv->fd_keep)
close(hpriv->fd);
}
static int op_get_configuration(struct libusb_device_handle *handle,
uint8_t *config)
{
struct linux_device_priv *priv = usbi_get_device_priv(handle->dev);
int r;
if (priv->sysfs_dir) {
r = sysfs_get_active_config(handle->dev, config);
} else {
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
r = usbfs_get_active_config(handle->dev, hpriv->fd);
if (r == LIBUSB_SUCCESS)
*config = priv->active_config;
}
if (r < 0)
return r;
if (*config == 0)
usbi_err(HANDLE_CTX(handle), "device unconfigured");
return 0;
}
static int op_set_configuration(struct libusb_device_handle *handle, int config)
{
struct linux_device_priv *priv = usbi_get_device_priv(handle->dev);
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
int r = ioctl(fd, IOCTL_USBFS_SETCONFIGURATION, &config);
if (r < 0) {
if (errno == EINVAL)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == EBUSY)
return LIBUSB_ERROR_BUSY;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "set configuration failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
if (config == -1)
config = 0;
/* update our cached active config descriptor */
priv->active_config = (uint8_t)config;
return LIBUSB_SUCCESS;
}
static int claim_interface(struct libusb_device_handle *handle, unsigned int iface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
int r = ioctl(fd, IOCTL_USBFS_CLAIMINTERFACE, &iface);
if (r < 0) {
if (errno == ENOENT)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == EBUSY)
return LIBUSB_ERROR_BUSY;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "claim interface failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return 0;
}
static int release_interface(struct libusb_device_handle *handle, unsigned int iface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
int r = ioctl(fd, IOCTL_USBFS_RELEASEINTERFACE, &iface);
if (r < 0) {
if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "release interface failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return 0;
}
static int op_set_interface(struct libusb_device_handle *handle, uint8_t interface,
uint8_t altsetting)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
struct usbfs_setinterface setintf;
int r;
setintf.interface = interface;
setintf.altsetting = altsetting;
r = ioctl(fd, IOCTL_USBFS_SETINTERFACE, &setintf);
if (r < 0) {
if (errno == EINVAL)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "set interface failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return 0;
}
static int op_clear_halt(struct libusb_device_handle *handle,
unsigned char endpoint)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
unsigned int _endpoint = endpoint;
int r = ioctl(fd, IOCTL_USBFS_CLEAR_HALT, &_endpoint);
if (r < 0) {
if (errno == ENOENT)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "clear halt failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return 0;
}
static int op_reset_device(struct libusb_device_handle *handle)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
int r, ret = 0;
uint8_t i;
/* Doing a device reset will cause the usbfs driver to get unbound
* from any interfaces it is bound to. By voluntarily unbinding
* the usbfs driver ourself, we stop the kernel from rebinding
* the interface after reset (which would end up with the interface
* getting bound to the in kernel driver if any). */
for (i = 0; i < USB_MAXINTERFACES; i++) {
if (handle->claimed_interfaces & (1UL << i))
release_interface(handle, i);
}
usbi_mutex_lock(&handle->lock);
r = ioctl(fd, IOCTL_USBFS_RESET, NULL);
if (r < 0) {
if (errno == ENODEV) {
ret = LIBUSB_ERROR_NOT_FOUND;
goto out;
}
usbi_err(HANDLE_CTX(handle), "reset failed, errno=%d", errno);
ret = LIBUSB_ERROR_OTHER;
goto out;
}
/* And re-claim any interfaces which were claimed before the reset */
for (i = 0; i < USB_MAXINTERFACES; i++) {
if (!(handle->claimed_interfaces & (1UL << i)))
continue;
/*
* A driver may have completed modprobing during
* IOCTL_USBFS_RESET, and bound itself as soon as
* IOCTL_USBFS_RESET released the device lock
*/
r = detach_kernel_driver_and_claim(handle, i);
if (r) {
usbi_warn(HANDLE_CTX(handle), "failed to re-claim interface %u after reset: %s",
i, libusb_error_name(r));
handle->claimed_interfaces &= ~(1UL << i);
ret = LIBUSB_ERROR_NOT_FOUND;
}
}
out:
usbi_mutex_unlock(&handle->lock);
return ret;
}
static int do_streams_ioctl(struct libusb_device_handle *handle, long req,
uint32_t num_streams, unsigned char *endpoints, int num_endpoints)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int r, fd = hpriv->fd;
struct usbfs_streams *streams;
if (num_endpoints > 30) /* Max 15 in + 15 out eps */
return LIBUSB_ERROR_INVALID_PARAM;
streams = malloc(sizeof(*streams) + num_endpoints);
if (!streams)
return LIBUSB_ERROR_NO_MEM;
streams->num_streams = num_streams;
streams->num_eps = num_endpoints;
memcpy(streams->eps, endpoints, num_endpoints);
r = ioctl(fd, req, streams);
free(streams);
if (r < 0) {
if (errno == ENOTTY)
return LIBUSB_ERROR_NOT_SUPPORTED;
else if (errno == EINVAL)
return LIBUSB_ERROR_INVALID_PARAM;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "streams-ioctl failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return r;
}
static int op_alloc_streams(struct libusb_device_handle *handle,
uint32_t num_streams, unsigned char *endpoints, int num_endpoints)
{
return do_streams_ioctl(handle, IOCTL_USBFS_ALLOC_STREAMS,
num_streams, endpoints, num_endpoints);
}
static int op_free_streams(struct libusb_device_handle *handle,
unsigned char *endpoints, int num_endpoints)
{
return do_streams_ioctl(handle, IOCTL_USBFS_FREE_STREAMS, 0,
endpoints, num_endpoints);
}
static void *op_dev_mem_alloc(struct libusb_device_handle *handle, size_t len)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
void *buffer;
buffer = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, hpriv->fd, 0);
if (buffer == MAP_FAILED) {
usbi_err(HANDLE_CTX(handle), "alloc dev mem failed, errno=%d", errno);
return NULL;
}
return buffer;
}
static int op_dev_mem_free(struct libusb_device_handle *handle, void *buffer,
size_t len)
{
if (munmap(buffer, len) != 0) {
usbi_err(HANDLE_CTX(handle), "free dev mem failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
} else {
return LIBUSB_SUCCESS;
}
}
static int op_kernel_driver_active(struct libusb_device_handle *handle,
uint8_t interface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
struct usbfs_getdriver getdrv;
int r;
getdrv.interface = interface;
r = ioctl(fd, IOCTL_USBFS_GETDRIVER, &getdrv);
if (r < 0) {
if (errno == ENODATA)
return 0;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "get driver failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return strcmp(getdrv.driver, "usbfs") != 0;
}
static int op_detach_kernel_driver(struct libusb_device_handle *handle,
uint8_t interface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
struct usbfs_ioctl command;
struct usbfs_getdriver getdrv;
int r;
command.ifno = interface;
command.ioctl_code = IOCTL_USBFS_DISCONNECT;
command.data = NULL;
getdrv.interface = interface;
r = ioctl(fd, IOCTL_USBFS_GETDRIVER, &getdrv);
if (r == 0 && !strcmp(getdrv.driver, "usbfs"))
return LIBUSB_ERROR_NOT_FOUND;
r = ioctl(fd, IOCTL_USBFS_IOCTL, &command);
if (r < 0) {
if (errno == ENODATA)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == EINVAL)
return LIBUSB_ERROR_INVALID_PARAM;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "detach failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
return 0;
}
static int op_attach_kernel_driver(struct libusb_device_handle *handle,
uint8_t interface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int fd = hpriv->fd;
struct usbfs_ioctl command;
int r;
command.ifno = interface;
command.ioctl_code = IOCTL_USBFS_CONNECT;
command.data = NULL;
r = ioctl(fd, IOCTL_USBFS_IOCTL, &command);
if (r < 0) {
if (errno == ENODATA)
return LIBUSB_ERROR_NOT_FOUND;
else if (errno == EINVAL)
return LIBUSB_ERROR_INVALID_PARAM;
else if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
else if (errno == EBUSY)
return LIBUSB_ERROR_BUSY;
usbi_err(HANDLE_CTX(handle), "attach failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
} else if (r == 0) {
return LIBUSB_ERROR_NOT_FOUND;
}
return 0;
}
static int detach_kernel_driver_and_claim(struct libusb_device_handle *handle,
uint8_t interface)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
struct usbfs_disconnect_claim dc;
int r, fd = hpriv->fd;
dc.interface = interface;
strcpy(dc.driver, "usbfs");
dc.flags = USBFS_DISCONNECT_CLAIM_EXCEPT_DRIVER;
r = ioctl(fd, IOCTL_USBFS_DISCONNECT_CLAIM, &dc);
if (r == 0)
return 0;
switch (errno) {
case ENOTTY:
break;
case EBUSY:
return LIBUSB_ERROR_BUSY;
case EINVAL:
return LIBUSB_ERROR_INVALID_PARAM;
case ENODEV:
return LIBUSB_ERROR_NO_DEVICE;
default:
usbi_err(HANDLE_CTX(handle), "disconnect-and-claim failed, errno=%d", errno);
return LIBUSB_ERROR_OTHER;
}
/* Fallback code for kernels which don't support the
disconnect-and-claim ioctl */
r = op_detach_kernel_driver(handle, interface);
if (r != 0 && r != LIBUSB_ERROR_NOT_FOUND)
return r;
return claim_interface(handle, interface);
}
static int op_claim_interface(struct libusb_device_handle *handle, uint8_t interface)
{
if (handle->auto_detach_kernel_driver)
return detach_kernel_driver_and_claim(handle, interface);
else
return claim_interface(handle, interface);
}
static int op_release_interface(struct libusb_device_handle *handle, uint8_t interface)
{
int r;
r = release_interface(handle, interface);
if (r)
return r;
if (handle->auto_detach_kernel_driver)
op_attach_kernel_driver(handle, interface);
return 0;
}
static void op_destroy_device(struct libusb_device *dev)
{
struct linux_device_priv *priv = usbi_get_device_priv(dev);
free(priv->config_descriptors);
free(priv->descriptors);
free(priv->sysfs_dir);
}
/* URBs are discarded in reverse order of submission to avoid races. */
static int discard_urbs(struct usbi_transfer *itransfer, int first, int last_plus_one)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct linux_device_handle_priv *hpriv =
usbi_get_device_handle_priv(transfer->dev_handle);
int i, ret = 0;
struct usbfs_urb *urb;
for (i = last_plus_one - 1; i >= first; i--) {
if (transfer->type == LIBUSB_TRANSFER_TYPE_ISOCHRONOUS)
urb = tpriv->iso_urbs[i];
else
urb = &tpriv->urbs[i];
if (ioctl(hpriv->fd, IOCTL_USBFS_DISCARDURB, urb) == 0)
continue;
if (errno == EINVAL) {
usbi_dbg("URB not found --> assuming ready to be reaped");
if (i == (last_plus_one - 1))
ret = LIBUSB_ERROR_NOT_FOUND;
} else if (errno == ENODEV) {
usbi_dbg("Device not found for URB --> assuming ready to be reaped");
ret = LIBUSB_ERROR_NO_DEVICE;
} else {
usbi_warn(TRANSFER_CTX(transfer), "unrecognised discard errno %d", errno);
ret = LIBUSB_ERROR_OTHER;
}
}
return ret;
}
static void free_iso_urbs(struct linux_transfer_priv *tpriv)
{
int i;
for (i = 0; i < tpriv->num_urbs; i++) {
struct usbfs_urb *urb = tpriv->iso_urbs[i];
if (!urb)
break;
free(urb);
}
free(tpriv->iso_urbs);
tpriv->iso_urbs = NULL;
}
static int submit_bulk_transfer(struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct linux_device_handle_priv *hpriv =
usbi_get_device_handle_priv(transfer->dev_handle);
struct usbfs_urb *urbs;
int is_out = IS_XFEROUT(transfer);
int bulk_buffer_len, use_bulk_continuation;
int num_urbs;
int last_urb_partial = 0;
int r;
int i;
/*
* Older versions of usbfs place a 16kb limit on bulk URBs. We work
* around this by splitting large transfers into 16k blocks, and then
* submit all urbs at once. it would be simpler to submit one urb at
* a time, but there is a big performance gain doing it this way.
*
* Newer versions lift the 16k limit (USBFS_CAP_NO_PACKET_SIZE_LIM),
* using arbitrary large transfers can still be a bad idea though, as
* the kernel needs to allocate physical contiguous memory for this,
* which may fail for large buffers.
*
* The kernel solves this problem by splitting the transfer into
* blocks itself when the host-controller is scatter-gather capable
* (USBFS_CAP_BULK_SCATTER_GATHER), which most controllers are.
*
* Last, there is the issue of short-transfers when splitting, for
* short split-transfers to work reliable USBFS_CAP_BULK_CONTINUATION
* is needed, but this is not always available.
*/
if (hpriv->caps & USBFS_CAP_BULK_SCATTER_GATHER) {
/* Good! Just submit everything in one go */
bulk_buffer_len = transfer->length ? transfer->length : 1;
use_bulk_continuation = 0;
} else if (hpriv->caps & USBFS_CAP_BULK_CONTINUATION) {
/* Split the transfers and use bulk-continuation to
avoid issues with short-transfers */
bulk_buffer_len = MAX_BULK_BUFFER_LENGTH;
use_bulk_continuation = 1;
} else if (hpriv->caps & USBFS_CAP_NO_PACKET_SIZE_LIM) {
/* Don't split, assume the kernel can alloc the buffer
(otherwise the submit will fail with -ENOMEM) */
bulk_buffer_len = transfer->length ? transfer->length : 1;
use_bulk_continuation = 0;
} else {
/* Bad, splitting without bulk-continuation, short transfers
which end before the last urb will not work reliable! */
/* Note we don't warn here as this is "normal" on kernels <
2.6.32 and not a problem for most applications */
bulk_buffer_len = MAX_BULK_BUFFER_LENGTH;
use_bulk_continuation = 0;
}
num_urbs = transfer->length / bulk_buffer_len;
if (transfer->length == 0) {
num_urbs = 1;
} else if ((transfer->length % bulk_buffer_len) > 0) {
last_urb_partial = 1;
num_urbs++;
}
usbi_dbg("need %d urbs for new transfer with length %d", num_urbs, transfer->length);
urbs = calloc(num_urbs, sizeof(*urbs));
if (!urbs)
return LIBUSB_ERROR_NO_MEM;
tpriv->urbs = urbs;
tpriv->num_urbs = num_urbs;
tpriv->num_retired = 0;
tpriv->reap_action = NORMAL;
tpriv->reap_status = LIBUSB_TRANSFER_COMPLETED;
for (i = 0; i < num_urbs; i++) {
struct usbfs_urb *urb = &urbs[i];
urb->usercontext = itransfer;
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_BULK:
urb->type = USBFS_URB_TYPE_BULK;
urb->stream_id = 0;
break;
case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
urb->type = USBFS_URB_TYPE_BULK;
urb->stream_id = itransfer->stream_id;
break;
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
urb->type = USBFS_URB_TYPE_INTERRUPT;
break;
}
urb->endpoint = transfer->endpoint;
urb->buffer = transfer->buffer + (i * bulk_buffer_len);
/* don't set the short not ok flag for the last URB */
if (use_bulk_continuation && !is_out && (i < num_urbs - 1))
urb->flags = USBFS_URB_SHORT_NOT_OK;
if (i == num_urbs - 1 && last_urb_partial)
urb->buffer_length = transfer->length % bulk_buffer_len;
else if (transfer->length == 0)
urb->buffer_length = 0;
else
urb->buffer_length = bulk_buffer_len;
if (i > 0 && use_bulk_continuation)
urb->flags |= USBFS_URB_BULK_CONTINUATION;
/* we have already checked that the flag is supported */
if (is_out && i == num_urbs - 1 &&
(transfer->flags & LIBUSB_TRANSFER_ADD_ZERO_PACKET))
urb->flags |= USBFS_URB_ZERO_PACKET;
r = ioctl(hpriv->fd, IOCTL_USBFS_SUBMITURB, urb);
if (r == 0)
continue;
if (errno == ENODEV) {
r = LIBUSB_ERROR_NO_DEVICE;
} else if (errno == ENOMEM) {
r = LIBUSB_ERROR_NO_MEM;
} else {
usbi_err(TRANSFER_CTX(transfer), "submiturb failed, errno=%d", errno);
r = LIBUSB_ERROR_IO;
}
/* if the first URB submission fails, we can simply free up and
* return failure immediately. */
if (i == 0) {
usbi_dbg("first URB failed, easy peasy");
free(urbs);
tpriv->urbs = NULL;
return r;
}
/* if it's not the first URB that failed, the situation is a bit
* tricky. we may need to discard all previous URBs. there are
* complications:
* - discarding is asynchronous - discarded urbs will be reaped
* later. the user must not have freed the transfer when the
* discarded URBs are reaped, otherwise libusb will be using
* freed memory.
* - the earlier URBs may have completed successfully and we do
* not want to throw away any data.
* - this URB failing may be no error; EREMOTEIO means that
* this transfer simply didn't need all the URBs we submitted
* so, we report that the transfer was submitted successfully and
* in case of error we discard all previous URBs. later when
* the final reap completes we can report error to the user,
* or success if an earlier URB was completed successfully.
*/
tpriv->reap_action = errno == EREMOTEIO ? COMPLETED_EARLY : SUBMIT_FAILED;
/* The URBs we haven't submitted yet we count as already
* retired. */
tpriv->num_retired += num_urbs - i;
/* If we completed short then don't try to discard. */
if (tpriv->reap_action == COMPLETED_EARLY)
return 0;
discard_urbs(itransfer, 0, i);
usbi_dbg("reporting successful submission but waiting for %d "
"discards before reporting error", i);
return 0;
}
return 0;
}
static int submit_iso_transfer(struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct linux_device_handle_priv *hpriv =
usbi_get_device_handle_priv(transfer->dev_handle);
struct usbfs_urb **urbs;
int num_packets = transfer->num_iso_packets;
int num_packets_remaining;
int i, j;
int num_urbs;
unsigned int packet_len;
unsigned int total_len = 0;
unsigned char *urb_buffer = transfer->buffer;
if (num_packets < 1)
return LIBUSB_ERROR_INVALID_PARAM;
/* usbfs places arbitrary limits on iso URBs. this limit has changed
* at least three times, but we attempt to detect this limit during
* init and check it here. if the kernel rejects the request due to
* its size, we return an error indicating such to the user.
*/
for (i = 0; i < num_packets; i++) {
packet_len = transfer->iso_packet_desc[i].length;
if (packet_len > max_iso_packet_len) {
usbi_warn(TRANSFER_CTX(transfer),
"iso packet length of %u bytes exceeds maximum of %u bytes",
packet_len, max_iso_packet_len);
return LIBUSB_ERROR_INVALID_PARAM;
}
total_len += packet_len;
}
if (transfer->length < (int)total_len)
return LIBUSB_ERROR_INVALID_PARAM;
/* usbfs limits the number of iso packets per URB */
num_urbs = (num_packets + (MAX_ISO_PACKETS_PER_URB - 1)) / MAX_ISO_PACKETS_PER_URB;
usbi_dbg("need %d urbs for new transfer with length %d", num_urbs, transfer->length);
urbs = calloc(num_urbs, sizeof(*urbs));
if (!urbs)
return LIBUSB_ERROR_NO_MEM;
tpriv->iso_urbs = urbs;
tpriv->num_urbs = num_urbs;
tpriv->num_retired = 0;
tpriv->reap_action = NORMAL;
tpriv->iso_packet_offset = 0;
/* allocate + initialize each URB with the correct number of packets */
num_packets_remaining = num_packets;
for (i = 0, j = 0; i < num_urbs; i++) {
int num_packets_in_urb = MIN(num_packets_remaining, MAX_ISO_PACKETS_PER_URB);
struct usbfs_urb *urb;
size_t alloc_size;
int k;
alloc_size = sizeof(*urb)
+ (num_packets_in_urb * sizeof(struct usbfs_iso_packet_desc));
urb = calloc(1, alloc_size);
if (!urb) {
free_iso_urbs(tpriv);
return LIBUSB_ERROR_NO_MEM;
}
urbs[i] = urb;
/* populate packet lengths */
for (k = 0; k < num_packets_in_urb; j++, k++) {
packet_len = transfer->iso_packet_desc[j].length;
urb->buffer_length += packet_len;
urb->iso_frame_desc[k].length = packet_len;
}
urb->usercontext = itransfer;
urb->type = USBFS_URB_TYPE_ISO;
/* FIXME: interface for non-ASAP data? */
urb->flags = USBFS_URB_ISO_ASAP;
urb->endpoint = transfer->endpoint;
urb->number_of_packets = num_packets_in_urb;
urb->buffer = urb_buffer;
urb_buffer += urb->buffer_length;
num_packets_remaining -= num_packets_in_urb;
}
/* submit URBs */
for (i = 0; i < num_urbs; i++) {
int r = ioctl(hpriv->fd, IOCTL_USBFS_SUBMITURB, urbs[i]);
if (r == 0)
continue;
if (errno == ENODEV) {
r = LIBUSB_ERROR_NO_DEVICE;
} else if (errno == EINVAL) {
usbi_warn(TRANSFER_CTX(transfer), "submiturb failed, transfer too large");
r = LIBUSB_ERROR_INVALID_PARAM;
} else if (errno == EMSGSIZE) {
usbi_warn(TRANSFER_CTX(transfer), "submiturb failed, iso packet length too large");
r = LIBUSB_ERROR_INVALID_PARAM;
} else {
usbi_err(TRANSFER_CTX(transfer), "submiturb failed, errno=%d", errno);
r = LIBUSB_ERROR_IO;
}
/* if the first URB submission fails, we can simply free up and
* return failure immediately. */
if (i == 0) {
usbi_dbg("first URB failed, easy peasy");
free_iso_urbs(tpriv);
return r;
}
/* if it's not the first URB that failed, the situation is a bit
* tricky. we must discard all previous URBs. there are
* complications:
* - discarding is asynchronous - discarded urbs will be reaped
* later. the user must not have freed the transfer when the
* discarded URBs are reaped, otherwise libusb will be using
* freed memory.
* - the earlier URBs may have completed successfully and we do
* not want to throw away any data.
* so, in this case we discard all the previous URBs BUT we report
* that the transfer was submitted successfully. then later when
* the final discard completes we can report error to the user.
*/
tpriv->reap_action = SUBMIT_FAILED;
/* The URBs we haven't submitted yet we count as already
* retired. */
tpriv->num_retired = num_urbs - i;
discard_urbs(itransfer, 0, i);
usbi_dbg("reporting successful submission but waiting for %d "
"discards before reporting error", i);
return 0;
}
return 0;
}
static int submit_control_transfer(struct usbi_transfer *itransfer)
{
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_device_handle_priv *hpriv =
usbi_get_device_handle_priv(transfer->dev_handle);
struct usbfs_urb *urb;
int r;
if (transfer->length - LIBUSB_CONTROL_SETUP_SIZE > MAX_CTRL_BUFFER_LENGTH)
return LIBUSB_ERROR_INVALID_PARAM;
urb = calloc(1, sizeof(*urb));
if (!urb)
return LIBUSB_ERROR_NO_MEM;
tpriv->urbs = urb;
tpriv->num_urbs = 1;
tpriv->reap_action = NORMAL;
urb->usercontext = itransfer;
urb->type = USBFS_URB_TYPE_CONTROL;
urb->endpoint = transfer->endpoint;
urb->buffer = transfer->buffer;
urb->buffer_length = transfer->length;
r = ioctl(hpriv->fd, IOCTL_USBFS_SUBMITURB, urb);
if (r < 0) {
free(urb);
tpriv->urbs = NULL;
if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(TRANSFER_CTX(transfer), "submiturb failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
return 0;
}
static int op_submit_transfer(struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
return submit_control_transfer(itransfer);
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
return submit_bulk_transfer(itransfer);
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return submit_bulk_transfer(itransfer);
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
return submit_iso_transfer(itransfer);
default:
usbi_err(TRANSFER_CTX(transfer), "unknown transfer type %u", transfer->type);
return LIBUSB_ERROR_INVALID_PARAM;
}
}
static int op_cancel_transfer(struct usbi_transfer *itransfer)
{
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
int r;
if (!tpriv->urbs)
return LIBUSB_ERROR_NOT_FOUND;
r = discard_urbs(itransfer, 0, tpriv->num_urbs);
if (r != 0)
return r;
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
if (tpriv->reap_action == ERROR)
break;
/* else, fall through */
default:
tpriv->reap_action = CANCELLED;
}
return 0;
}
static void op_clear_transfer_priv(struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
if (tpriv->urbs) {
free(tpriv->urbs);
tpriv->urbs = NULL;
}
break;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
if (tpriv->iso_urbs) {
free_iso_urbs(tpriv);
tpriv->iso_urbs = NULL;
}
break;
default:
usbi_err(TRANSFER_CTX(transfer), "unknown transfer type %u", transfer->type);
}
}
static int handle_bulk_completion(struct usbi_transfer *itransfer,
struct usbfs_urb *urb)
{
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
int urb_idx = urb - tpriv->urbs;
usbi_mutex_lock(&itransfer->lock);
usbi_dbg("handling completion status %d of bulk urb %d/%d", urb->status,
urb_idx + 1, tpriv->num_urbs);
tpriv->num_retired++;
if (tpriv->reap_action != NORMAL) {
/* cancelled, submit_fail, or completed early */
usbi_dbg("abnormal reap: urb status %d", urb->status);
/* even though we're in the process of cancelling, it's possible that
* we may receive some data in these URBs that we don't want to lose.
* examples:
* 1. while the kernel is cancelling all the packets that make up an
* URB, a few of them might complete. so we get back a successful
* cancellation *and* some data.
* 2. we receive a short URB which marks the early completion condition,
* so we start cancelling the remaining URBs. however, we're too
* slow and another URB completes (or at least completes partially).
* (this can't happen since we always use BULK_CONTINUATION.)
*
* When this happens, our objectives are not to lose any "surplus" data,
* and also to stick it at the end of the previously-received data
* (closing any holes), so that libusb reports the total amount of
* transferred data and presents it in a contiguous chunk.
*/
if (urb->actual_length > 0) {
unsigned char *target = transfer->buffer + itransfer->transferred;
usbi_dbg("received %d bytes of surplus data", urb->actual_length);
if (urb->buffer != target) {
usbi_dbg("moving surplus data from offset %zu to offset %zu",
(unsigned char *)urb->buffer - transfer->buffer,
target - transfer->buffer);
memmove(target, urb->buffer, urb->actual_length);
}
itransfer->transferred += urb->actual_length;
}
if (tpriv->num_retired == tpriv->num_urbs) {
usbi_dbg("abnormal reap: last URB handled, reporting");
if (tpriv->reap_action != COMPLETED_EARLY &&
tpriv->reap_status == LIBUSB_TRANSFER_COMPLETED)
tpriv->reap_status = LIBUSB_TRANSFER_ERROR;
goto completed;
}
goto out_unlock;
}
itransfer->transferred += urb->actual_length;
/* Many of these errors can occur on *any* urb of a multi-urb
* transfer. When they do, we tear down the rest of the transfer.
*/
switch (urb->status) {
case 0:
break;
case -EREMOTEIO: /* short transfer */
break;
case -ENOENT: /* cancelled */
case -ECONNRESET:
break;
case -ENODEV:
case -ESHUTDOWN:
usbi_dbg("device removed");
tpriv->reap_status = LIBUSB_TRANSFER_NO_DEVICE;
goto cancel_remaining;
case -EPIPE:
usbi_dbg("detected endpoint stall");
if (tpriv->reap_status == LIBUSB_TRANSFER_COMPLETED)
tpriv->reap_status = LIBUSB_TRANSFER_STALL;
goto cancel_remaining;
case -EOVERFLOW:
/* overflow can only ever occur in the last urb */
usbi_dbg("overflow, actual_length=%d", urb->actual_length);
if (tpriv->reap_status == LIBUSB_TRANSFER_COMPLETED)
tpriv->reap_status = LIBUSB_TRANSFER_OVERFLOW;
goto completed;
case -ETIME:
case -EPROTO:
case -EILSEQ:
case -ECOMM:
case -ENOSR:
usbi_dbg("low-level bus error %d", urb->status);
tpriv->reap_action = ERROR;
goto cancel_remaining;
default:
usbi_warn(ITRANSFER_CTX(itransfer), "unrecognised urb status %d", urb->status);
tpriv->reap_action = ERROR;
goto cancel_remaining;
}
/* if we've reaped all urbs or we got less data than requested then we're
* done */
if (tpriv->num_retired == tpriv->num_urbs) {
usbi_dbg("all URBs in transfer reaped --> complete!");
goto completed;
} else if (urb->actual_length < urb->buffer_length) {
usbi_dbg("short transfer %d/%d --> complete!",
urb->actual_length, urb->buffer_length);
if (tpriv->reap_action == NORMAL)
tpriv->reap_action = COMPLETED_EARLY;
} else {
goto out_unlock;
}
cancel_remaining:
if (tpriv->reap_action == ERROR && tpriv->reap_status == LIBUSB_TRANSFER_COMPLETED)
tpriv->reap_status = LIBUSB_TRANSFER_ERROR;
if (tpriv->num_retired == tpriv->num_urbs) /* nothing to cancel */
goto completed;
/* cancel remaining urbs and wait for their completion before
* reporting results */
discard_urbs(itransfer, urb_idx + 1, tpriv->num_urbs);
out_unlock:
usbi_mutex_unlock(&itransfer->lock);
return 0;
completed:
free(tpriv->urbs);
tpriv->urbs = NULL;
usbi_mutex_unlock(&itransfer->lock);
return tpriv->reap_action == CANCELLED ?
usbi_handle_transfer_cancellation(itransfer) :
usbi_handle_transfer_completion(itransfer, tpriv->reap_status);
}
static int handle_iso_completion(struct usbi_transfer *itransfer,
struct usbfs_urb *urb)
{
struct libusb_transfer *transfer =
USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
int num_urbs = tpriv->num_urbs;
int urb_idx = 0;
int i;
enum libusb_transfer_status status = LIBUSB_TRANSFER_COMPLETED;
usbi_mutex_lock(&itransfer->lock);
for (i = 0; i < num_urbs; i++) {
if (urb == tpriv->iso_urbs[i]) {
urb_idx = i + 1;
break;
}
}
if (urb_idx == 0) {
usbi_err(TRANSFER_CTX(transfer), "could not locate urb!");
usbi_mutex_unlock(&itransfer->lock);
return LIBUSB_ERROR_NOT_FOUND;
}
usbi_dbg("handling completion status %d of iso urb %d/%d", urb->status,
urb_idx, num_urbs);
/* copy isochronous results back in */
for (i = 0; i < urb->number_of_packets; i++) {
struct usbfs_iso_packet_desc *urb_desc = &urb->iso_frame_desc[i];
struct libusb_iso_packet_descriptor *lib_desc =
&transfer->iso_packet_desc[tpriv->iso_packet_offset++];
lib_desc->status = LIBUSB_TRANSFER_COMPLETED;
switch (urb_desc->status) {
case 0:
break;
case -ENOENT: /* cancelled */
case -ECONNRESET:
break;
case -ENODEV:
case -ESHUTDOWN:
usbi_dbg("packet %d - device removed", i);
lib_desc->status = LIBUSB_TRANSFER_NO_DEVICE;
break;
case -EPIPE:
usbi_dbg("packet %d - detected endpoint stall", i);
lib_desc->status = LIBUSB_TRANSFER_STALL;
break;
case -EOVERFLOW:
usbi_dbg("packet %d - overflow error", i);
lib_desc->status = LIBUSB_TRANSFER_OVERFLOW;
break;
case -ETIME:
case -EPROTO:
case -EILSEQ:
case -ECOMM:
case -ENOSR:
case -EXDEV:
usbi_dbg("packet %d - low-level USB error %d", i, urb_desc->status);
lib_desc->status = LIBUSB_TRANSFER_ERROR;
break;
default:
usbi_warn(TRANSFER_CTX(transfer), "packet %d - unrecognised urb status %d",
i, urb_desc->status);
lib_desc->status = LIBUSB_TRANSFER_ERROR;
break;
}
lib_desc->actual_length = urb_desc->actual_length;
}
tpriv->num_retired++;
if (tpriv->reap_action != NORMAL) { /* cancelled or submit_fail */
usbi_dbg("CANCEL: urb status %d", urb->status);
if (tpriv->num_retired == num_urbs) {
usbi_dbg("CANCEL: last URB handled, reporting");
free_iso_urbs(tpriv);
if (tpriv->reap_action == CANCELLED) {
usbi_mutex_unlock(&itransfer->lock);
return usbi_handle_transfer_cancellation(itransfer);
} else {
usbi_mutex_unlock(&itransfer->lock);
return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_ERROR);
}
}
goto out;
}
switch (urb->status) {
case 0:
break;
case -ENOENT: /* cancelled */
case -ECONNRESET:
break;
case -ESHUTDOWN:
usbi_dbg("device removed");
status = LIBUSB_TRANSFER_NO_DEVICE;
break;
default:
usbi_warn(TRANSFER_CTX(transfer), "unrecognised urb status %d", urb->status);
status = LIBUSB_TRANSFER_ERROR;
break;
}
/* if we've reaped all urbs then we're done */
if (tpriv->num_retired == num_urbs) {
usbi_dbg("all URBs in transfer reaped --> complete!");
free_iso_urbs(tpriv);
usbi_mutex_unlock(&itransfer->lock);
return usbi_handle_transfer_completion(itransfer, status);
}
out:
usbi_mutex_unlock(&itransfer->lock);
return 0;
}
static int handle_control_completion(struct usbi_transfer *itransfer,
struct usbfs_urb *urb)
{
struct linux_transfer_priv *tpriv = usbi_get_transfer_priv(itransfer);
int status;
usbi_mutex_lock(&itransfer->lock);
usbi_dbg("handling completion status %d", urb->status);
itransfer->transferred += urb->actual_length;
if (tpriv->reap_action == CANCELLED) {
if (urb->status && urb->status != -ENOENT)
usbi_warn(ITRANSFER_CTX(itransfer), "cancel: unrecognised urb status %d",
urb->status);
free(tpriv->urbs);
tpriv->urbs = NULL;
usbi_mutex_unlock(&itransfer->lock);
return usbi_handle_transfer_cancellation(itransfer);
}
switch (urb->status) {
case 0:
status = LIBUSB_TRANSFER_COMPLETED;
break;
case -ENOENT: /* cancelled */
status = LIBUSB_TRANSFER_CANCELLED;
break;
case -ENODEV:
case -ESHUTDOWN:
usbi_dbg("device removed");
status = LIBUSB_TRANSFER_NO_DEVICE;
break;
case -EPIPE:
usbi_dbg("unsupported control request");
status = LIBUSB_TRANSFER_STALL;
break;
case -EOVERFLOW:
usbi_dbg("overflow, actual_length=%d", urb->actual_length);
status = LIBUSB_TRANSFER_OVERFLOW;
break;
case -ETIME:
case -EPROTO:
case -EILSEQ:
case -ECOMM:
case -ENOSR:
usbi_dbg("low-level bus error %d", urb->status);
status = LIBUSB_TRANSFER_ERROR;
break;
default:
usbi_warn(ITRANSFER_CTX(itransfer), "unrecognised urb status %d", urb->status);
status = LIBUSB_TRANSFER_ERROR;
break;
}
free(tpriv->urbs);
tpriv->urbs = NULL;
usbi_mutex_unlock(&itransfer->lock);
return usbi_handle_transfer_completion(itransfer, status);
}
static int reap_for_handle(struct libusb_device_handle *handle)
{
struct linux_device_handle_priv *hpriv = usbi_get_device_handle_priv(handle);
int r;
struct usbfs_urb *urb = NULL;
struct usbi_transfer *itransfer;
struct libusb_transfer *transfer;
r = ioctl(hpriv->fd, IOCTL_USBFS_REAPURBNDELAY, &urb);
if (r < 0) {
if (errno == EAGAIN)
return 1;
if (errno == ENODEV)
return LIBUSB_ERROR_NO_DEVICE;
usbi_err(HANDLE_CTX(handle), "reap failed, errno=%d", errno);
return LIBUSB_ERROR_IO;
}
itransfer = urb->usercontext;
transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
usbi_dbg("urb type=%u status=%d transferred=%d", urb->type, urb->status, urb->actual_length);
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
return handle_iso_completion(itransfer, urb);
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return handle_bulk_completion(itransfer, urb);
case LIBUSB_TRANSFER_TYPE_CONTROL:
return handle_control_completion(itransfer, urb);
default:
usbi_err(HANDLE_CTX(handle), "unrecognised transfer type %u", transfer->type);
return LIBUSB_ERROR_OTHER;
}
}
static int op_handle_events(struct libusb_context *ctx,
void *event_data, unsigned int count, unsigned int num_ready)
{
struct pollfd *fds = event_data;
unsigned int n;
int r;
usbi_mutex_lock(&ctx->open_devs_lock);
for (n = 0; n < count && num_ready > 0; n++) {
struct pollfd *pollfd = &fds[n];
struct libusb_device_handle *handle;
struct linux_device_handle_priv *hpriv = NULL;
int reap_count;
if (!pollfd->revents)
continue;
num_ready--;
for_each_open_device(ctx, handle) {
hpriv = usbi_get_device_handle_priv(handle);
if (hpriv->fd == pollfd->fd)
break;
}
if (!hpriv || hpriv->fd != pollfd->fd) {
usbi_err(ctx, "cannot find handle for fd %d",
pollfd->fd);
continue;
}
if (pollfd->revents & POLLERR) {
/* remove the fd from the pollfd set so that it doesn't continuously
* trigger an event, and flag that it has been removed so op_close()
* doesn't try to remove it a second time */
usbi_remove_event_source(HANDLE_CTX(handle), hpriv->fd);
hpriv->fd_removed = 1;
/* device will still be marked as attached if hotplug monitor thread
* hasn't processed remove event yet */
usbi_mutex_static_lock(&linux_hotplug_lock);
if (usbi_atomic_load(&handle->dev->attached))
linux_device_disconnected(handle->dev->bus_number,
handle->dev->device_address);
usbi_mutex_static_unlock(&linux_hotplug_lock);
if (hpriv->caps & USBFS_CAP_REAP_AFTER_DISCONNECT) {
do {
r = reap_for_handle(handle);
} while (r == 0);
}
usbi_handle_disconnect(handle);
continue;
}
reap_count = 0;
do {
r = reap_for_handle(handle);
} while (r == 0 && ++reap_count <= 25);
if (r == 1 || r == LIBUSB_ERROR_NO_DEVICE)
continue;
else if (r < 0)
goto out;
}
r = 0;
out:
usbi_mutex_unlock(&ctx->open_devs_lock);
return r;
}
const struct usbi_os_backend usbi_backend = {
.name = "Linux usbfs",
.caps = USBI_CAP_HAS_HID_ACCESS|USBI_CAP_SUPPORTS_DETACH_KERNEL_DRIVER,
.init = op_init,
.exit = op_exit,
.set_option = op_set_option,
.hotplug_poll = op_hotplug_poll,
.get_active_config_descriptor = op_get_active_config_descriptor,
.get_config_descriptor = op_get_config_descriptor,
.get_config_descriptor_by_value = op_get_config_descriptor_by_value,
.wrap_sys_device = op_wrap_sys_device,
.open = op_open,
.close = op_close,
.get_configuration = op_get_configuration,
.set_configuration = op_set_configuration,
.claim_interface = op_claim_interface,
.release_interface = op_release_interface,
.set_interface_altsetting = op_set_interface,
.clear_halt = op_clear_halt,
.reset_device = op_reset_device,
.alloc_streams = op_alloc_streams,
.free_streams = op_free_streams,
.dev_mem_alloc = op_dev_mem_alloc,
.dev_mem_free = op_dev_mem_free,
.kernel_driver_active = op_kernel_driver_active,
.detach_kernel_driver = op_detach_kernel_driver,
.attach_kernel_driver = op_attach_kernel_driver,
.destroy_device = op_destroy_device,
.submit_transfer = op_submit_transfer,
.cancel_transfer = op_cancel_transfer,
.clear_transfer_priv = op_clear_transfer_priv,
.handle_events = op_handle_events,
.device_priv_size = sizeof(struct linux_device_priv),
.device_handle_priv_size = sizeof(struct linux_device_handle_priv),
.transfer_priv_size = sizeof(struct linux_transfer_priv),
};