| /* |
| * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <openssl/evp.h> |
| #include <openssl/kdf.h> |
| #include <openssl/err.h> |
| #include <openssl/core_names.h> |
| #include <openssl/proverr.h> |
| #include "crypto/evp.h" |
| #include "internal/numbers.h" |
| #include "prov/implementations.h" |
| #include "prov/provider_ctx.h" |
| #include "prov/providercommon.h" |
| #include "prov/provider_util.h" |
| |
| #ifndef OPENSSL_NO_SCRYPT |
| |
| static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new; |
| static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup; |
| static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free; |
| static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset; |
| static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive; |
| static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; |
| static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; |
| static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params; |
| static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params; |
| |
| static int scrypt_alg(const char *pass, size_t passlen, |
| const unsigned char *salt, size_t saltlen, |
| uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| unsigned char *key, size_t keylen, EVP_MD *sha256, |
| OSSL_LIB_CTX *libctx, const char *propq); |
| |
| typedef struct { |
| OSSL_LIB_CTX *libctx; |
| char *propq; |
| unsigned char *pass; |
| size_t pass_len; |
| unsigned char *salt; |
| size_t salt_len; |
| uint64_t N; |
| uint64_t r, p; |
| uint64_t maxmem_bytes; |
| EVP_MD *sha256; |
| } KDF_SCRYPT; |
| |
| static void kdf_scrypt_init(KDF_SCRYPT *ctx); |
| |
| static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx) |
| { |
| KDF_SCRYPT *ctx; |
| |
| if (!ossl_prov_is_running()) |
| return NULL; |
| |
| ctx = OPENSSL_zalloc(sizeof(*ctx)); |
| if (ctx == NULL) { |
| ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| ctx->libctx = libctx; |
| kdf_scrypt_init(ctx); |
| return ctx; |
| } |
| |
| static void *kdf_scrypt_new(void *provctx) |
| { |
| return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx)); |
| } |
| |
| static void kdf_scrypt_free(void *vctx) |
| { |
| KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| |
| if (ctx != NULL) { |
| OPENSSL_free(ctx->propq); |
| EVP_MD_free(ctx->sha256); |
| kdf_scrypt_reset(ctx); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| static void kdf_scrypt_reset(void *vctx) |
| { |
| KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| |
| OPENSSL_free(ctx->salt); |
| OPENSSL_clear_free(ctx->pass, ctx->pass_len); |
| kdf_scrypt_init(ctx); |
| } |
| |
| static void *kdf_scrypt_dup(void *vctx) |
| { |
| const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx; |
| KDF_SCRYPT *dest; |
| |
| dest = kdf_scrypt_new_inner(src->libctx); |
| if (dest != NULL) { |
| if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256)) |
| goto err; |
| if (src->propq != NULL) { |
| dest->propq = OPENSSL_strdup(src->propq); |
| if (dest->propq == NULL) |
| goto err; |
| } |
| if (!ossl_prov_memdup(src->salt, src->salt_len, |
| &dest->salt, &dest->salt_len) |
| || !ossl_prov_memdup(src->pass, src->pass_len, |
| &dest->pass , &dest->pass_len)) |
| goto err; |
| dest->N = src->N; |
| dest->r = src->r; |
| dest->p = src->p; |
| dest->maxmem_bytes = src->maxmem_bytes; |
| dest->sha256 = src->sha256; |
| } |
| return dest; |
| |
| err: |
| kdf_scrypt_free(dest); |
| return NULL; |
| } |
| |
| static void kdf_scrypt_init(KDF_SCRYPT *ctx) |
| { |
| /* Default values are the most conservative recommendation given in the |
| * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
| * for this parameter choice (approx. 128 * r * N * p bytes). |
| */ |
| ctx->N = 1 << 20; |
| ctx->r = 8; |
| ctx->p = 1; |
| ctx->maxmem_bytes = 1025 * 1024 * 1024; |
| } |
| |
| static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
| const OSSL_PARAM *p) |
| { |
| OPENSSL_clear_free(*buffer, *buflen); |
| *buffer = NULL; |
| *buflen = 0; |
| |
| if (p->data_size == 0) { |
| if ((*buffer = OPENSSL_malloc(1)) == NULL) { |
| ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } else if (p->data != NULL) { |
| if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int set_digest(KDF_SCRYPT *ctx) |
| { |
| EVP_MD_free(ctx->sha256); |
| ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq); |
| if (ctx->sha256 == NULL) { |
| OPENSSL_free(ctx); |
| ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int set_property_query(KDF_SCRYPT *ctx, const char *propq) |
| { |
| OPENSSL_free(ctx->propq); |
| ctx->propq = NULL; |
| if (propq != NULL) { |
| ctx->propq = OPENSSL_strdup(propq); |
| if (ctx->propq == NULL) { |
| ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen, |
| const OSSL_PARAM params[]) |
| { |
| KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
| |
| if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params)) |
| return 0; |
| |
| if (ctx->pass == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); |
| return 0; |
| } |
| |
| if (ctx->salt == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); |
| return 0; |
| } |
| |
| if (ctx->sha256 == NULL && !set_digest(ctx)) |
| return 0; |
| |
| return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, |
| ctx->salt_len, ctx->N, ctx->r, ctx->p, |
| ctx->maxmem_bytes, key, keylen, ctx->sha256, |
| ctx->libctx, ctx->propq); |
| } |
| |
| static int is_power_of_two(uint64_t value) |
| { |
| return (value != 0) && ((value & (value - 1)) == 0); |
| } |
| |
| static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
| { |
| const OSSL_PARAM *p; |
| KDF_SCRYPT *ctx = vctx; |
| uint64_t u64_value; |
| |
| if (params == NULL) |
| return 1; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) |
| if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) |
| if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) |
| != NULL) { |
| if (!OSSL_PARAM_get_uint64(p, &u64_value) |
| || u64_value <= 1 |
| || !is_power_of_two(u64_value)) |
| return 0; |
| ctx->N = u64_value; |
| } |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) |
| != NULL) { |
| if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| return 0; |
| ctx->r = u64_value; |
| } |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) |
| != NULL) { |
| if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| return 0; |
| ctx->p = u64_value; |
| } |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) |
| != NULL) { |
| if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
| return 0; |
| ctx->maxmem_bytes = u64_value; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES); |
| if (p != NULL) { |
| if (p->data_type != OSSL_PARAM_UTF8_STRING |
| || !set_property_query(ctx, p->data) |
| || !set_digest(ctx)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx, |
| ossl_unused void *p_ctx) |
| { |
| static const OSSL_PARAM known_settable_ctx_params[] = { |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
| OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), |
| OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), |
| OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), |
| OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), |
| OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
| OSSL_PARAM_END |
| }; |
| return known_settable_ctx_params; |
| } |
| |
| static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
| { |
| OSSL_PARAM *p; |
| |
| if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
| return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
| return -2; |
| } |
| |
| static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx, |
| ossl_unused void *p_ctx) |
| { |
| static const OSSL_PARAM known_gettable_ctx_params[] = { |
| OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
| OSSL_PARAM_END |
| }; |
| return known_gettable_ctx_params; |
| } |
| |
| const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = { |
| { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, |
| { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup }, |
| { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, |
| { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, |
| { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, |
| { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
| (void(*)(void))kdf_scrypt_settable_ctx_params }, |
| { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, |
| { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
| (void(*)(void))kdf_scrypt_gettable_ctx_params }, |
| { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, |
| { 0, NULL } |
| }; |
| |
| #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| static void salsa208_word_specification(uint32_t inout[16]) |
| { |
| int i; |
| uint32_t x[16]; |
| |
| memcpy(x, inout, sizeof(x)); |
| for (i = 8; i > 0; i -= 2) { |
| x[4] ^= R(x[0] + x[12], 7); |
| x[8] ^= R(x[4] + x[0], 9); |
| x[12] ^= R(x[8] + x[4], 13); |
| x[0] ^= R(x[12] + x[8], 18); |
| x[9] ^= R(x[5] + x[1], 7); |
| x[13] ^= R(x[9] + x[5], 9); |
| x[1] ^= R(x[13] + x[9], 13); |
| x[5] ^= R(x[1] + x[13], 18); |
| x[14] ^= R(x[10] + x[6], 7); |
| x[2] ^= R(x[14] + x[10], 9); |
| x[6] ^= R(x[2] + x[14], 13); |
| x[10] ^= R(x[6] + x[2], 18); |
| x[3] ^= R(x[15] + x[11], 7); |
| x[7] ^= R(x[3] + x[15], 9); |
| x[11] ^= R(x[7] + x[3], 13); |
| x[15] ^= R(x[11] + x[7], 18); |
| x[1] ^= R(x[0] + x[3], 7); |
| x[2] ^= R(x[1] + x[0], 9); |
| x[3] ^= R(x[2] + x[1], 13); |
| x[0] ^= R(x[3] + x[2], 18); |
| x[6] ^= R(x[5] + x[4], 7); |
| x[7] ^= R(x[6] + x[5], 9); |
| x[4] ^= R(x[7] + x[6], 13); |
| x[5] ^= R(x[4] + x[7], 18); |
| x[11] ^= R(x[10] + x[9], 7); |
| x[8] ^= R(x[11] + x[10], 9); |
| x[9] ^= R(x[8] + x[11], 13); |
| x[10] ^= R(x[9] + x[8], 18); |
| x[12] ^= R(x[15] + x[14], 7); |
| x[13] ^= R(x[12] + x[15], 9); |
| x[14] ^= R(x[13] + x[12], 13); |
| x[15] ^= R(x[14] + x[13], 18); |
| } |
| for (i = 0; i < 16; ++i) |
| inout[i] += x[i]; |
| OPENSSL_cleanse(x, sizeof(x)); |
| } |
| |
| static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
| { |
| uint64_t i, j; |
| uint32_t X[16], *pB; |
| |
| memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
| pB = B; |
| for (i = 0; i < r * 2; i++) { |
| for (j = 0; j < 16; j++) |
| X[j] ^= *pB++; |
| salsa208_word_specification(X); |
| memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
| } |
| OPENSSL_cleanse(X, sizeof(X)); |
| } |
| |
| static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
| uint32_t *X, uint32_t *T, uint32_t *V) |
| { |
| unsigned char *pB; |
| uint32_t *pV; |
| uint64_t i, k; |
| |
| /* Convert from little endian input */ |
| for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
| *pV = *pB++; |
| *pV |= *pB++ << 8; |
| *pV |= *pB++ << 16; |
| *pV |= (uint32_t)*pB++ << 24; |
| } |
| |
| for (i = 1; i < N; i++, pV += 32 * r) |
| scryptBlockMix(pV, pV - 32 * r, r); |
| |
| scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
| |
| for (i = 0; i < N; i++) { |
| uint32_t j; |
| j = X[16 * (2 * r - 1)] % N; |
| pV = V + 32 * r * j; |
| for (k = 0; k < 32 * r; k++) |
| T[k] = X[k] ^ *pV++; |
| scryptBlockMix(X, T, r); |
| } |
| /* Convert output to little endian */ |
| for (i = 0, pB = B; i < 32 * r; i++) { |
| uint32_t xtmp = X[i]; |
| *pB++ = xtmp & 0xff; |
| *pB++ = (xtmp >> 8) & 0xff; |
| *pB++ = (xtmp >> 16) & 0xff; |
| *pB++ = (xtmp >> 24) & 0xff; |
| } |
| } |
| |
| #ifndef SIZE_MAX |
| # define SIZE_MAX ((size_t)-1) |
| #endif |
| |
| /* |
| * Maximum power of two that will fit in uint64_t: this should work on |
| * most (all?) platforms. |
| */ |
| |
| #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
| |
| /* |
| * Maximum value of p * r: |
| * p <= ((2^32-1) * hLen) / MFLen => |
| * p <= ((2^32-1) * 32) / (128 * r) => |
| * p * r <= (2^30-1) |
| */ |
| |
| #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| |
| static int scrypt_alg(const char *pass, size_t passlen, |
| const unsigned char *salt, size_t saltlen, |
| uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| unsigned char *key, size_t keylen, EVP_MD *sha256, |
| OSSL_LIB_CTX *libctx, const char *propq) |
| { |
| int rv = 0; |
| unsigned char *B; |
| uint32_t *X, *V, *T; |
| uint64_t i, Blen, Vlen; |
| |
| /* Sanity check parameters */ |
| /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
| if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
| return 0; |
| /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
| if (p > SCRYPT_PR_MAX / r) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* |
| * Need to check N: if 2^(128 * r / 8) overflows limit this is |
| * automatically satisfied since N <= UINT64_MAX. |
| */ |
| |
| if (16 * r <= LOG2_UINT64_MAX) { |
| if (N >= (((uint64_t)1) << (16 * r))) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| } |
| |
| /* Memory checks: check total allocated buffer size fits in uint64_t */ |
| |
| /* |
| * B size in section 5 step 1.S |
| * Note: we know p * 128 * r < UINT64_MAX because we already checked |
| * p * r < SCRYPT_PR_MAX |
| */ |
| Blen = p * 128 * r; |
| /* |
| * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
| * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
| */ |
| if (Blen > INT_MAX) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* |
| * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
| * This is combined size V, X and T (section 4) |
| */ |
| i = UINT64_MAX / (32 * sizeof(uint32_t)); |
| if (N + 2 > i / r) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
| |
| /* check total allocated size fits in uint64_t */ |
| if (Blen > UINT64_MAX - Vlen) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* Check that the maximum memory doesn't exceed a size_t limits */ |
| if (maxmem > SIZE_MAX) |
| maxmem = SIZE_MAX; |
| |
| if (Blen + Vlen > maxmem) { |
| ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* If no key return to indicate parameters are OK */ |
| if (key == NULL) |
| return 1; |
| |
| B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
| if (B == NULL) { |
| ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| X = (uint32_t *)(B + Blen); |
| T = X + 32 * r; |
| V = T + 32 * r; |
| if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256, |
| (int)Blen, B, libctx, propq) == 0) |
| goto err; |
| |
| for (i = 0; i < p; i++) |
| scryptROMix(B + 128 * r * i, r, N, X, T, V); |
| |
| if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256, |
| keylen, key, libctx, propq) == 0) |
| goto err; |
| rv = 1; |
| err: |
| if (rv == 0) |
| ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR); |
| |
| OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
| return rv; |
| } |
| |
| #endif |