| /* |
| * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* |
| * All low level APIs are deprecated for public use, but still ok for internal |
| * use where we're using them to implement the higher level EVP interface, as is |
| * the case here. |
| */ |
| #include "internal/deprecated.h" |
| |
| #include "cipher_aes_cbc_hmac_sha.h" |
| |
| #if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) |
| int ossl_cipher_capable_aes_cbc_hmac_sha256(void) |
| { |
| return 0; |
| } |
| |
| const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void) |
| { |
| return NULL; |
| } |
| #else |
| |
| # include <openssl/rand.h> |
| # include "crypto/evp.h" |
| # include "internal/constant_time.h" |
| |
| void sha256_block_data_order(void *c, const void *p, size_t len); |
| int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks, |
| const AES_KEY *key, unsigned char iv[16], |
| SHA256_CTX *ctx, const void *in0); |
| |
| int ossl_cipher_capable_aes_cbc_hmac_sha256(void) |
| { |
| return AESNI_CBC_HMAC_SHA_CAPABLE |
| && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL); |
| } |
| |
| static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx, |
| const unsigned char *key, |
| size_t keylen) |
| { |
| int ret; |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| |
| if (ctx->base.enc) |
| ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks); |
| else |
| ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks); |
| |
| SHA256_Init(&sctx->head); /* handy when benchmarking */ |
| sctx->tail = sctx->head; |
| sctx->md = sctx->head; |
| |
| ctx->payload_length = NO_PAYLOAD_LENGTH; |
| |
| vctx->removetlspad = 1; |
| vctx->removetlsfixed = SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE; |
| |
| return ret < 0 ? 0 : 1; |
| } |
| |
| void sha256_block_data_order(void *c, const void *p, size_t len); |
| |
| static void sha256_update(SHA256_CTX *c, const void *data, size_t len) |
| { |
| const unsigned char *ptr = data; |
| size_t res; |
| |
| if ((res = c->num)) { |
| res = SHA256_CBLOCK - res; |
| if (len < res) |
| res = len; |
| SHA256_Update(c, ptr, res); |
| ptr += res; |
| len -= res; |
| } |
| |
| res = len % SHA256_CBLOCK; |
| len -= res; |
| |
| if (len) { |
| sha256_block_data_order(c, ptr, len / SHA256_CBLOCK); |
| |
| ptr += len; |
| c->Nh += len >> 29; |
| c->Nl += len <<= 3; |
| if (c->Nl < (unsigned int)len) |
| c->Nh++; |
| } |
| |
| if (res) |
| SHA256_Update(c, ptr, res); |
| } |
| |
| # if !defined(OPENSSL_NO_MULTIBLOCK) |
| |
| typedef struct { |
| unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8]; |
| } SHA256_MB_CTX; |
| |
| typedef struct { |
| const unsigned char *ptr; |
| int blocks; |
| } HASH_DESC; |
| |
| typedef struct { |
| const unsigned char *inp; |
| unsigned char *out; |
| int blocks; |
| u64 iv[2]; |
| } CIPH_DESC; |
| |
| void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int); |
| void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int); |
| |
| static size_t tls1_multi_block_encrypt(void *vctx, |
| unsigned char *out, |
| const unsigned char *inp, |
| size_t inp_len, int n4x) |
| { /* n4x is 1 or 2 */ |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| HASH_DESC hash_d[8], edges[8]; |
| CIPH_DESC ciph_d[8]; |
| unsigned char storage[sizeof(SHA256_MB_CTX) + 32]; |
| union { |
| u64 q[16]; |
| u32 d[32]; |
| u8 c[128]; |
| } blocks[8]; |
| SHA256_MB_CTX *mctx; |
| unsigned int frag, last, packlen, i; |
| unsigned int x4 = 4 * n4x, minblocks, processed = 0; |
| size_t ret = 0; |
| u8 *IVs; |
| # if defined(BSWAP8) |
| u64 seqnum; |
| # endif |
| |
| /* ask for IVs in bulk */ |
| if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4, 0) <= 0) |
| return 0; |
| |
| mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */ |
| |
| frag = (unsigned int)inp_len >> (1 + n4x); |
| last = (unsigned int)inp_len + frag - (frag << (1 + n4x)); |
| if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) { |
| frag++; |
| last -= x4 - 1; |
| } |
| |
| packlen = 5 + 16 + ((frag + 32 + 16) & -16); |
| |
| /* populate descriptors with pointers and IVs */ |
| hash_d[0].ptr = inp; |
| ciph_d[0].inp = inp; |
| /* 5+16 is place for header and explicit IV */ |
| ciph_d[0].out = out + 5 + 16; |
| memcpy(ciph_d[0].out - 16, IVs, 16); |
| memcpy(ciph_d[0].iv, IVs, 16); |
| IVs += 16; |
| |
| for (i = 1; i < x4; i++) { |
| ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag; |
| ciph_d[i].out = ciph_d[i - 1].out + packlen; |
| memcpy(ciph_d[i].out - 16, IVs, 16); |
| memcpy(ciph_d[i].iv, IVs, 16); |
| IVs += 16; |
| } |
| |
| # if defined(BSWAP8) |
| memcpy(blocks[0].c, sctx->md.data, 8); |
| seqnum = BSWAP8(blocks[0].q[0]); |
| # endif |
| |
| for (i = 0; i < x4; i++) { |
| unsigned int len = (i == (x4 - 1) ? last : frag); |
| # if !defined(BSWAP8) |
| unsigned int carry, j; |
| # endif |
| |
| mctx->A[i] = sctx->md.h[0]; |
| mctx->B[i] = sctx->md.h[1]; |
| mctx->C[i] = sctx->md.h[2]; |
| mctx->D[i] = sctx->md.h[3]; |
| mctx->E[i] = sctx->md.h[4]; |
| mctx->F[i] = sctx->md.h[5]; |
| mctx->G[i] = sctx->md.h[6]; |
| mctx->H[i] = sctx->md.h[7]; |
| |
| /* fix seqnum */ |
| # if defined(BSWAP8) |
| blocks[i].q[0] = BSWAP8(seqnum + i); |
| # else |
| for (carry = i, j = 8; j--;) { |
| blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry; |
| carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1); |
| } |
| # endif |
| blocks[i].c[8] = ((u8 *)sctx->md.data)[8]; |
| blocks[i].c[9] = ((u8 *)sctx->md.data)[9]; |
| blocks[i].c[10] = ((u8 *)sctx->md.data)[10]; |
| /* fix length */ |
| blocks[i].c[11] = (u8)(len >> 8); |
| blocks[i].c[12] = (u8)(len); |
| |
| memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13); |
| hash_d[i].ptr += 64 - 13; |
| hash_d[i].blocks = (len - (64 - 13)) / 64; |
| |
| edges[i].ptr = blocks[i].c; |
| edges[i].blocks = 1; |
| } |
| |
| /* hash 13-byte headers and first 64-13 bytes of inputs */ |
| sha256_multi_block(mctx, edges, n4x); |
| /* hash bulk inputs */ |
| # define MAXCHUNKSIZE 2048 |
| # if MAXCHUNKSIZE%64 |
| # error "MAXCHUNKSIZE is not divisible by 64" |
| # elif MAXCHUNKSIZE |
| /* |
| * goal is to minimize pressure on L1 cache by moving in shorter steps, |
| * so that hashed data is still in the cache by the time we encrypt it |
| */ |
| minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64; |
| if (minblocks > MAXCHUNKSIZE / 64) { |
| for (i = 0; i < x4; i++) { |
| edges[i].ptr = hash_d[i].ptr; |
| edges[i].blocks = MAXCHUNKSIZE / 64; |
| ciph_d[i].blocks = MAXCHUNKSIZE / 16; |
| } |
| do { |
| sha256_multi_block(mctx, edges, n4x); |
| aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x); |
| |
| for (i = 0; i < x4; i++) { |
| edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; |
| hash_d[i].blocks -= MAXCHUNKSIZE / 64; |
| edges[i].blocks = MAXCHUNKSIZE / 64; |
| ciph_d[i].inp += MAXCHUNKSIZE; |
| ciph_d[i].out += MAXCHUNKSIZE; |
| ciph_d[i].blocks = MAXCHUNKSIZE / 16; |
| memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16); |
| } |
| processed += MAXCHUNKSIZE; |
| minblocks -= MAXCHUNKSIZE / 64; |
| } while (minblocks > MAXCHUNKSIZE / 64); |
| } |
| # endif |
| # undef MAXCHUNKSIZE |
| sha256_multi_block(mctx, hash_d, n4x); |
| |
| memset(blocks, 0, sizeof(blocks)); |
| for (i = 0; i < x4; i++) { |
| unsigned int len = (i == (x4 - 1) ? last : frag), |
| off = hash_d[i].blocks * 64; |
| const unsigned char *ptr = hash_d[i].ptr + off; |
| |
| off = (len - processed) - (64 - 13) - off; /* remainder actually */ |
| memcpy(blocks[i].c, ptr, off); |
| blocks[i].c[off] = 0x80; |
| len += 64 + 13; /* 64 is HMAC header */ |
| len *= 8; /* convert to bits */ |
| if (off < (64 - 8)) { |
| # ifdef BSWAP4 |
| blocks[i].d[15] = BSWAP4(len); |
| # else |
| PUTU32(blocks[i].c + 60, len); |
| # endif |
| edges[i].blocks = 1; |
| } else { |
| # ifdef BSWAP4 |
| blocks[i].d[31] = BSWAP4(len); |
| # else |
| PUTU32(blocks[i].c + 124, len); |
| # endif |
| edges[i].blocks = 2; |
| } |
| edges[i].ptr = blocks[i].c; |
| } |
| |
| /* hash input tails and finalize */ |
| sha256_multi_block(mctx, edges, n4x); |
| |
| memset(blocks, 0, sizeof(blocks)); |
| for (i = 0; i < x4; i++) { |
| # ifdef BSWAP4 |
| blocks[i].d[0] = BSWAP4(mctx->A[i]); |
| mctx->A[i] = sctx->tail.h[0]; |
| blocks[i].d[1] = BSWAP4(mctx->B[i]); |
| mctx->B[i] = sctx->tail.h[1]; |
| blocks[i].d[2] = BSWAP4(mctx->C[i]); |
| mctx->C[i] = sctx->tail.h[2]; |
| blocks[i].d[3] = BSWAP4(mctx->D[i]); |
| mctx->D[i] = sctx->tail.h[3]; |
| blocks[i].d[4] = BSWAP4(mctx->E[i]); |
| mctx->E[i] = sctx->tail.h[4]; |
| blocks[i].d[5] = BSWAP4(mctx->F[i]); |
| mctx->F[i] = sctx->tail.h[5]; |
| blocks[i].d[6] = BSWAP4(mctx->G[i]); |
| mctx->G[i] = sctx->tail.h[6]; |
| blocks[i].d[7] = BSWAP4(mctx->H[i]); |
| mctx->H[i] = sctx->tail.h[7]; |
| blocks[i].c[32] = 0x80; |
| blocks[i].d[15] = BSWAP4((64 + 32) * 8); |
| # else |
| PUTU32(blocks[i].c + 0, mctx->A[i]); |
| mctx->A[i] = sctx->tail.h[0]; |
| PUTU32(blocks[i].c + 4, mctx->B[i]); |
| mctx->B[i] = sctx->tail.h[1]; |
| PUTU32(blocks[i].c + 8, mctx->C[i]); |
| mctx->C[i] = sctx->tail.h[2]; |
| PUTU32(blocks[i].c + 12, mctx->D[i]); |
| mctx->D[i] = sctx->tail.h[3]; |
| PUTU32(blocks[i].c + 16, mctx->E[i]); |
| mctx->E[i] = sctx->tail.h[4]; |
| PUTU32(blocks[i].c + 20, mctx->F[i]); |
| mctx->F[i] = sctx->tail.h[5]; |
| PUTU32(blocks[i].c + 24, mctx->G[i]); |
| mctx->G[i] = sctx->tail.h[6]; |
| PUTU32(blocks[i].c + 28, mctx->H[i]); |
| mctx->H[i] = sctx->tail.h[7]; |
| blocks[i].c[32] = 0x80; |
| PUTU32(blocks[i].c + 60, (64 + 32) * 8); |
| # endif /* BSWAP */ |
| edges[i].ptr = blocks[i].c; |
| edges[i].blocks = 1; |
| } |
| |
| /* finalize MACs */ |
| sha256_multi_block(mctx, edges, n4x); |
| |
| for (i = 0; i < x4; i++) { |
| unsigned int len = (i == (x4 - 1) ? last : frag), pad, j; |
| unsigned char *out0 = out; |
| |
| memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed); |
| ciph_d[i].inp = ciph_d[i].out; |
| |
| out += 5 + 16 + len; |
| |
| /* write MAC */ |
| PUTU32(out + 0, mctx->A[i]); |
| PUTU32(out + 4, mctx->B[i]); |
| PUTU32(out + 8, mctx->C[i]); |
| PUTU32(out + 12, mctx->D[i]); |
| PUTU32(out + 16, mctx->E[i]); |
| PUTU32(out + 20, mctx->F[i]); |
| PUTU32(out + 24, mctx->G[i]); |
| PUTU32(out + 28, mctx->H[i]); |
| out += 32; |
| len += 32; |
| |
| /* pad */ |
| pad = 15 - len % 16; |
| for (j = 0; j <= pad; j++) |
| *(out++) = pad; |
| len += pad + 1; |
| |
| ciph_d[i].blocks = (len - processed) / 16; |
| len += 16; /* account for explicit iv */ |
| |
| /* arrange header */ |
| out0[0] = ((u8 *)sctx->md.data)[8]; |
| out0[1] = ((u8 *)sctx->md.data)[9]; |
| out0[2] = ((u8 *)sctx->md.data)[10]; |
| out0[3] = (u8)(len >> 8); |
| out0[4] = (u8)(len); |
| |
| ret += len + 5; |
| inp += frag; |
| } |
| |
| aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x); |
| |
| OPENSSL_cleanse(blocks, sizeof(blocks)); |
| OPENSSL_cleanse(mctx, sizeof(*mctx)); |
| |
| ctx->multiblock_encrypt_len = ret; |
| return ret; |
| } |
| # endif /* !OPENSSL_NO_MULTIBLOCK */ |
| |
| static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx, |
| unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| unsigned int l; |
| size_t plen = ctx->payload_length; |
| size_t iv = 0; /* explicit IV in TLS 1.1 and * later */ |
| size_t aes_off = 0, blocks; |
| size_t sha_off = SHA256_CBLOCK - sctx->md.num; |
| |
| ctx->payload_length = NO_PAYLOAD_LENGTH; |
| |
| if (len % AES_BLOCK_SIZE) |
| return 0; |
| |
| if (ctx->base.enc) { |
| if (plen == NO_PAYLOAD_LENGTH) |
| plen = len; |
| else if (len != |
| ((plen + SHA256_DIGEST_LENGTH + |
| AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) |
| return 0; |
| else if (ctx->aux.tls_ver >= TLS1_1_VERSION) |
| iv = AES_BLOCK_SIZE; |
| |
| /* |
| * Assembly stitch handles AVX-capable processors, but its |
| * performance is not optimal on AMD Jaguar, ~40% worse, for |
| * unknown reasons. Incidentally processor in question supports |
| * AVX, but not AMD-specific XOP extension, which can be used |
| * to identify it and avoid stitch invocation. So that after we |
| * establish that current CPU supports AVX, we even see if it's |
| * either even XOP-capable Bulldozer-based or GenuineIntel one. |
| * But SHAEXT-capable go ahead... |
| */ |
| if (((OPENSSL_ia32cap_P[2] & (1 << 29)) || /* SHAEXT? */ |
| ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */ |
| ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */ |
| | (OPENSSL_ia32cap_P[0] & (1 << 30))))) && /* "Intel CPU"? */ |
| plen > (sha_off + iv) && |
| (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) { |
| sha256_update(&sctx->md, in + iv, sha_off); |
| |
| (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks, |
| ctx->base.iv, |
| &sctx->md, in + iv + sha_off); |
| blocks *= SHA256_CBLOCK; |
| aes_off += blocks; |
| sha_off += blocks; |
| sctx->md.Nh += blocks >> 29; |
| sctx->md.Nl += blocks <<= 3; |
| if (sctx->md.Nl < (unsigned int)blocks) |
| sctx->md.Nh++; |
| } else { |
| sha_off = 0; |
| } |
| sha_off += iv; |
| sha256_update(&sctx->md, in + sha_off, plen - sha_off); |
| |
| if (plen != len) { /* "TLS" mode of operation */ |
| if (in != out) |
| memcpy(out + aes_off, in + aes_off, plen - aes_off); |
| |
| /* calculate HMAC and append it to payload */ |
| SHA256_Final(out + plen, &sctx->md); |
| sctx->md = sctx->tail; |
| sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH); |
| SHA256_Final(out + plen, &sctx->md); |
| |
| /* pad the payload|hmac */ |
| plen += SHA256_DIGEST_LENGTH; |
| for (l = len - plen - 1; plen < len; plen++) |
| out[plen] = l; |
| /* encrypt HMAC|padding at once */ |
| aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, |
| &ctx->ks, ctx->base.iv, 1); |
| } else { |
| aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, |
| &ctx->ks, ctx->base.iv, 1); |
| } |
| } else { |
| union { |
| unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)]; |
| unsigned char c[64 + SHA256_DIGEST_LENGTH]; |
| } mac, *pmac; |
| |
| /* arrange cache line alignment */ |
| pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64)); |
| |
| /* decrypt HMAC|padding at once */ |
| aesni_cbc_encrypt(in, out, len, &ctx->ks, |
| ctx->base.iv, 0); |
| |
| if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ |
| size_t inp_len, mask, j, i; |
| unsigned int res, maxpad, pad, bitlen; |
| int ret = 1; |
| union { |
| unsigned int u[SHA_LBLOCK]; |
| unsigned char c[SHA256_CBLOCK]; |
| } *data = (void *)sctx->md.data; |
| |
| if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3]) |
| >= TLS1_1_VERSION) |
| iv = AES_BLOCK_SIZE; |
| |
| if (len < (iv + SHA256_DIGEST_LENGTH + 1)) |
| return 0; |
| |
| /* omit explicit iv */ |
| out += iv; |
| len -= iv; |
| |
| /* figure out payload length */ |
| pad = out[len - 1]; |
| maxpad = len - (SHA256_DIGEST_LENGTH + 1); |
| maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); |
| maxpad &= 255; |
| |
| mask = constant_time_ge(maxpad, pad); |
| ret &= mask; |
| /* |
| * If pad is invalid then we will fail the above test but we must |
| * continue anyway because we are in constant time code. However, |
| * we'll use the maxpad value instead of the supplied pad to make |
| * sure we perform well defined pointer arithmetic. |
| */ |
| pad = constant_time_select(mask, pad, maxpad); |
| |
| inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1); |
| |
| ctx->aux.tls_aad[plen - 2] = inp_len >> 8; |
| ctx->aux.tls_aad[plen - 1] = inp_len; |
| |
| /* calculate HMAC */ |
| sctx->md = sctx->head; |
| sha256_update(&sctx->md, ctx->aux.tls_aad, plen); |
| |
| /* code with lucky-13 fix */ |
| len -= SHA256_DIGEST_LENGTH; /* amend mac */ |
| if (len >= (256 + SHA256_CBLOCK)) { |
| j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK); |
| j += SHA256_CBLOCK - sctx->md.num; |
| sha256_update(&sctx->md, out, j); |
| out += j; |
| len -= j; |
| inp_len -= j; |
| } |
| |
| /* but pretend as if we hashed padded payload */ |
| bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */ |
| # ifdef BSWAP4 |
| bitlen = BSWAP4(bitlen); |
| # else |
| mac.c[0] = 0; |
| mac.c[1] = (unsigned char)(bitlen >> 16); |
| mac.c[2] = (unsigned char)(bitlen >> 8); |
| mac.c[3] = (unsigned char)bitlen; |
| bitlen = mac.u[0]; |
| # endif /* BSWAP */ |
| |
| pmac->u[0] = 0; |
| pmac->u[1] = 0; |
| pmac->u[2] = 0; |
| pmac->u[3] = 0; |
| pmac->u[4] = 0; |
| pmac->u[5] = 0; |
| pmac->u[6] = 0; |
| pmac->u[7] = 0; |
| |
| for (res = sctx->md.num, j = 0; j < len; j++) { |
| size_t c = out[j]; |
| mask = (j - inp_len) >> (sizeof(j) * 8 - 8); |
| c &= mask; |
| c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); |
| data->c[res++] = (unsigned char)c; |
| |
| if (res != SHA256_CBLOCK) |
| continue; |
| |
| /* j is not incremented yet */ |
| mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); |
| data->u[SHA_LBLOCK - 1] |= bitlen & mask; |
| sha256_block_data_order(&sctx->md, data, 1); |
| mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); |
| pmac->u[0] |= sctx->md.h[0] & mask; |
| pmac->u[1] |= sctx->md.h[1] & mask; |
| pmac->u[2] |= sctx->md.h[2] & mask; |
| pmac->u[3] |= sctx->md.h[3] & mask; |
| pmac->u[4] |= sctx->md.h[4] & mask; |
| pmac->u[5] |= sctx->md.h[5] & mask; |
| pmac->u[6] |= sctx->md.h[6] & mask; |
| pmac->u[7] |= sctx->md.h[7] & mask; |
| res = 0; |
| } |
| |
| for (i = res; i < SHA256_CBLOCK; i++, j++) |
| data->c[i] = 0; |
| |
| if (res > SHA256_CBLOCK - 8) { |
| mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); |
| data->u[SHA_LBLOCK - 1] |= bitlen & mask; |
| sha256_block_data_order(&sctx->md, data, 1); |
| mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); |
| pmac->u[0] |= sctx->md.h[0] & mask; |
| pmac->u[1] |= sctx->md.h[1] & mask; |
| pmac->u[2] |= sctx->md.h[2] & mask; |
| pmac->u[3] |= sctx->md.h[3] & mask; |
| pmac->u[4] |= sctx->md.h[4] & mask; |
| pmac->u[5] |= sctx->md.h[5] & mask; |
| pmac->u[6] |= sctx->md.h[6] & mask; |
| pmac->u[7] |= sctx->md.h[7] & mask; |
| |
| memset(data, 0, SHA256_CBLOCK); |
| j += 64; |
| } |
| data->u[SHA_LBLOCK - 1] = bitlen; |
| sha256_block_data_order(&sctx->md, data, 1); |
| mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); |
| pmac->u[0] |= sctx->md.h[0] & mask; |
| pmac->u[1] |= sctx->md.h[1] & mask; |
| pmac->u[2] |= sctx->md.h[2] & mask; |
| pmac->u[3] |= sctx->md.h[3] & mask; |
| pmac->u[4] |= sctx->md.h[4] & mask; |
| pmac->u[5] |= sctx->md.h[5] & mask; |
| pmac->u[6] |= sctx->md.h[6] & mask; |
| pmac->u[7] |= sctx->md.h[7] & mask; |
| |
| # ifdef BSWAP4 |
| pmac->u[0] = BSWAP4(pmac->u[0]); |
| pmac->u[1] = BSWAP4(pmac->u[1]); |
| pmac->u[2] = BSWAP4(pmac->u[2]); |
| pmac->u[3] = BSWAP4(pmac->u[3]); |
| pmac->u[4] = BSWAP4(pmac->u[4]); |
| pmac->u[5] = BSWAP4(pmac->u[5]); |
| pmac->u[6] = BSWAP4(pmac->u[6]); |
| pmac->u[7] = BSWAP4(pmac->u[7]); |
| # else |
| for (i = 0; i < 8; i++) { |
| res = pmac->u[i]; |
| pmac->c[4 * i + 0] = (unsigned char)(res >> 24); |
| pmac->c[4 * i + 1] = (unsigned char)(res >> 16); |
| pmac->c[4 * i + 2] = (unsigned char)(res >> 8); |
| pmac->c[4 * i + 3] = (unsigned char)res; |
| } |
| # endif /* BSWAP */ |
| len += SHA256_DIGEST_LENGTH; |
| sctx->md = sctx->tail; |
| sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH); |
| SHA256_Final(pmac->c, &sctx->md); |
| |
| /* verify HMAC */ |
| out += inp_len; |
| len -= inp_len; |
| /* code containing lucky-13 fix */ |
| { |
| unsigned char *p = |
| out + len - 1 - maxpad - SHA256_DIGEST_LENGTH; |
| size_t off = out - p; |
| unsigned int c, cmask; |
| |
| for (res = 0, i = 0, j = 0; |
| j < maxpad + SHA256_DIGEST_LENGTH; |
| j++) { |
| c = p[j]; |
| cmask = |
| ((int)(j - off - SHA256_DIGEST_LENGTH)) >> |
| (sizeof(int) * 8 - 1); |
| res |= (c ^ pad) & ~cmask; /* ... and padding */ |
| cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); |
| res |= (c ^ pmac->c[i]) & cmask; |
| i += 1 & cmask; |
| } |
| |
| res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); |
| ret &= (int)~res; |
| } |
| return ret; |
| } else { |
| sha256_update(&sctx->md, out, len); |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* EVP_CTRL_AEAD_SET_MAC_KEY */ |
| static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx, |
| const unsigned char *mackey, |
| size_t len) |
| { |
| PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| unsigned int i; |
| unsigned char hmac_key[64]; |
| |
| memset(hmac_key, 0, sizeof(hmac_key)); |
| |
| if (len > sizeof(hmac_key)) { |
| SHA256_Init(&ctx->head); |
| sha256_update(&ctx->head, mackey, len); |
| SHA256_Final(hmac_key, &ctx->head); |
| } else { |
| memcpy(hmac_key, mackey, len); |
| } |
| |
| for (i = 0; i < sizeof(hmac_key); i++) |
| hmac_key[i] ^= 0x36; /* ipad */ |
| SHA256_Init(&ctx->head); |
| sha256_update(&ctx->head, hmac_key, sizeof(hmac_key)); |
| |
| for (i = 0; i < sizeof(hmac_key); i++) |
| hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ |
| SHA256_Init(&ctx->tail); |
| sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key)); |
| |
| OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); |
| } |
| |
| /* EVP_CTRL_AEAD_TLS1_AAD */ |
| static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx, |
| unsigned char *aad_rec, int aad_len) |
| { |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| unsigned char *p = aad_rec; |
| unsigned int len; |
| |
| if (aad_len != EVP_AEAD_TLS1_AAD_LEN) |
| return -1; |
| |
| len = p[aad_len - 2] << 8 | p[aad_len - 1]; |
| |
| if (ctx->base.enc) { |
| ctx->payload_length = len; |
| if ((ctx->aux.tls_ver = |
| p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) { |
| if (len < AES_BLOCK_SIZE) |
| return 0; |
| len -= AES_BLOCK_SIZE; |
| p[aad_len - 2] = len >> 8; |
| p[aad_len - 1] = len; |
| } |
| sctx->md = sctx->head; |
| sha256_update(&sctx->md, p, aad_len); |
| ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH + |
| AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) |
| - len); |
| return 1; |
| } else { |
| memcpy(ctx->aux.tls_aad, p, aad_len); |
| ctx->payload_length = aad_len; |
| ctx->tls_aad_pad = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| } |
| |
| # if !defined(OPENSSL_NO_MULTIBLOCK) |
| /* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */ |
| static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize( |
| void *vctx) |
| { |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| |
| OPENSSL_assert(ctx->multiblock_max_send_fragment != 0); |
| return (int)(5 + 16 |
| + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16)); |
| } |
| |
| /* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */ |
| static int aesni_cbc_hmac_sha256_tls1_multiblock_aad( |
| void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param) |
| { |
| PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx; |
| PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx; |
| unsigned int n4x = 1, x4; |
| unsigned int frag, last, packlen, inp_len; |
| |
| inp_len = param->inp[11] << 8 | param->inp[12]; |
| |
| if (ctx->base.enc) { |
| if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION) |
| return -1; |
| |
| if (inp_len) { |
| if (inp_len < 4096) |
| return 0; /* too short */ |
| |
| if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5)) |
| n4x = 2; /* AVX2 */ |
| } else if ((n4x = param->interleave / 4) && n4x <= 2) |
| inp_len = param->len; |
| else |
| return -1; |
| |
| sctx->md = sctx->head; |
| sha256_update(&sctx->md, param->inp, 13); |
| |
| x4 = 4 * n4x; |
| n4x += 1; |
| |
| frag = inp_len >> n4x; |
| last = inp_len + frag - (frag << n4x); |
| if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) { |
| frag++; |
| last -= x4 - 1; |
| } |
| |
| packlen = 5 + 16 + ((frag + 32 + 16) & -16); |
| packlen = (packlen << n4x) - packlen; |
| packlen += 5 + 16 + ((last + 32 + 16) & -16); |
| |
| param->interleave = x4; |
| /* The returned values used by get need to be stored */ |
| ctx->multiblock_interleave = x4; |
| ctx->multiblock_aad_packlen = packlen; |
| return 1; |
| } |
| return -1; /* not yet */ |
| } |
| |
| /* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */ |
| static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt( |
| void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param) |
| { |
| return (int)tls1_multi_block_encrypt(ctx, param->out, |
| param->inp, param->len, |
| param->interleave / 4); |
| } |
| # endif |
| |
| static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = { |
| { |
| aesni_cbc_hmac_sha256_init_key, |
| aesni_cbc_hmac_sha256_cipher |
| }, |
| aesni_cbc_hmac_sha256_set_mac_key, |
| aesni_cbc_hmac_sha256_set_tls1_aad, |
| # if !defined(OPENSSL_NO_MULTIBLOCK) |
| aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize, |
| aesni_cbc_hmac_sha256_tls1_multiblock_aad, |
| aesni_cbc_hmac_sha256_tls1_multiblock_encrypt |
| # endif |
| }; |
| |
| const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void) |
| { |
| return &cipher_hw_aes_hmac_sha256; |
| } |
| |
| #endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */ |