| /* |
| * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* |
| * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final |
| * Section 4.1. |
| * |
| * The Single Step KDF algorithm is given by: |
| * |
| * Result(0) = empty bit string (i.e., the null string). |
| * For i = 1 to reps, do the following: |
| * Increment counter by 1. |
| * Result(i) = Result(i - 1) || H(counter || Z || FixedInfo). |
| * DKM = LeftmostBits(Result(reps), L)) |
| * |
| * NOTES: |
| * Z is a shared secret required to produce the derived key material. |
| * counter is a 4 byte buffer. |
| * FixedInfo is a bit string containing context specific data. |
| * DKM is the output derived key material. |
| * L is the required size of the DKM. |
| * reps = [L / H_outputBits] |
| * H(x) is the auxiliary function that can be either a hash, HMAC or KMAC. |
| * H_outputBits is the length of the output of the auxiliary function H(x). |
| * |
| * Currently there is not a comprehensive list of test vectors for this |
| * algorithm, especially for H(x) = HMAC and H(x) = KMAC. |
| * Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests. |
| */ |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <openssl/hmac.h> |
| #include <openssl/evp.h> |
| #include <openssl/kdf.h> |
| #include <openssl/core_names.h> |
| #include <openssl/params.h> |
| #include <openssl/proverr.h> |
| #include "internal/cryptlib.h" |
| #include "internal/numbers.h" |
| #include "crypto/evp.h" |
| #include "prov/provider_ctx.h" |
| #include "prov/providercommon.h" |
| #include "prov/implementations.h" |
| #include "prov/provider_util.h" |
| |
| typedef struct { |
| void *provctx; |
| EVP_MAC_CTX *macctx; /* H(x) = HMAC_hash OR H(x) = KMAC */ |
| PROV_DIGEST digest; /* H(x) = hash(x) */ |
| unsigned char *secret; |
| size_t secret_len; |
| unsigned char *info; |
| size_t info_len; |
| unsigned char *salt; |
| size_t salt_len; |
| size_t out_len; /* optional KMAC parameter */ |
| } KDF_SSKDF; |
| |
| #define SSKDF_MAX_INLEN (1<<30) |
| #define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4) |
| #define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4) |
| |
| /* KMAC uses a Customisation string of 'KDF' */ |
| static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 }; |
| |
| static OSSL_FUNC_kdf_newctx_fn sskdf_new; |
| static OSSL_FUNC_kdf_dupctx_fn sskdf_dup; |
| static OSSL_FUNC_kdf_freectx_fn sskdf_free; |
| static OSSL_FUNC_kdf_reset_fn sskdf_reset; |
| static OSSL_FUNC_kdf_derive_fn sskdf_derive; |
| static OSSL_FUNC_kdf_derive_fn x963kdf_derive; |
| static OSSL_FUNC_kdf_settable_ctx_params_fn sskdf_settable_ctx_params; |
| static OSSL_FUNC_kdf_set_ctx_params_fn sskdf_set_ctx_params; |
| static OSSL_FUNC_kdf_gettable_ctx_params_fn sskdf_gettable_ctx_params; |
| static OSSL_FUNC_kdf_get_ctx_params_fn sskdf_get_ctx_params; |
| |
| /* |
| * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final |
| * Section 4. One-Step Key Derivation using H(x) = hash(x) |
| * Note: X9.63 also uses this code with the only difference being that the |
| * counter is appended to the secret 'z'. |
| * i.e. |
| * result[i] = Hash(counter || z || info) for One Step OR |
| * result[i] = Hash(z || counter || info) for X9.63. |
| */ |
| static int SSKDF_hash_kdm(const EVP_MD *kdf_md, |
| const unsigned char *z, size_t z_len, |
| const unsigned char *info, size_t info_len, |
| unsigned int append_ctr, |
| unsigned char *derived_key, size_t derived_key_len) |
| { |
| int ret = 0, hlen; |
| size_t counter, out_len, len = derived_key_len; |
| unsigned char c[4]; |
| unsigned char mac[EVP_MAX_MD_SIZE]; |
| unsigned char *out = derived_key; |
| EVP_MD_CTX *ctx = NULL, *ctx_init = NULL; |
| |
| if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN |
| || derived_key_len > SSKDF_MAX_INLEN |
| || derived_key_len == 0) |
| return 0; |
| |
| hlen = EVP_MD_get_size(kdf_md); |
| if (hlen <= 0) |
| return 0; |
| out_len = (size_t)hlen; |
| |
| ctx = EVP_MD_CTX_create(); |
| ctx_init = EVP_MD_CTX_create(); |
| if (ctx == NULL || ctx_init == NULL) |
| goto end; |
| |
| if (!EVP_DigestInit(ctx_init, kdf_md)) |
| goto end; |
| |
| for (counter = 1;; counter++) { |
| c[0] = (unsigned char)((counter >> 24) & 0xff); |
| c[1] = (unsigned char)((counter >> 16) & 0xff); |
| c[2] = (unsigned char)((counter >> 8) & 0xff); |
| c[3] = (unsigned char)(counter & 0xff); |
| |
| if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init) |
| && (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) |
| && EVP_DigestUpdate(ctx, z, z_len) |
| && (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) |
| && EVP_DigestUpdate(ctx, info, info_len))) |
| goto end; |
| if (len >= out_len) { |
| if (!EVP_DigestFinal_ex(ctx, out, NULL)) |
| goto end; |
| out += out_len; |
| len -= out_len; |
| if (len == 0) |
| break; |
| } else { |
| if (!EVP_DigestFinal_ex(ctx, mac, NULL)) |
| goto end; |
| memcpy(out, mac, len); |
| break; |
| } |
| } |
| ret = 1; |
| end: |
| EVP_MD_CTX_destroy(ctx); |
| EVP_MD_CTX_destroy(ctx_init); |
| OPENSSL_cleanse(mac, sizeof(mac)); |
| return ret; |
| } |
| |
| static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom, |
| size_t custom_len, size_t kmac_out_len, |
| size_t derived_key_len, unsigned char **out) |
| { |
| OSSL_PARAM params[2]; |
| |
| /* Only KMAC has custom data - so return if not KMAC */ |
| if (custom == NULL) |
| return 1; |
| |
| params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM, |
| (void *)custom, custom_len); |
| params[1] = OSSL_PARAM_construct_end(); |
| |
| if (!EVP_MAC_CTX_set_params(ctx, params)) |
| return 0; |
| |
| /* By default only do one iteration if kmac_out_len is not specified */ |
| if (kmac_out_len == 0) |
| kmac_out_len = derived_key_len; |
| /* otherwise check the size is valid */ |
| else if (!(kmac_out_len == derived_key_len |
| || kmac_out_len == 20 |
| || kmac_out_len == 28 |
| || kmac_out_len == 32 |
| || kmac_out_len == 48 |
| || kmac_out_len == 64)) |
| return 0; |
| |
| params[0] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, |
| &kmac_out_len); |
| |
| if (EVP_MAC_CTX_set_params(ctx, params) <= 0) |
| return 0; |
| |
| /* |
| * For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so |
| * alloc a buffer for this case. |
| */ |
| if (kmac_out_len > EVP_MAX_MD_SIZE) { |
| *out = OPENSSL_zalloc(kmac_out_len); |
| if (*out == NULL) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final |
| * Section 4. One-Step Key Derivation using MAC: i.e either |
| * H(x) = HMAC-hash(salt, x) OR |
| * H(x) = KMAC#(salt, x, outbits, CustomString='KDF') |
| */ |
| static int SSKDF_mac_kdm(EVP_MAC_CTX *ctx_init, |
| const unsigned char *kmac_custom, |
| size_t kmac_custom_len, size_t kmac_out_len, |
| const unsigned char *salt, size_t salt_len, |
| const unsigned char *z, size_t z_len, |
| const unsigned char *info, size_t info_len, |
| unsigned char *derived_key, size_t derived_key_len) |
| { |
| int ret = 0; |
| size_t counter, out_len, len; |
| unsigned char c[4]; |
| unsigned char mac_buf[EVP_MAX_MD_SIZE]; |
| unsigned char *out = derived_key; |
| EVP_MAC_CTX *ctx = NULL; |
| unsigned char *mac = mac_buf, *kmac_buffer = NULL; |
| |
| if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN |
| || derived_key_len > SSKDF_MAX_INLEN |
| || derived_key_len == 0) |
| return 0; |
| |
| if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len, |
| derived_key_len, &kmac_buffer)) |
| goto end; |
| if (kmac_buffer != NULL) |
| mac = kmac_buffer; |
| |
| if (!EVP_MAC_init(ctx_init, salt, salt_len, NULL)) |
| goto end; |
| |
| out_len = EVP_MAC_CTX_get_mac_size(ctx_init); /* output size */ |
| if (out_len <= 0 || (mac == mac_buf && out_len > sizeof(mac_buf))) |
| goto end; |
| len = derived_key_len; |
| |
| for (counter = 1;; counter++) { |
| c[0] = (unsigned char)((counter >> 24) & 0xff); |
| c[1] = (unsigned char)((counter >> 16) & 0xff); |
| c[2] = (unsigned char)((counter >> 8) & 0xff); |
| c[3] = (unsigned char)(counter & 0xff); |
| |
| ctx = EVP_MAC_CTX_dup(ctx_init); |
| if (!(ctx != NULL |
| && EVP_MAC_update(ctx, c, sizeof(c)) |
| && EVP_MAC_update(ctx, z, z_len) |
| && EVP_MAC_update(ctx, info, info_len))) |
| goto end; |
| if (len >= out_len) { |
| if (!EVP_MAC_final(ctx, out, NULL, len)) |
| goto end; |
| out += out_len; |
| len -= out_len; |
| if (len == 0) |
| break; |
| } else { |
| if (!EVP_MAC_final(ctx, mac, NULL, out_len)) |
| goto end; |
| memcpy(out, mac, len); |
| break; |
| } |
| EVP_MAC_CTX_free(ctx); |
| ctx = NULL; |
| } |
| ret = 1; |
| end: |
| if (kmac_buffer != NULL) |
| OPENSSL_clear_free(kmac_buffer, kmac_out_len); |
| else |
| OPENSSL_cleanse(mac_buf, sizeof(mac_buf)); |
| |
| EVP_MAC_CTX_free(ctx); |
| return ret; |
| } |
| |
| static void *sskdf_new(void *provctx) |
| { |
| KDF_SSKDF *ctx; |
| |
| if (!ossl_prov_is_running()) |
| return NULL; |
| |
| if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) |
| ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| ctx->provctx = provctx; |
| return ctx; |
| } |
| |
| static void sskdf_reset(void *vctx) |
| { |
| KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; |
| void *provctx = ctx->provctx; |
| |
| EVP_MAC_CTX_free(ctx->macctx); |
| ossl_prov_digest_reset(&ctx->digest); |
| OPENSSL_clear_free(ctx->secret, ctx->secret_len); |
| OPENSSL_clear_free(ctx->info, ctx->info_len); |
| OPENSSL_clear_free(ctx->salt, ctx->salt_len); |
| memset(ctx, 0, sizeof(*ctx)); |
| ctx->provctx = provctx; |
| } |
| |
| static void sskdf_free(void *vctx) |
| { |
| KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; |
| |
| if (ctx != NULL) { |
| sskdf_reset(ctx); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| static void *sskdf_dup(void *vctx) |
| { |
| const KDF_SSKDF *src = (const KDF_SSKDF *)vctx; |
| KDF_SSKDF *dest; |
| |
| dest = sskdf_new(src->provctx); |
| if (dest != NULL) { |
| if (src->macctx != NULL) { |
| dest->macctx = EVP_MAC_CTX_dup(src->macctx); |
| if (dest->macctx == NULL) |
| goto err; |
| } |
| if (!ossl_prov_memdup(src->info, src->info_len, |
| &dest->info, &dest->info_len) |
| || !ossl_prov_memdup(src->salt, src->salt_len, |
| &dest->salt , &dest->salt_len) |
| || !ossl_prov_memdup(src->secret, src->secret_len, |
| &dest->secret, &dest->secret_len) |
| || !ossl_prov_digest_copy(&dest->digest, &src->digest)) |
| goto err; |
| dest->out_len = src->out_len; |
| } |
| return dest; |
| |
| err: |
| sskdf_free(dest); |
| return NULL; |
| } |
| |
| static int sskdf_set_buffer(unsigned char **out, size_t *out_len, |
| const OSSL_PARAM *p) |
| { |
| if (p->data == NULL || p->data_size == 0) |
| return 1; |
| OPENSSL_free(*out); |
| *out = NULL; |
| return OSSL_PARAM_get_octet_string(p, (void **)out, 0, out_len); |
| } |
| |
| static size_t sskdf_size(KDF_SSKDF *ctx) |
| { |
| int len; |
| const EVP_MD *md = ossl_prov_digest_md(&ctx->digest); |
| |
| if (md == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
| return 0; |
| } |
| len = EVP_MD_get_size(md); |
| return (len <= 0) ? 0 : (size_t)len; |
| } |
| |
| static int sskdf_derive(void *vctx, unsigned char *key, size_t keylen, |
| const OSSL_PARAM params[]) |
| { |
| KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; |
| const EVP_MD *md; |
| |
| if (!ossl_prov_is_running() || !sskdf_set_ctx_params(ctx, params)) |
| return 0; |
| if (ctx->secret == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
| return 0; |
| } |
| md = ossl_prov_digest_md(&ctx->digest); |
| |
| if (ctx->macctx != NULL) { |
| /* H(x) = KMAC or H(x) = HMAC */ |
| int ret; |
| const unsigned char *custom = NULL; |
| size_t custom_len = 0; |
| int default_salt_len; |
| EVP_MAC *mac = EVP_MAC_CTX_get0_mac(ctx->macctx); |
| |
| if (EVP_MAC_is_a(mac, OSSL_MAC_NAME_HMAC)) { |
| /* H(x) = HMAC(x, salt, hash) */ |
| if (md == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
| return 0; |
| } |
| default_salt_len = EVP_MD_get_size(md); |
| if (default_salt_len <= 0) |
| return 0; |
| } else if (EVP_MAC_is_a(mac, OSSL_MAC_NAME_KMAC128) |
| || EVP_MAC_is_a(mac, OSSL_MAC_NAME_KMAC256)) { |
| /* H(x) = KMACzzz(x, salt, custom) */ |
| custom = kmac_custom_str; |
| custom_len = sizeof(kmac_custom_str); |
| if (EVP_MAC_is_a(mac, OSSL_MAC_NAME_KMAC128)) |
| default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE; |
| else |
| default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE; |
| } else { |
| ERR_raise(ERR_LIB_PROV, PROV_R_UNSUPPORTED_MAC_TYPE); |
| return 0; |
| } |
| /* If no salt is set then use a default_salt of zeros */ |
| if (ctx->salt == NULL || ctx->salt_len <= 0) { |
| ctx->salt = OPENSSL_zalloc(default_salt_len); |
| if (ctx->salt == NULL) { |
| ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ctx->salt_len = default_salt_len; |
| } |
| ret = SSKDF_mac_kdm(ctx->macctx, |
| custom, custom_len, ctx->out_len, |
| ctx->salt, ctx->salt_len, |
| ctx->secret, ctx->secret_len, |
| ctx->info, ctx->info_len, key, keylen); |
| return ret; |
| } else { |
| /* H(x) = hash */ |
| if (md == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
| return 0; |
| } |
| return SSKDF_hash_kdm(md, ctx->secret, ctx->secret_len, |
| ctx->info, ctx->info_len, 0, key, keylen); |
| } |
| } |
| |
| static int x963kdf_derive(void *vctx, unsigned char *key, size_t keylen, |
| const OSSL_PARAM params[]) |
| { |
| KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; |
| const EVP_MD *md; |
| |
| if (!ossl_prov_is_running() || !sskdf_set_ctx_params(ctx, params)) |
| return 0; |
| |
| if (ctx->secret == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
| return 0; |
| } |
| |
| if (ctx->macctx != NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_NOT_SUPPORTED); |
| return 0; |
| } |
| |
| /* H(x) = hash */ |
| md = ossl_prov_digest_md(&ctx->digest); |
| if (md == NULL) { |
| ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
| return 0; |
| } |
| |
| return SSKDF_hash_kdm(md, ctx->secret, ctx->secret_len, |
| ctx->info, ctx->info_len, 1, key, keylen); |
| } |
| |
| static int sskdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
| { |
| const OSSL_PARAM *p; |
| KDF_SSKDF *ctx = vctx; |
| OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
| size_t sz; |
| |
| if (params == NULL) |
| return 1; |
| |
| if (!ossl_prov_digest_load_from_params(&ctx->digest, params, libctx)) |
| return 0; |
| |
| if (!ossl_prov_macctx_load_from_params(&ctx->macctx, params, |
| NULL, NULL, NULL, libctx)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL |
| || (p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_KEY)) != NULL) |
| if (!sskdf_set_buffer(&ctx->secret, &ctx->secret_len, p)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_INFO)) != NULL) |
| if (!sskdf_set_buffer(&ctx->info, &ctx->info_len, p)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) |
| if (!sskdf_set_buffer(&ctx->salt, &ctx->salt_len, p)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_MAC_SIZE)) |
| != NULL) { |
| if (!OSSL_PARAM_get_size_t(p, &sz) || sz == 0) |
| return 0; |
| ctx->out_len = sz; |
| } |
| return 1; |
| } |
| |
| static const OSSL_PARAM *sskdf_settable_ctx_params(ossl_unused void *ctx, |
| ossl_unused void *provctx) |
| { |
| static const OSSL_PARAM known_settable_ctx_params[] = { |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0), |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_INFO, NULL, 0), |
| OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
| OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
| OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_MAC, NULL, 0), |
| OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
| OSSL_PARAM_size_t(OSSL_KDF_PARAM_MAC_SIZE, NULL), |
| OSSL_PARAM_END |
| }; |
| return known_settable_ctx_params; |
| } |
| |
| static int sskdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
| { |
| KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; |
| OSSL_PARAM *p; |
| |
| if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
| return OSSL_PARAM_set_size_t(p, sskdf_size(ctx)); |
| return -2; |
| } |
| |
| static const OSSL_PARAM *sskdf_gettable_ctx_params(ossl_unused void *ctx, |
| ossl_unused void *provctx) |
| { |
| static const OSSL_PARAM known_gettable_ctx_params[] = { |
| OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
| OSSL_PARAM_END |
| }; |
| return known_gettable_ctx_params; |
| } |
| |
| const OSSL_DISPATCH ossl_kdf_sskdf_functions[] = { |
| { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))sskdf_new }, |
| { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))sskdf_dup }, |
| { OSSL_FUNC_KDF_FREECTX, (void(*)(void))sskdf_free }, |
| { OSSL_FUNC_KDF_RESET, (void(*)(void))sskdf_reset }, |
| { OSSL_FUNC_KDF_DERIVE, (void(*)(void))sskdf_derive }, |
| { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
| (void(*)(void))sskdf_settable_ctx_params }, |
| { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))sskdf_set_ctx_params }, |
| { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
| (void(*)(void))sskdf_gettable_ctx_params }, |
| { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))sskdf_get_ctx_params }, |
| { 0, NULL } |
| }; |
| |
| const OSSL_DISPATCH ossl_kdf_x963_kdf_functions[] = { |
| { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))sskdf_new }, |
| { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))sskdf_dup }, |
| { OSSL_FUNC_KDF_FREECTX, (void(*)(void))sskdf_free }, |
| { OSSL_FUNC_KDF_RESET, (void(*)(void))sskdf_reset }, |
| { OSSL_FUNC_KDF_DERIVE, (void(*)(void))x963kdf_derive }, |
| { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
| (void(*)(void))sskdf_settable_ctx_params }, |
| { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))sskdf_set_ctx_params }, |
| { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
| (void(*)(void))sskdf_gettable_ctx_params }, |
| { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))sskdf_get_ctx_params }, |
| { 0, NULL } |
| }; |