| =pod |
| |
| =head1 NAME |
| |
| pem_password_cb, |
| PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey, |
| PEM_read_PrivateKey_ex, PEM_read_PrivateKey, |
| PEM_write_bio_PrivateKey_ex, PEM_write_bio_PrivateKey, |
| PEM_write_bio_PrivateKey_traditional, |
| PEM_write_PrivateKey_ex, PEM_write_PrivateKey, |
| PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, |
| PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, |
| PEM_read_bio_PUBKEY_ex, PEM_read_bio_PUBKEY, |
| PEM_read_PUBKEY_ex, PEM_read_PUBKEY, |
| PEM_write_bio_PUBKEY_ex, PEM_write_bio_PUBKEY, |
| PEM_write_PUBKEY_ex, PEM_write_PUBKEY, |
| PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, |
| PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, |
| PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, |
| PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, |
| PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, |
| PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, |
| PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, |
| PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters_ex, PEM_read_bio_Parameters, |
| PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams, |
| PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, |
| PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, |
| PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, |
| PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, |
| PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, |
| PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, |
| PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, |
| PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, |
| PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines |
| |
| =head1 SYNOPSIS |
| |
| #include <openssl/pem.h> |
| |
| typedef int pem_password_cb(char *buf, int size, int rwflag, void *u); |
| |
| EVP_PKEY *PEM_read_bio_PrivateKey_ex(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| EVP_PKEY *PEM_read_PrivateKey_ex(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, |
| void *u, OSSL_LIB_CTX *libctx, |
| const char *propq); |
| EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_PrivateKey_ex(BIO *bp, const EVP_PKEY *x, |
| const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| int PEM_write_bio_PrivateKey(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x, |
| const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_PrivateKey_ex(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| EVP_PKEY *PEM_read_bio_PUBKEY_ex(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| EVP_PKEY *PEM_read_PUBKEY_ex(FILE *fp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_PUBKEY_ex(BIO *bp, EVP_PKEY *x, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); |
| int PEM_write_PUBKEY_ex(FILE *fp, EVP_PKEY *x, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); |
| |
| EVP_PKEY *PEM_read_bio_Parameters_ex(BIO *bp, EVP_PKEY **x, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); |
| int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x); |
| |
| X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); |
| X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); |
| int PEM_write_bio_X509(BIO *bp, X509 *x); |
| int PEM_write_X509(FILE *fp, X509 *x); |
| |
| X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); |
| X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); |
| int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); |
| int PEM_write_X509_AUX(FILE *fp, X509 *x); |
| |
| X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, |
| pem_password_cb *cb, void *u); |
| X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); |
| int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); |
| int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); |
| int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); |
| |
| X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, |
| pem_password_cb *cb, void *u); |
| X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); |
| int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); |
| |
| PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); |
| PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); |
| int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); |
| int PEM_write_PKCS7(FILE *fp, PKCS7 *x); |
| |
| The following functions have been deprecated since OpenSSL 3.0, and can be |
| hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value, |
| see L<openssl_user_macros(7)>: |
| |
| RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); |
| int PEM_write_RSAPublicKey(FILE *fp, RSA *x); |
| |
| RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); |
| int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); |
| |
| DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, |
| pem_password_cb *cb, void *u); |
| DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, |
| pem_password_cb *cb, void *u); |
| DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); |
| int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); |
| DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); |
| DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); |
| int PEM_write_bio_DSAparams(BIO *bp, DSA *x); |
| int PEM_write_DSAparams(FILE *fp, DSA *x); |
| |
| DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); |
| DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); |
| int PEM_write_bio_DHparams(BIO *bp, DH *x); |
| int PEM_write_DHparams(FILE *fp, DH *x); |
| |
| =head1 DESCRIPTION |
| |
| All of the functions described on this page that have a I<TYPE> of B<DH>, B<DSA> |
| and B<RSA> are deprecated. Applications should use L<OSSL_ENCODER_to_bio(3)> and |
| L<OSSL_DECODER_from_bio(3)> instead. |
| |
| The PEM functions read or write structures in PEM format. In |
| this sense PEM format is simply base64 encoded data surrounded |
| by header lines. |
| |
| For more details about the meaning of arguments see the |
| B<PEM FUNCTION ARGUMENTS> section. |
| |
| Each operation has four functions associated with it. For |
| brevity the term "B<I<TYPE>> functions" will be used below to collectively |
| refer to the B<PEM_read_bio_I<TYPE>>(), B<PEM_read_I<TYPE>>(), |
| B<PEM_write_bio_I<TYPE>>(), and B<PEM_write_I<TYPE>>() functions. |
| |
| Some operations have additional variants that take a library context I<libctx> |
| and a property query string I<propq>. The B<X509>, B<X509_REQ> and B<X509_CRL> |
| objects may have an associated library context or property query string but |
| there are no variants of these functions that take a library context or property |
| query string parameter. In this case it is possible to set the appropriate |
| library context or property query string by creating an empty B<X509>, |
| B<X509_REQ> or B<X509_CRL> object using L<X509_new_ex(3)>, L<X509_REQ_new_ex(3)> |
| or L<X509_CRL_new_ex(3)> respectively. Then pass the empty object as a parameter |
| to the relevant PEM function. See the L</EXAMPLES> section below. |
| |
| The B<PrivateKey> functions read or write a private key in PEM format using |
| an EVP_PKEY structure. The write routines use PKCS#8 private key format and are |
| equivalent to PEM_write_bio_PKCS8PrivateKey(). The read functions transparently |
| handle traditional and PKCS#8 format encrypted and unencrypted keys. |
| |
| PEM_write_bio_PrivateKey_traditional() writes out a private key in the |
| "traditional" format with a simple private key marker and should only |
| be used for compatibility with legacy programs. |
| |
| PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private |
| key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using |
| PKCS#5 v2.0 password based encryption algorithms. The I<cipher> argument |
| specifies the encryption algorithm to use: unlike some other PEM routines the |
| encryption is applied at the PKCS#8 level and not in the PEM headers. If |
| I<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo |
| structure is used instead. |
| |
| PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() |
| also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however |
| it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm |
| to use is specified in the I<nid> parameter and should be the NID of the |
| corresponding OBJECT IDENTIFIER (see NOTES section). |
| |
| The B<PUBKEY> functions process a public key using an EVP_PKEY |
| structure. The public key is encoded as a SubjectPublicKeyInfo |
| structure. |
| |
| The B<RSAPrivateKey> functions process an RSA private key using an |
| RSA structure. The write routines uses traditional format. The read |
| routines handles the same formats as the B<PrivateKey> |
| functions but an error occurs if the private key is not RSA. |
| |
| The B<RSAPublicKey> functions process an RSA public key using an |
| RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey |
| structure. |
| |
| The B<RSA_PUBKEY> functions also process an RSA public key using |
| an RSA structure. However, the public key is encoded using a |
| SubjectPublicKeyInfo structure and an error occurs if the public |
| key is not RSA. |
| |
| The B<DSAPrivateKey> functions process a DSA private key using a |
| DSA structure. The write routines uses traditional format. The read |
| routines handles the same formats as the B<PrivateKey> |
| functions but an error occurs if the private key is not DSA. |
| |
| The B<DSA_PUBKEY> functions process a DSA public key using |
| a DSA structure. The public key is encoded using a |
| SubjectPublicKeyInfo structure and an error occurs if the public |
| key is not DSA. |
| |
| The B<Parameters> functions read or write key parameters in PEM format using |
| an EVP_PKEY structure. The encoding depends on the type of key; for DSA key |
| parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH |
| key parameters, it will be a PKCS#3 DHparameter structure. I<These functions |
| only exist for the B<BIO> type>. |
| |
| The B<DSAparams> functions process DSA parameters using a DSA |
| structure. The parameters are encoded using a Dss-Parms structure |
| as defined in RFC2459. |
| |
| The B<DHparams> functions process DH parameters using a DH |
| structure. The parameters are encoded using a PKCS#3 DHparameter |
| structure. |
| |
| The B<X509> functions process an X509 certificate using an X509 |
| structure. They will also process a trusted X509 certificate but |
| any trust settings are discarded. |
| |
| The B<X509_AUX> functions process a trusted X509 certificate using |
| an X509 structure. |
| |
| The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 |
| certificate request using an X509_REQ structure. The B<X509_REQ> |
| write functions use B<CERTIFICATE REQUEST> in the header whereas |
| the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> |
| (as required by some CAs). The B<X509_REQ> read functions will |
| handle either form so there are no B<X509_REQ_NEW> read functions. |
| |
| The B<X509_CRL> functions process an X509 CRL using an X509_CRL |
| structure. |
| |
| The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 |
| structure. |
| |
| =head1 PEM FUNCTION ARGUMENTS |
| |
| The PEM functions have many common arguments. |
| |
| The I<bp> BIO parameter (if present) specifies the BIO to read from |
| or write to. |
| |
| The I<fp> FILE parameter (if present) specifies the FILE pointer to |
| read from or write to. |
| |
| The PEM read functions all take an argument I<B<TYPE> **x> and return |
| a I<B<TYPE> *> pointer. Where I<B<TYPE>> is whatever structure the function |
| uses. If I<x> is NULL then the parameter is ignored. If I<x> is not |
| NULL but I<*x> is NULL then the structure returned will be written |
| to I<*x>. If neither I<x> nor I<*x> is NULL then an attempt is made |
| to reuse the structure at I<*x> (but see BUGS and EXAMPLES sections). |
| Irrespective of the value of I<x> a pointer to the structure is always |
| returned (or NULL if an error occurred). |
| |
| The PEM functions which write private keys take an I<enc> parameter |
| which specifies the encryption algorithm to use, encryption is done |
| at the PEM level. If this parameter is set to NULL then the private |
| key is written in unencrypted form. |
| |
| The I<cb> argument is the callback to use when querying for the pass |
| phrase used for encrypted PEM structures (normally only private keys). |
| |
| For the PEM write routines if the I<kstr> parameter is not NULL then |
| I<klen> bytes at I<kstr> are used as the passphrase and I<cb> is |
| ignored. |
| |
| If the I<cb> parameters is set to NULL and the I<u> parameter is not |
| NULL then the I<u> parameter is interpreted as a NUL terminated string |
| to use as the passphrase. If both I<cb> and I<u> are NULL then the |
| default callback routine is used which will typically prompt for the |
| passphrase on the current terminal with echoing turned off. |
| |
| The default passphrase callback is sometimes inappropriate (for example |
| in a GUI application) so an alternative can be supplied. The callback |
| routine has the following form: |
| |
| int cb(char *buf, int size, int rwflag, void *u); |
| |
| I<buf> is the buffer to write the passphrase to. I<size> is the maximum |
| length of the passphrase (i.e. the size of buf). I<rwflag> is a flag |
| which is set to 0 when reading and 1 when writing. A typical routine |
| will ask the user to verify the passphrase (for example by prompting |
| for it twice) if I<rwflag> is 1. The I<u> parameter has the same |
| value as the I<u> parameter passed to the PEM routine. It allows |
| arbitrary data to be passed to the callback by the application |
| (for example a window handle in a GUI application). The callback |
| I<must> return the number of characters in the passphrase or -1 if |
| an error occurred. The passphrase can be arbitrary data; in the case where it |
| is a string, it is not NUL terminated. See the L</EXAMPLES> section below. |
| |
| Some implementations may need to use cryptographic algorithms during their |
| operation. If this is the case and I<libctx> and I<propq> parameters have been |
| passed then any algorithm fetches will use that library context and property |
| query string. Otherwise the default library context and property query string |
| will be used. |
| |
| =head1 NOTES |
| |
| The PEM reading functions will skip any extraneous content or PEM data of |
| a different type than they expect. This allows for example having a certificate |
| (or multiple certificates) and a key in the PEM format in a single file. |
| |
| The old B<PrivateKey> write routines are retained for compatibility. |
| New applications should write private keys using the |
| PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines |
| because they are more secure (they use an iteration count of 2048 whereas |
| the traditional routines use a count of 1) unless compatibility with older |
| versions of OpenSSL is important. |
| |
| The B<PrivateKey> read routines can be used in all applications because |
| they handle all formats transparently. |
| |
| A frequent cause of problems is attempting to use the PEM routines like |
| this: |
| |
| X509 *x; |
| |
| PEM_read_bio_X509(bp, &x, 0, NULL); |
| |
| this is a bug because an attempt will be made to reuse the data at I<x> |
| which is an uninitialised pointer. |
| |
| These functions make no assumption regarding the pass phrase received from the |
| password callback. |
| It will simply be treated as a byte sequence. |
| |
| =head1 PEM ENCRYPTION FORMAT |
| |
| These old B<PrivateKey> routines use a non standard technique for encryption. |
| |
| The private key (or other data) takes the following form: |
| |
| -----BEGIN RSA PRIVATE KEY----- |
| Proc-Type: 4,ENCRYPTED |
| DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 |
| |
| ...base64 encoded data... |
| -----END RSA PRIVATE KEY----- |
| |
| The line beginning with I<Proc-Type> contains the version and the |
| protection on the encapsulated data. The line beginning I<DEK-Info> |
| contains two comma separated values: the encryption algorithm name as |
| used by EVP_get_cipherbyname() and an initialization vector used by the |
| cipher encoded as a set of hexadecimal digits. After those two lines is |
| the base64-encoded encrypted data. |
| |
| The encryption key is derived using EVP_BytesToKey(). The cipher's |
| initialization vector is passed to EVP_BytesToKey() as the I<salt> |
| parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used |
| (regardless of the size of the initialization vector). The user's |
| password is passed to EVP_BytesToKey() using the I<data> and I<datal> |
| parameters. Finally, the library uses an iteration count of 1 for |
| EVP_BytesToKey(). |
| |
| The I<key> derived by EVP_BytesToKey() along with the original initialization |
| vector is then used to decrypt the encrypted data. The I<iv> produced by |
| EVP_BytesToKey() is not utilized or needed, and NULL should be passed to |
| the function. |
| |
| The pseudo code to derive the key would look similar to: |
| |
| EVP_CIPHER* cipher = EVP_des_ede3_cbc(); |
| EVP_MD* md = EVP_md5(); |
| |
| unsigned int nkey = EVP_CIPHER_get_key_length(cipher); |
| unsigned int niv = EVP_CIPHER_get_iv_length(cipher); |
| unsigned char key[nkey]; |
| unsigned char iv[niv]; |
| |
| memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv); |
| rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/); |
| if (rc != nkey) |
| /* Error */ |
| |
| /* On success, use key and iv to initialize the cipher */ |
| |
| =head1 BUGS |
| |
| The PEM read routines in some versions of OpenSSL will not correctly reuse |
| an existing structure. Therefore, the following: |
| |
| PEM_read_bio_X509(bp, &x, 0, NULL); |
| |
| where I<x> already contains a valid certificate, may not work, whereas: |
| |
| X509_free(x); |
| x = PEM_read_bio_X509(bp, NULL, 0, NULL); |
| |
| is guaranteed to work. It is always acceptable for I<x> to contain a newly |
| allocated, empty B<X509> object (for example allocated via L<X509_new_ex(3)>). |
| |
| =head1 RETURN VALUES |
| |
| The read routines return either a pointer to the structure read or NULL |
| if an error occurred. |
| |
| The write routines return 1 for success or 0 for failure. |
| |
| =head1 EXAMPLES |
| |
| Although the PEM routines take several arguments in almost all applications |
| most of them are set to 0 or NULL. |
| |
| To read a certificate with a library context in PEM format from a BIO: |
| |
| X509 *x = X509_new_ex(libctx, NULL); |
| |
| if (x == NULL) |
| /* Error */ |
| |
| if (PEM_read_bio_X509(bp, &x, 0, NULL) == NULL) |
| /* Error */ |
| |
| Read a certificate in PEM format from a BIO: |
| |
| X509 *x; |
| |
| x = PEM_read_bio_X509(bp, NULL, 0, NULL); |
| if (x == NULL) |
| /* Error */ |
| |
| Alternative method: |
| |
| X509 *x = NULL; |
| |
| if (!PEM_read_bio_X509(bp, &x, 0, NULL)) |
| /* Error */ |
| |
| Write a certificate to a BIO: |
| |
| if (!PEM_write_bio_X509(bp, x)) |
| /* Error */ |
| |
| Write a private key (using traditional format) to a BIO using |
| triple DES encryption, the pass phrase is prompted for: |
| |
| if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) |
| /* Error */ |
| |
| Write a private key (using PKCS#8 format) to a BIO using triple |
| DES encryption, using the pass phrase "hello": |
| |
| if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), |
| NULL, 0, 0, "hello")) |
| /* Error */ |
| |
| Read a private key from a BIO using a pass phrase callback: |
| |
| key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); |
| if (key == NULL) |
| /* Error */ |
| |
| Skeleton pass phrase callback: |
| |
| int pass_cb(char *buf, int size, int rwflag, void *u) |
| { |
| |
| /* We'd probably do something else if 'rwflag' is 1 */ |
| printf("Enter pass phrase for \"%s\"\n", (char *)u); |
| |
| /* get pass phrase, length 'len' into 'tmp' */ |
| char *tmp = "hello"; |
| if (tmp == NULL) /* An error occurred */ |
| return -1; |
| |
| size_t len = strlen(tmp); |
| |
| if (len > size) |
| len = size; |
| memcpy(buf, tmp, len); |
| return len; |
| } |
| |
| =head1 SEE ALSO |
| |
| L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>, |
| L<passphrase-encoding(7)> |
| |
| =head1 HISTORY |
| |
| The old Netscape certificate sequences were no longer documented |
| in OpenSSL 1.1.0; applications should use the PKCS7 standard instead |
| as they will be formally deprecated in a future releases. |
| |
| PEM_read_bio_PrivateKey_ex(), PEM_read_PrivateKey_ex(), |
| PEM_read_bio_PUBKEY_ex(), PEM_read_PUBKEY_ex() and |
| PEM_read_bio_Parameters_ex() were introduced in OpenSSL 3.0. |
| |
| The functions PEM_read_bio_RSAPrivateKey(), PEM_read_RSAPrivateKey(), |
| PEM_write_bio_RSAPrivateKey(), PEM_write_RSAPrivateKey(), |
| PEM_read_bio_RSAPublicKey(), PEM_read_RSAPublicKey(), |
| PEM_write_bio_RSAPublicKey(), PEM_write_RSAPublicKey(), |
| PEM_read_bio_RSA_PUBKEY(), PEM_read_RSA_PUBKEY(), |
| PEM_write_bio_RSA_PUBKEY(), PEM_write_RSA_PUBKEY(), |
| PEM_read_bio_DSAPrivateKey(), PEM_read_DSAPrivateKey(), |
| PEM_write_bio_DSAPrivateKey(), PEM_write_DSAPrivateKey(), |
| PEM_read_bio_DSA_PUBKEY(), PEM_read_DSA_PUBKEY(), |
| PEM_write_bio_DSA_PUBKEY(), PEM_write_DSA_PUBKEY(); |
| PEM_read_bio_DSAparams(), PEM_read_DSAparams(), |
| PEM_write_bio_DSAparams(), PEM_write_DSAparams(), |
| PEM_read_bio_DHparams(), PEM_read_DHparams(), |
| PEM_write_bio_DHparams() and PEM_write_DHparams() were deprecated in 3.0. |
| |
| |
| =head1 COPYRIGHT |
| |
| Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved. |
| |
| Licensed under the Apache License 2.0 (the "License"). You may not use |
| this file except in compliance with the License. You can obtain a copy |
| in the file LICENSE in the source distribution or at |
| L<https://www.openssl.org/source/license.html>. |
| |
| =cut |