blob: 2d40985c78a1f1aaa87a8b8e5e0f81aaeae3ddd8 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_
#define SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_
#include <array>
#include <deque>
#include <map>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "perfetto/base/logging.h"
#include "perfetto/base/time.h"
#include "perfetto/ext/base/hash.h"
#include "perfetto/ext/base/optional.h"
#include "perfetto/ext/base/string_view.h"
#include "perfetto/ext/base/utils.h"
#include "src/trace_processor/ftrace_utils.h"
#include "src/trace_processor/metadata.h"
#include "src/trace_processor/stats.h"
#include "src/trace_processor/string_pool.h"
#include "src/trace_processor/tables/profiler_tables.h"
#include "src/trace_processor/tables/slice_tables.h"
#include "src/trace_processor/tables/track_tables.h"
#include "src/trace_processor/variadic.h"
namespace perfetto {
namespace trace_processor {
// UniquePid is an offset into |unique_processes_|. This is necessary because
// Unix pids are reused and thus not guaranteed to be unique over a long
// period of time.
using UniquePid = uint32_t;
// UniqueTid is an offset into |unique_threads_|. Necessary because tids can
// be reused.
using UniqueTid = uint32_t;
// StringId is an offset into |string_pool_|.
using StringId = StringPool::Id;
static const StringId kNullStringId = StringId(0);
// Identifiers for all the tables in the database.
enum TableId : uint8_t {
// Intentionally don't have TableId == 0 so that RowId == 0 can refer to an
// invalid row id.
kCounterValues = 1,
kRawEvents = 2,
kInstants = 3,
kSched = 4,
kNestableSlices = 5,
kMetadataTable = 6,
kTrack = 7,
kVulkanMemoryAllocation = 8,
};
// The top 8 bits are set to the TableId and the bottom 32 to the row of the
// table.
using RowId = int64_t;
static const RowId kInvalidRowId = 0;
using ArgSetId = uint32_t;
static const ArgSetId kInvalidArgSetId = 0;
using TrackId = uint32_t;
// TODO(lalitm): this is a temporary hack while migrating the counters table and
// will be removed when the migration is complete.
static const TrackId kInvalidTrackId = std::numeric_limits<TrackId>::max();
enum class RefType {
kRefNoRef = 0,
kRefUtid = 1,
kRefCpuId = 2,
kRefIrq = 3,
kRefSoftIrq = 4,
kRefUpid = 5,
kRefGpuId = 6,
kRefTrack = 7,
kRefMax
};
const std::vector<const char*>& GetRefTypeStringMap();
// Stores a data inside a trace file in a columnar form. This makes it efficient
// to read or search across a single field of the trace (e.g. all the thread
// names for a given CPU).
class TraceStorage {
public:
TraceStorage();
virtual ~TraceStorage();
// Information about a unique process seen in a trace.
struct Process {
explicit Process(uint32_t p) : pid(p) {}
int64_t start_ns = 0;
int64_t end_ns = 0;
StringId name_id = 0;
uint32_t pid = 0;
base::Optional<UniquePid> parent_upid;
base::Optional<uint32_t> uid;
};
// Information about a unique thread seen in a trace.
struct Thread {
explicit Thread(uint32_t t) : tid(t) {}
int64_t start_ns = 0;
int64_t end_ns = 0;
StringId name_id = 0;
base::Optional<UniquePid> upid;
uint32_t tid = 0;
};
// Generic key value storage which can be referenced by other tables.
class Args {
public:
struct Arg {
StringId flat_key = 0;
StringId key = 0;
Variadic value = Variadic::Integer(0);
// This is only used by the arg tracker and so is not part of the hash.
RowId row_id = 0;
};
struct ArgHasher {
uint64_t operator()(const Arg& arg) const noexcept {
base::Hash hash;
hash.Update(arg.key);
// We don't hash arg.flat_key because it's a subsequence of arg.key.
switch (arg.value.type) {
case Variadic::Type::kInt:
hash.Update(arg.value.int_value);
break;
case Variadic::Type::kUint:
hash.Update(arg.value.uint_value);
break;
case Variadic::Type::kString:
hash.Update(arg.value.string_value);
break;
case Variadic::Type::kReal:
hash.Update(arg.value.real_value);
break;
case Variadic::Type::kPointer:
hash.Update(arg.value.pointer_value);
break;
case Variadic::Type::kBool:
hash.Update(arg.value.bool_value);
break;
case Variadic::Type::kJson:
hash.Update(arg.value.json_value);
break;
}
return hash.digest();
}
};
const std::deque<ArgSetId>& set_ids() const { return set_ids_; }
const std::deque<StringId>& flat_keys() const { return flat_keys_; }
const std::deque<StringId>& keys() const { return keys_; }
const std::deque<Variadic>& arg_values() const { return arg_values_; }
uint32_t args_count() const {
return static_cast<uint32_t>(set_ids_.size());
}
ArgSetId AddArgSet(const std::vector<Arg>& args,
uint32_t begin,
uint32_t end) {
base::Hash hash;
for (uint32_t i = begin; i < end; i++) {
hash.Update(ArgHasher()(args[i]));
}
ArgSetHash digest = hash.digest();
auto it = arg_row_for_hash_.find(digest);
if (it != arg_row_for_hash_.end()) {
return set_ids_[it->second];
}
// The +1 ensures that nothing has an id == kInvalidArgSetId == 0.
ArgSetId id = static_cast<uint32_t>(arg_row_for_hash_.size()) + 1;
arg_row_for_hash_.emplace(digest, args_count());
for (uint32_t i = begin; i < end; i++) {
const auto& arg = args[i];
set_ids_.emplace_back(id);
flat_keys_.emplace_back(arg.flat_key);
keys_.emplace_back(arg.key);
arg_values_.emplace_back(arg.value);
}
return id;
}
private:
using ArgSetHash = uint64_t;
std::deque<ArgSetId> set_ids_;
std::deque<StringId> flat_keys_;
std::deque<StringId> keys_;
std::deque<Variadic> arg_values_;
std::unordered_map<ArgSetHash, uint32_t> arg_row_for_hash_;
};
class Tracks {
public:
inline uint32_t AddTrack(StringId name) {
names_.emplace_back(name);
return track_count() - 1;
}
uint32_t track_count() const {
return static_cast<uint32_t>(names_.size());
}
const std::deque<StringId>& names() const { return names_; }
private:
std::deque<StringId> names_;
};
class GpuContexts {
public:
inline void AddGpuContext(uint64_t context_id,
UniquePid upid,
uint32_t priority) {
context_ids_.emplace_back(context_id);
upids_.emplace_back(upid);
priorities_.emplace_back(priority);
}
uint32_t gpu_context_count() const {
return static_cast<uint32_t>(context_ids_.size());
}
const std::deque<uint64_t>& context_ids() const { return context_ids_; }
const std::deque<UniquePid>& upids() const { return upids_; }
const std::deque<uint32_t>& priorities() const { return priorities_; }
private:
std::deque<uint64_t> context_ids_;
std::deque<UniquePid> upids_;
std::deque<uint32_t> priorities_;
};
class Slices {
public:
inline size_t AddSlice(uint32_t cpu,
int64_t start_ns,
int64_t duration_ns,
UniqueTid utid,
ftrace_utils::TaskState end_state,
int32_t priority) {
cpus_.emplace_back(cpu);
start_ns_.emplace_back(start_ns);
durations_.emplace_back(duration_ns);
utids_.emplace_back(utid);
end_states_.emplace_back(end_state);
priorities_.emplace_back(priority);
if (utid >= rows_for_utids_.size())
rows_for_utids_.resize(utid + 1);
rows_for_utids_[utid].emplace_back(slice_count() - 1);
return slice_count() - 1;
}
void set_duration(size_t index, int64_t duration_ns) {
durations_[index] = duration_ns;
}
void set_end_state(size_t index, ftrace_utils::TaskState end_state) {
end_states_[index] = end_state;
}
size_t slice_count() const { return start_ns_.size(); }
const std::deque<uint32_t>& cpus() const { return cpus_; }
const std::deque<int64_t>& start_ns() const { return start_ns_; }
const std::deque<int64_t>& durations() const { return durations_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<ftrace_utils::TaskState>& end_state() const {
return end_states_;
}
const std::deque<int32_t>& priorities() const { return priorities_; }
const std::deque<std::vector<uint32_t>>& rows_for_utids() const {
return rows_for_utids_;
}
private:
// Each deque below has the same number of entries (the number of slices
// in the trace for the CPU).
std::deque<uint32_t> cpus_;
std::deque<int64_t> start_ns_;
std::deque<int64_t> durations_;
std::deque<UniqueTid> utids_;
std::deque<ftrace_utils::TaskState> end_states_;
std::deque<int32_t> priorities_;
// One row per utid.
std::deque<std::vector<uint32_t>> rows_for_utids_;
};
class NestableSlices {
public:
inline uint32_t AddSlice(int64_t start_ns,
int64_t duration_ns,
TrackId track_id,
int64_t ref,
RefType type,
StringId category,
StringId name,
uint8_t depth,
int64_t stack_id,
int64_t parent_stack_id) {
start_ns_.emplace_back(start_ns);
durations_.emplace_back(duration_ns);
track_id_.emplace_back(track_id);
refs_.emplace_back(ref);
types_.emplace_back(type);
categories_.emplace_back(category);
names_.emplace_back(name);
depths_.emplace_back(depth);
stack_ids_.emplace_back(stack_id);
parent_stack_ids_.emplace_back(parent_stack_id);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return slice_count() - 1;
}
void set_duration(uint32_t index, int64_t duration_ns) {
durations_[index] = duration_ns;
}
void set_stack_id(uint32_t index, int64_t stack_id) {
stack_ids_[index] = stack_id;
}
void set_arg_set_id(uint32_t index, ArgSetId id) {
arg_set_ids_[index] = id;
}
uint32_t slice_count() const {
return static_cast<uint32_t>(start_ns_.size());
}
const std::deque<int64_t>& start_ns() const { return start_ns_; }
const std::deque<int64_t>& durations() const { return durations_; }
const std::deque<TrackId>& track_id() const { return track_id_; }
const std::deque<int64_t>& refs() const { return refs_; }
const std::deque<RefType>& types() const { return types_; }
const std::deque<StringId>& categories() const { return categories_; }
const std::deque<StringId>& names() const { return names_; }
const std::deque<uint8_t>& depths() const { return depths_; }
const std::deque<int64_t>& stack_ids() const { return stack_ids_; }
const std::deque<int64_t>& parent_stack_ids() const {
return parent_stack_ids_;
}
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> start_ns_;
std::deque<int64_t> durations_;
std::deque<TrackId> track_id_;
std::deque<int64_t> refs_;
std::deque<RefType> types_;
std::deque<StringId> categories_;
std::deque<StringId> names_;
std::deque<uint8_t> depths_;
std::deque<int64_t> stack_ids_;
std::deque<int64_t> parent_stack_ids_;
std::deque<ArgSetId> arg_set_ids_;
};
class ThreadSlices {
public:
inline uint32_t AddThreadSlice(uint32_t slice_id,
int64_t thread_timestamp_ns,
int64_t thread_duration_ns,
int64_t thread_instruction_count,
int64_t thread_instruction_delta) {
slice_ids_.emplace_back(slice_id);
thread_timestamp_ns_.emplace_back(thread_timestamp_ns);
thread_duration_ns_.emplace_back(thread_duration_ns);
thread_instruction_counts_.emplace_back(thread_instruction_count);
thread_instruction_deltas_.emplace_back(thread_instruction_delta);
return slice_count() - 1;
}
uint32_t slice_count() const {
return static_cast<uint32_t>(slice_ids_.size());
}
const std::deque<uint32_t>& slice_ids() const { return slice_ids_; }
const std::deque<int64_t>& thread_timestamp_ns() const {
return thread_timestamp_ns_;
}
const std::deque<int64_t>& thread_duration_ns() const {
return thread_duration_ns_;
}
const std::deque<int64_t>& thread_instruction_counts() const {
return thread_instruction_counts_;
}
const std::deque<int64_t>& thread_instruction_deltas() const {
return thread_instruction_deltas_;
}
base::Optional<uint32_t> FindRowForSliceId(uint32_t slice_id) const {
auto it =
std::lower_bound(slice_ids().begin(), slice_ids().end(), slice_id);
if (it != slice_ids().end() && *it == slice_id) {
return static_cast<uint32_t>(std::distance(slice_ids().begin(), it));
}
return base::nullopt;
}
void UpdateThreadDeltasForSliceId(uint32_t slice_id,
int64_t end_thread_timestamp_ns,
int64_t end_thread_instruction_count) {
uint32_t row = *FindRowForSliceId(slice_id);
int64_t begin_ns = thread_timestamp_ns_[row];
thread_duration_ns_[row] = end_thread_timestamp_ns - begin_ns;
int64_t begin_ticount = thread_instruction_counts_[row];
thread_instruction_deltas_[row] =
end_thread_instruction_count - begin_ticount;
}
private:
std::deque<uint32_t> slice_ids_;
std::deque<int64_t> thread_timestamp_ns_;
std::deque<int64_t> thread_duration_ns_;
std::deque<int64_t> thread_instruction_counts_;
std::deque<int64_t> thread_instruction_deltas_;
};
class VirtualTrackSlices {
public:
inline uint32_t AddVirtualTrackSlice(uint32_t slice_id,
int64_t thread_timestamp_ns,
int64_t thread_duration_ns,
int64_t thread_instruction_count,
int64_t thread_instruction_delta) {
slice_ids_.emplace_back(slice_id);
thread_timestamp_ns_.emplace_back(thread_timestamp_ns);
thread_duration_ns_.emplace_back(thread_duration_ns);
thread_instruction_counts_.emplace_back(thread_instruction_count);
thread_instruction_deltas_.emplace_back(thread_instruction_delta);
return slice_count() - 1;
}
uint32_t slice_count() const {
return static_cast<uint32_t>(slice_ids_.size());
}
const std::deque<uint32_t>& slice_ids() const { return slice_ids_; }
const std::deque<int64_t>& thread_timestamp_ns() const {
return thread_timestamp_ns_;
}
const std::deque<int64_t>& thread_duration_ns() const {
return thread_duration_ns_;
}
const std::deque<int64_t>& thread_instruction_counts() const {
return thread_instruction_counts_;
}
const std::deque<int64_t>& thread_instruction_deltas() const {
return thread_instruction_deltas_;
}
base::Optional<uint32_t> FindRowForSliceId(uint32_t slice_id) const {
auto it =
std::lower_bound(slice_ids().begin(), slice_ids().end(), slice_id);
if (it != slice_ids().end() && *it == slice_id) {
return static_cast<uint32_t>(std::distance(slice_ids().begin(), it));
}
return base::nullopt;
}
void UpdateThreadDeltasForSliceId(uint32_t slice_id,
int64_t end_thread_timestamp_ns,
int64_t end_thread_instruction_count) {
uint32_t row = *FindRowForSliceId(slice_id);
int64_t begin_ns = thread_timestamp_ns_[row];
thread_duration_ns_[row] = end_thread_timestamp_ns - begin_ns;
int64_t begin_ticount = thread_instruction_counts_[row];
thread_instruction_deltas_[row] =
end_thread_instruction_count - begin_ticount;
}
private:
std::deque<uint32_t> slice_ids_;
std::deque<int64_t> thread_timestamp_ns_;
std::deque<int64_t> thread_duration_ns_;
std::deque<int64_t> thread_instruction_counts_;
std::deque<int64_t> thread_instruction_deltas_;
};
class CounterValues {
public:
inline uint32_t AddCounterValue(TrackId track_id,
int64_t timestamp,
double value) {
track_id_.emplace_back(track_id);
timestamps_.emplace_back(timestamp);
values_.emplace_back(value);
arg_set_ids_.emplace_back(kInvalidArgSetId);
if (track_id != kInvalidTrackId) {
if (track_id >= rows_for_track_id_.size()) {
rows_for_track_id_.resize(track_id + 1);
}
rows_for_track_id_[track_id].emplace_back(size() - 1);
}
return size() - 1;
}
void set_track_id(uint32_t index, TrackId track_id) {
PERFETTO_DCHECK(track_id_[index] == kInvalidTrackId);
track_id_[index] = track_id;
if (track_id >= rows_for_track_id_.size()) {
rows_for_track_id_.resize(track_id + 1);
}
auto* new_rows = &rows_for_track_id_[track_id];
new_rows->insert(
std::upper_bound(new_rows->begin(), new_rows->end(), index), index);
}
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
uint32_t size() const { return static_cast<uint32_t>(track_id_.size()); }
const std::deque<TrackId>& track_ids() const { return track_id_; }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<double>& values() const { return values_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
const std::deque<std::vector<uint32_t>>& rows_for_track_id() const {
return rows_for_track_id_;
}
private:
std::deque<TrackId> track_id_;
std::deque<int64_t> timestamps_;
std::deque<double> values_;
std::deque<ArgSetId> arg_set_ids_;
// Indexed by track_id and contains the row numbers corresponding to it.
std::deque<std::vector<uint32_t>> rows_for_track_id_;
};
class SqlStats {
public:
static constexpr size_t kMaxLogEntries = 100;
uint32_t RecordQueryBegin(const std::string& query,
int64_t time_queued,
int64_t time_started);
void RecordQueryFirstNext(uint32_t row, int64_t time_first_next);
void RecordQueryEnd(uint32_t row, int64_t time_end);
size_t size() const { return queries_.size(); }
const std::deque<std::string>& queries() const { return queries_; }
const std::deque<int64_t>& times_queued() const { return times_queued_; }
const std::deque<int64_t>& times_started() const { return times_started_; }
const std::deque<int64_t>& times_first_next() const {
return times_first_next_;
}
const std::deque<int64_t>& times_ended() const { return times_ended_; }
private:
uint32_t popped_queries_ = 0;
std::deque<std::string> queries_;
std::deque<int64_t> times_queued_;
std::deque<int64_t> times_started_;
std::deque<int64_t> times_first_next_;
std::deque<int64_t> times_ended_;
};
class Instants {
public:
inline uint32_t AddInstantEvent(int64_t timestamp,
StringId name_id,
double value,
int64_t ref,
RefType type) {
timestamps_.emplace_back(timestamp);
name_ids_.emplace_back(name_id);
values_.emplace_back(value);
refs_.emplace_back(ref);
types_.emplace_back(type);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return static_cast<uint32_t>(instant_count() - 1);
}
void set_ref(uint32_t row, int64_t ref) { refs_[row] = ref; }
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
size_t instant_count() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<StringId>& name_ids() const { return name_ids_; }
const std::deque<double>& values() const { return values_; }
const std::deque<int64_t>& refs() const { return refs_; }
const std::deque<RefType>& types() const { return types_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<StringId> name_ids_;
std::deque<double> values_;
std::deque<int64_t> refs_;
std::deque<RefType> types_;
std::deque<ArgSetId> arg_set_ids_;
};
class RawEvents {
public:
inline RowId AddRawEvent(int64_t timestamp,
StringId name_id,
uint32_t cpu,
UniqueTid utid) {
timestamps_.emplace_back(timestamp);
name_ids_.emplace_back(name_id);
cpus_.emplace_back(cpu);
utids_.emplace_back(utid);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return CreateRowId(TableId::kRawEvents,
static_cast<uint32_t>(raw_event_count() - 1));
}
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
size_t raw_event_count() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<StringId>& name_ids() const { return name_ids_; }
const std::deque<uint32_t>& cpus() const { return cpus_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<StringId> name_ids_;
std::deque<uint32_t> cpus_;
std::deque<UniqueTid> utids_;
std::deque<ArgSetId> arg_set_ids_;
};
class AndroidLogs {
public:
inline size_t AddLogEvent(int64_t timestamp,
UniqueTid utid,
uint8_t prio,
StringId tag_id,
StringId msg_id) {
timestamps_.emplace_back(timestamp);
utids_.emplace_back(utid);
prios_.emplace_back(prio);
tag_ids_.emplace_back(tag_id);
msg_ids_.emplace_back(msg_id);
return size() - 1;
}
size_t size() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<uint8_t>& prios() const { return prios_; }
const std::deque<StringId>& tag_ids() const { return tag_ids_; }
const std::deque<StringId>& msg_ids() const { return msg_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<UniqueTid> utids_;
std::deque<uint8_t> prios_;
std::deque<StringId> tag_ids_;
std::deque<StringId> msg_ids_;
};
struct Stats {
using IndexMap = std::map<int, int64_t>;
int64_t value = 0;
IndexMap indexed_values;
};
using StatsMap = std::array<Stats, stats::kNumKeys>;
class Metadata {
public:
const std::deque<metadata::KeyIDs>& keys() const { return keys_; }
const std::deque<Variadic>& values() const { return values_; }
RowId SetScalarMetadata(metadata::KeyIDs key, Variadic value) {
PERFETTO_DCHECK(key < metadata::kNumKeys);
PERFETTO_DCHECK(metadata::kKeyTypes[key] == metadata::kSingle);
PERFETTO_DCHECK(value.type == metadata::kValueTypes[key]);
// Already set - on release builds, overwrite the previous value.
auto it = scalar_indices.find(key);
if (it != scalar_indices.end()) {
PERFETTO_DFATAL("Setting a scalar metadata entry more than once.");
uint32_t index = static_cast<uint32_t>(it->second);
values_[index] = value;
return TraceStorage::CreateRowId(kMetadataTable, index);
}
// First time setting this key.
keys_.push_back(key);
values_.push_back(value);
uint32_t index = static_cast<uint32_t>(keys_.size() - 1);
scalar_indices[key] = index;
return TraceStorage::CreateRowId(kMetadataTable, index);
}
RowId AppendMetadata(metadata::KeyIDs key, Variadic value) {
PERFETTO_DCHECK(key < metadata::kNumKeys);
PERFETTO_DCHECK(metadata::kKeyTypes[key] == metadata::kMulti);
PERFETTO_DCHECK(value.type == metadata::kValueTypes[key]);
keys_.push_back(key);
values_.push_back(value);
uint32_t index = static_cast<uint32_t>(keys_.size() - 1);
return TraceStorage::CreateRowId(kMetadataTable, index);
}
void OverwriteMetadata(uint32_t index, Variadic value) {
PERFETTO_DCHECK(index < values_.size());
values_[index] = value;
}
private:
std::deque<metadata::KeyIDs> keys_;
std::deque<Variadic> values_;
// Extraneous state to track locations of entries that should have at most
// one row. Used only to maintain uniqueness during insertions.
std::map<metadata::KeyIDs, uint32_t> scalar_indices;
};
class StackProfileFrames {
public:
struct Row {
StringId name_id;
int64_t mapping_row;
int64_t rel_pc;
bool operator==(const Row& other) const {
return std::tie(name_id, mapping_row, rel_pc) ==
std::tie(other.name_id, other.mapping_row, other.rel_pc);
}
};
uint32_t size() const { return static_cast<uint32_t>(names_.size()); }
uint32_t Insert(const Row& row) {
names_.emplace_back(row.name_id);
mappings_.emplace_back(row.mapping_row);
rel_pcs_.emplace_back(row.rel_pc);
symbol_set_ids_.emplace_back(0);
size_t row_number = names_.size() - 1;
index_[std::make_pair(row.mapping_row, row.rel_pc)].emplace_back(
row_number);
return static_cast<uint32_t>(row_number);
}
std::vector<int64_t> FindFrameRow(size_t mapping_row,
uint64_t rel_pc) const {
auto it = index_.find(std::make_pair(mapping_row, rel_pc));
if (it == index_.end())
return {};
return it->second;
}
void SetSymbolSetId(size_t row_idx, uint32_t symbol_set_id) {
PERFETTO_CHECK(row_idx < symbol_set_ids_.size());
symbol_set_ids_[row_idx] = symbol_set_id;
}
const std::deque<StringId>& names() const { return names_; }
const std::deque<int64_t>& mappings() const { return mappings_; }
const std::deque<int64_t>& rel_pcs() const { return rel_pcs_; }
const std::deque<uint32_t>& symbol_set_ids() const {
return symbol_set_ids_;
}
private:
std::deque<StringId> names_;
std::deque<int64_t> mappings_;
std::deque<int64_t> rel_pcs_;
std::deque<uint32_t> symbol_set_ids_;
std::map<std::pair<size_t /* mapping row */, uint64_t /* rel_pc */>,
std::vector<int64_t>>
index_;
};
class StackProfileMappings {
public:
struct Row {
StringId build_id;
int64_t exact_offset;
int64_t start_offset;
int64_t start;
int64_t end;
int64_t load_bias;
StringId name_id;
bool operator==(const Row& other) const {
return std::tie(build_id, exact_offset, start_offset, start, end,
load_bias, name_id) ==
std::tie(other.build_id, other.exact_offset, other.start_offset,
other.start, other.end, other.load_bias, other.name_id);
}
};
uint32_t size() const { return static_cast<uint32_t>(names_.size()); }
uint32_t Insert(const Row& row) {
build_ids_.emplace_back(row.build_id);
exact_offsets_.emplace_back(row.exact_offset);
start_offsets_.emplace_back(row.start_offset);
starts_.emplace_back(row.start);
ends_.emplace_back(row.end);
load_biases_.emplace_back(row.load_bias);
names_.emplace_back(row.name_id);
size_t row_number = build_ids_.size() - 1;
index_[std::make_pair(row.name_id, row.build_id)].emplace_back(
row_number);
return static_cast<uint32_t>(row_number);
}
std::vector<int64_t> FindMappingRow(StringId name,
StringId build_id) const {
auto it = index_.find(std::make_pair(name, build_id));
if (it == index_.end())
return {};
return it->second;
}
const std::deque<StringId>& build_ids() const { return build_ids_; }
const std::deque<int64_t>& exact_offsets() const { return exact_offsets_; }
const std::deque<int64_t>& start_offsets() const { return start_offsets_; }
const std::deque<int64_t>& starts() const { return starts_; }
const std::deque<int64_t>& ends() const { return ends_; }
const std::deque<int64_t>& load_biases() const { return load_biases_; }
const std::deque<StringId>& names() const { return names_; }
private:
std::deque<StringId> build_ids_;
std::deque<int64_t> exact_offsets_;
std::deque<int64_t> start_offsets_;
std::deque<int64_t> starts_;
std::deque<int64_t> ends_;
std::deque<int64_t> load_biases_;
std::deque<StringId> names_;
std::map<std::pair<StringId /* name */, StringId /* build id */>,
std::vector<int64_t>>
index_;
};
class HeapProfileAllocations {
public:
struct Row {
int64_t timestamp;
UniquePid upid;
int64_t callsite_id;
int64_t count;
int64_t size;
};
uint32_t size() const { return static_cast<uint32_t>(timestamps_.size()); }
void Insert(const Row& row) {
timestamps_.emplace_back(row.timestamp);
upids_.emplace_back(row.upid);
callsite_ids_.emplace_back(row.callsite_id);
counts_.emplace_back(row.count);
sizes_.emplace_back(row.size);
}
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<UniquePid>& upids() const { return upids_; }
const std::deque<int64_t>& callsite_ids() const { return callsite_ids_; }
const std::deque<int64_t>& counts() const { return counts_; }
const std::deque<int64_t>& sizes() const { return sizes_; }
private:
std::deque<int64_t> timestamps_;
std::deque<UniquePid> upids_;
std::deque<int64_t> callsite_ids_;
std::deque<int64_t> counts_;
std::deque<int64_t> sizes_;
};
class CpuProfileStackSamples {
public:
struct Row {
int64_t timestamp;
int64_t callsite_id;
UniqueTid utid;
};
uint32_t size() const { return static_cast<uint32_t>(timestamps_.size()); }
void Insert(const Row& row) {
timestamps_.emplace_back(row.timestamp);
callsite_ids_.emplace_back(row.callsite_id);
utids_.emplace_back(row.utid);
}
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<int64_t>& callsite_ids() const { return callsite_ids_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<int64_t> callsite_ids_;
std::deque<UniqueTid> utids_;
};
UniqueTid AddEmptyThread(uint32_t tid) {
unique_threads_.emplace_back(tid);
return static_cast<UniqueTid>(unique_threads_.size() - 1);
}
UniquePid AddEmptyProcess(uint32_t pid) {
unique_processes_.emplace_back(pid);
return static_cast<UniquePid>(unique_processes_.size() - 1);
}
// Return an unqiue identifier for the contents of each string.
// The string is copied internally and can be destroyed after this called.
// Virtual for testing.
virtual StringId InternString(base::StringView str) {
return string_pool_.InternString(str);
}
Process* GetMutableProcess(UniquePid upid) {
PERFETTO_DCHECK(upid < unique_processes_.size());
return &unique_processes_[upid];
}
Thread* GetMutableThread(UniqueTid utid) {
PERFETTO_DCHECK(utid < unique_threads_.size());
return &unique_threads_[utid];
}
// Example usage: SetStats(stats::android_log_num_failed, 42);
void SetStats(size_t key, int64_t value) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle);
stats_[key].value = value;
}
// Example usage: IncrementStats(stats::android_log_num_failed, -1);
void IncrementStats(size_t key, int64_t increment = 1) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle);
stats_[key].value += increment;
}
// Example usage: IncrementIndexedStats(stats::cpu_failure, 1);
void IncrementIndexedStats(size_t key, int index, int64_t increment = 1) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kIndexed);
stats_[key].indexed_values[index] += increment;
}
// Example usage: SetIndexedStats(stats::cpu_failure, 1, 42);
void SetIndexedStats(size_t key, int index, int64_t value) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kIndexed);
stats_[key].indexed_values[index] = value;
}
// Example usage:
// SetMetadata(metadata::benchmark_name,
// Variadic::String(storage->InternString("foo"));
// Returns the RowId of the new entry.
// Virtual for testing.
virtual RowId SetMetadata(metadata::KeyIDs key, Variadic value) {
return metadata_.SetScalarMetadata(key, value);
}
// Example usage:
// AppendMetadata(metadata::benchmark_story_tags,
// Variadic::String(storage->InternString("bar"));
// Returns the RowId of the new entry.
// Virtual for testing.
virtual RowId AppendMetadata(metadata::KeyIDs key, Variadic value) {
return metadata_.AppendMetadata(key, value);
}
class ScopedStatsTracer {
public:
ScopedStatsTracer(TraceStorage* storage, size_t key)
: storage_(storage), key_(key), start_ns_(base::GetWallTimeNs()) {}
~ScopedStatsTracer() {
if (!storage_)
return;
auto delta_ns = base::GetWallTimeNs() - start_ns_;
storage_->IncrementStats(key_, delta_ns.count());
}
ScopedStatsTracer(ScopedStatsTracer&& other) noexcept { MoveImpl(&other); }
ScopedStatsTracer& operator=(ScopedStatsTracer&& other) {
MoveImpl(&other);
return *this;
}
private:
ScopedStatsTracer(const ScopedStatsTracer&) = delete;
ScopedStatsTracer& operator=(const ScopedStatsTracer&) = delete;
void MoveImpl(ScopedStatsTracer* other) {
storage_ = other->storage_;
key_ = other->key_;
start_ns_ = other->start_ns_;
other->storage_ = nullptr;
}
TraceStorage* storage_;
size_t key_;
base::TimeNanos start_ns_;
};
ScopedStatsTracer TraceExecutionTimeIntoStats(size_t key) {
return ScopedStatsTracer(this, key);
}
// Reading methods.
// Virtual for testing.
virtual NullTermStringView GetString(StringId id) const {
return string_pool_.Get(id);
}
const Process& GetProcess(UniquePid upid) const {
PERFETTO_DCHECK(upid < unique_processes_.size());
return unique_processes_[upid];
}
// Virtual for testing.
virtual const Thread& GetThread(UniqueTid utid) const {
// Allow utid == 0 for idle thread retrieval.
PERFETTO_DCHECK(utid < unique_threads_.size());
return unique_threads_[utid];
}
static RowId CreateRowId(TableId table, uint32_t row) {
return (static_cast<RowId>(table) << kRowIdTableShift) | row;
}
static std::pair<int8_t /*table*/, uint32_t /*row*/> ParseRowId(RowId rowid) {
auto id = static_cast<uint64_t>(rowid);
auto table_id = static_cast<uint8_t>(id >> kRowIdTableShift);
auto row = static_cast<uint32_t>(id & ((1ull << kRowIdTableShift) - 1));
return std::make_pair(table_id, row);
}
const tables::TrackTable& track_table() const { return track_table_; }
tables::TrackTable* mutable_track_table() { return &track_table_; }
const tables::ProcessTrackTable& process_track_table() const {
return process_track_table_;
}
tables::ProcessTrackTable* mutable_process_track_table() {
return &process_track_table_;
}
const tables::ThreadTrackTable& thread_track_table() const {
return thread_track_table_;
}
tables::ThreadTrackTable* mutable_thread_track_table() {
return &thread_track_table_;
}
const tables::CounterTrackTable& counter_track_table() const {
return counter_track_table_;
}
tables::CounterTrackTable* mutable_counter_track_table() {
return &counter_track_table_;
}
const tables::ThreadCounterTrackTable& thread_counter_track_table() const {
return thread_counter_track_table_;
}
tables::ThreadCounterTrackTable* mutable_thread_counter_track_table() {
return &thread_counter_track_table_;
}
const tables::ProcessCounterTrackTable& process_counter_track_table() const {
return process_counter_track_table_;
}
tables::ProcessCounterTrackTable* mutable_process_counter_track_table() {
return &process_counter_track_table_;
}
const tables::CpuCounterTrackTable& cpu_counter_track_table() const {
return cpu_counter_track_table_;
}
tables::CpuCounterTrackTable* mutable_cpu_counter_track_table() {
return &cpu_counter_track_table_;
}
const tables::IrqCounterTrackTable& irq_counter_track_table() const {
return irq_counter_track_table_;
}
tables::IrqCounterTrackTable* mutable_irq_counter_track_table() {
return &irq_counter_track_table_;
}
const tables::SoftirqCounterTrackTable& softirq_counter_track_table() const {
return softirq_counter_track_table_;
}
tables::SoftirqCounterTrackTable* mutable_softirq_counter_track_table() {
return &softirq_counter_track_table_;
}
const tables::GpuCounterTrackTable& gpu_counter_track_table() const {
return gpu_counter_track_table_;
}
tables::GpuCounterTrackTable* mutable_gpu_counter_track_table() {
return &gpu_counter_track_table_;
}
const Slices& slices() const { return slices_; }
Slices* mutable_slices() { return &slices_; }
const NestableSlices& nestable_slices() const { return nestable_slices_; }
NestableSlices* mutable_nestable_slices() { return &nestable_slices_; }
const ThreadSlices& thread_slices() const { return thread_slices_; }
ThreadSlices* mutable_thread_slices() { return &thread_slices_; }
const VirtualTrackSlices& virtual_track_slices() const {
return virtual_track_slices_;
}
VirtualTrackSlices* mutable_virtual_track_slices() {
return &virtual_track_slices_;
}
const tables::GpuSliceTable& gpu_slice_table() const {
return gpu_slice_table_;
}
tables::GpuSliceTable* mutable_gpu_slice_table() { return &gpu_slice_table_; }
const CounterValues& counter_values() const { return counter_values_; }
CounterValues* mutable_counter_values() { return &counter_values_; }
const SqlStats& sql_stats() const { return sql_stats_; }
SqlStats* mutable_sql_stats() { return &sql_stats_; }
const Instants& instants() const { return instants_; }
Instants* mutable_instants() { return &instants_; }
const AndroidLogs& android_logs() const { return android_log_; }
AndroidLogs* mutable_android_log() { return &android_log_; }
const StatsMap& stats() const { return stats_; }
const Metadata& metadata() const { return metadata_; }
Metadata* mutable_metadata() { return &metadata_; }
const Args& args() const { return args_; }
Args* mutable_args() { return &args_; }
const RawEvents& raw_events() const { return raw_events_; }
RawEvents* mutable_raw_events() { return &raw_events_; }
const StackProfileMappings& stack_profile_mappings() const {
return stack_profile_mappings_;
}
StackProfileMappings* mutable_stack_profile_mappings() {
return &stack_profile_mappings_;
}
const StackProfileFrames& stack_profile_frames() const {
return stack_profile_frames_;
}
StackProfileFrames* mutable_stack_profile_frames() {
return &stack_profile_frames_;
}
const tables::StackProfileCallsiteTable& stack_profile_callsite_table()
const {
return stack_profile_callsite_table_;
}
tables::StackProfileCallsiteTable* mutable_stack_profile_callsite_table() {
return &stack_profile_callsite_table_;
}
const HeapProfileAllocations& heap_profile_allocations() const {
return heap_profile_allocations_;
}
HeapProfileAllocations* mutable_heap_profile_allocations() {
return &heap_profile_allocations_;
}
const CpuProfileStackSamples& cpu_profile_stack_samples() const {
return cpu_profile_stack_samples_;
}
CpuProfileStackSamples* mutable_cpu_profile_stack_samples() {
return &cpu_profile_stack_samples_;
}
const tables::SymbolTable& symbol_table() const { return symbol_table_; }
tables::SymbolTable* mutable_symbol_table() { return &symbol_table_; }
const tables::HeapGraphObjectTable& heap_graph_object_table() const {
return heap_graph_object_table_;
}
tables::HeapGraphObjectTable* mutable_heap_graph_object_table() {
return &heap_graph_object_table_;
}
const tables::HeapGraphReferenceTable& heap_graph_reference_table() const {
return heap_graph_reference_table_;
}
tables::HeapGraphReferenceTable* mutable_heap_graph_reference_table() {
return &heap_graph_reference_table_;
}
const tables::GpuTrackTable& gpu_track_table() const {
return gpu_track_table_;
}
tables::GpuTrackTable* mutable_gpu_track_table() { return &gpu_track_table_; }
const tables::VulkanMemoryAllocationsTable& vulkan_memory_allocations_table()
const {
return vulkan_memory_allocations_table_;
}
tables::VulkanMemoryAllocationsTable*
mutable_vulkan_memory_allocations_table() {
return &vulkan_memory_allocations_table_;
}
const StringPool& string_pool() const { return string_pool_; }
// |unique_processes_| always contains at least 1 element because the 0th ID
// is reserved to indicate an invalid process.
size_t process_count() const { return unique_processes_.size(); }
// |unique_threads_| always contains at least 1 element because the 0th ID
// is reserved to indicate an invalid thread.
size_t thread_count() const { return unique_threads_.size(); }
// Number of interned strings in the pool. Includes the empty string w/ ID=0.
size_t string_count() const { return string_pool_.size(); }
// Start / end ts (in nanoseconds) across the parsed trace events.
// Returns (0, 0) if the trace is empty.
std::pair<int64_t, int64_t> GetTraceTimestampBoundsNs() const;
private:
static constexpr uint8_t kRowIdTableShift = 32;
using StringHash = uint64_t;
TraceStorage(const TraceStorage&) = delete;
TraceStorage& operator=(const TraceStorage&) = delete;
TraceStorage(TraceStorage&&) = delete;
TraceStorage& operator=(TraceStorage&&) = delete;
// One entry for each unique string in the trace.
StringPool string_pool_;
// Stats about parsing the trace.
StatsMap stats_{};
// Extra data extracted from the trace. Includes:
// * metadata from chrome and benchmarking infrastructure
// * descriptions of android packages
Metadata metadata_{};
// Metadata for tracks.
tables::TrackTable track_table_{&string_pool_, nullptr};
tables::GpuTrackTable gpu_track_table_{&string_pool_, &track_table_};
tables::ProcessTrackTable process_track_table_{&string_pool_, &track_table_};
tables::ThreadTrackTable thread_track_table_{&string_pool_, &track_table_};
// Track tables for counter events.
tables::CounterTrackTable counter_track_table_{&string_pool_, &track_table_};
tables::ThreadCounterTrackTable thread_counter_track_table_{
&string_pool_, &counter_track_table_};
tables::ProcessCounterTrackTable process_counter_track_table_{
&string_pool_, &counter_track_table_};
tables::CpuCounterTrackTable cpu_counter_track_table_{&string_pool_,
&counter_track_table_};
tables::IrqCounterTrackTable irq_counter_track_table_{&string_pool_,
&counter_track_table_};
tables::SoftirqCounterTrackTable softirq_counter_track_table_{
&string_pool_, &counter_track_table_};
tables::GpuCounterTrackTable gpu_counter_track_table_{&string_pool_,
&counter_track_table_};
// Metadata for gpu tracks.
GpuContexts gpu_contexts_;
// One entry for each CPU in the trace.
Slices slices_;
// Args for all other tables.
Args args_;
// One entry for each UniquePid, with UniquePid as the index.
// Never hold on to pointers to Process, as vector resize will
// invalidate them.
std::vector<Process> unique_processes_;
// One entry for each UniqueTid, with UniqueTid as the index.
std::deque<Thread> unique_threads_;
// Slices coming from userspace events (e.g. Chromium TRACE_EVENT macros).
NestableSlices nestable_slices_;
// Additional attributes for threads slices (sub-type of NestableSlices).
ThreadSlices thread_slices_;
// Additional attributes for virtual track slices (sub-type of
// NestableSlices).
VirtualTrackSlices virtual_track_slices_;
// Additional attributes for gpu track slices (sub-type of
// NestableSlices).
tables::GpuSliceTable gpu_slice_table_{&string_pool_, nullptr};
// The values from the Counter events from the trace. This includes CPU
// frequency events as well systrace trace_marker counter events.
CounterValues counter_values_;
SqlStats sql_stats_;
// These are instantaneous events in the trace. They have no duration
// and do not have a value that make sense to track over time.
// e.g. signal events
Instants instants_;
// Raw events are every ftrace event in the trace. The raw event includes
// the timestamp and the pid. The args for the raw event will be in the
// args table. This table can be used to generate a text version of the
// trace.
RawEvents raw_events_;
AndroidLogs android_log_;
StackProfileMappings stack_profile_mappings_;
StackProfileFrames stack_profile_frames_;
tables::StackProfileCallsiteTable stack_profile_callsite_table_{&string_pool_,
nullptr};
HeapProfileAllocations heap_profile_allocations_;
CpuProfileStackSamples cpu_profile_stack_samples_;
// Symbol tables (mappings from frames to symbol names)
tables::SymbolTable symbol_table_{&string_pool_, nullptr};
tables::HeapGraphObjectTable heap_graph_object_table_{&string_pool_, nullptr};
tables::HeapGraphReferenceTable heap_graph_reference_table_{&string_pool_,
nullptr};
tables::VulkanMemoryAllocationsTable vulkan_memory_allocations_table_{
&string_pool_, nullptr};
};
} // namespace trace_processor
} // namespace perfetto
namespace std {
template <>
struct hash<
::perfetto::trace_processor::TraceStorage::StackProfileFrames::Row> {
using argument_type =
::perfetto::trace_processor::TraceStorage::StackProfileFrames::Row;
using result_type = size_t;
result_type operator()(const argument_type& r) const {
return std::hash<::perfetto::trace_processor::StringId>{}(r.name_id) ^
std::hash<int64_t>{}(r.mapping_row) ^ std::hash<int64_t>{}(r.rel_pc);
}
};
template <>
struct hash<
::perfetto::trace_processor::tables::StackProfileCallsiteTable::Row> {
using argument_type =
::perfetto::trace_processor::tables::StackProfileCallsiteTable::Row;
using result_type = size_t;
result_type operator()(const argument_type& r) const {
return std::hash<int64_t>{}(r.depth) ^ std::hash<int64_t>{}(r.parent_id) ^
std::hash<int64_t>{}(r.frame_id);
}
};
template <>
struct hash<
::perfetto::trace_processor::TraceStorage::StackProfileMappings::Row> {
using argument_type =
::perfetto::trace_processor::TraceStorage::StackProfileMappings::Row;
using result_type = size_t;
result_type operator()(const argument_type& r) const {
return std::hash<::perfetto::trace_processor::StringId>{}(r.build_id) ^
std::hash<int64_t>{}(r.exact_offset) ^
std::hash<int64_t>{}(r.start_offset) ^
std::hash<int64_t>{}(r.start) ^ std::hash<int64_t>{}(r.end) ^
std::hash<int64_t>{}(r.load_bias) ^
std::hash<::perfetto::trace_processor::StringId>{}(r.name_id);
}
};
} // namespace std
#endif // SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_