blob: ae2006f6fc952863295189fed4273f39f9cb771b [file] [log] [blame] [edit]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/ext/base/watchdog.h"
#include "perfetto/base/logging.h"
#include "perfetto/base/thread_utils.h"
#include "perfetto/ext/base/paged_memory.h"
#include "perfetto/ext/base/scoped_file.h"
#include "test/gtest_and_gmock.h"
#include <signal.h>
#include <time.h>
#include <condition_variable>
#include <map>
#include <memory>
#include <mutex>
#include <thread>
#include <vector>
namespace perfetto {
namespace base {
namespace {
static auto kCrashReasonIgnored = WatchdogCrashReason::kUnspecified;
class TestWatchdog : public Watchdog {
public:
explicit TestWatchdog(uint32_t polling_interval_ms)
: Watchdog(polling_interval_ms) {
disable_kill_failsafe_for_testing_ = true;
}
~TestWatchdog() override {}
};
TEST(WatchdogTest, NoTimerCrashIfNotEnabled) {
// CreateFatalTimer should be a noop if the watchdog is not enabled.
TestWatchdog watchdog(100);
auto handle = watchdog.CreateFatalTimer(1, kCrashReasonIgnored);
usleep(100 * 1000);
}
TEST(WatchdogTest, TimerCrash) {
// Create a timer for 20 ms and don't release wihin the time.
EXPECT_DEATH(
{
TestWatchdog watchdog(100);
watchdog.Start();
auto handle = watchdog.CreateFatalTimer(20, kCrashReasonIgnored);
usleep(200 * 1000);
},
"");
}
TEST(WatchdogTest, CrashEvenWhenMove) {
std::map<int, Watchdog::Timer> timers;
EXPECT_DEATH(
{
TestWatchdog watchdog(100);
watchdog.Start();
timers.emplace(0, watchdog.CreateFatalTimer(20, kCrashReasonIgnored));
usleep(200 * 1000);
},
"");
}
TEST(WatchdogTest, CrashMemory) {
EXPECT_DEATH(
{
// Allocate 8MB of data and use it to increase RSS.
const size_t kSize = 8 * 1024 * 1024;
auto void_ptr = PagedMemory::Allocate(kSize);
volatile uint8_t* ptr = static_cast<volatile uint8_t*>(void_ptr.Get());
for (size_t i = 0; i < kSize; i += sizeof(size_t)) {
*reinterpret_cast<volatile size_t*>(&ptr[i]) = i;
}
TestWatchdog watchdog(5);
watchdog.SetMemoryLimit(8 * 1024 * 1024, 25);
watchdog.Start();
// Sleep so that the watchdog has some time to pick it up.
usleep(1000 * 1000);
},
"");
}
TEST(WatchdogTest, CrashCpu) {
EXPECT_DEATH(
{
TestWatchdog watchdog(1);
watchdog.SetCpuLimit(10, 25);
watchdog.Start();
volatile int x = 0;
for (;;) {
x++;
}
},
"");
}
// The test below tests that the fatal timer signal is sent to the thread that
// created the timer and not a random one.
int RestoreSIGABRT(const struct sigaction* act) {
return sigaction(SIGABRT, act, nullptr);
}
PlatformThreadId g_aborted_thread = 0;
void SIGABRTHandler(int) {
g_aborted_thread = GetThreadId();
}
TEST(WatchdogTest, TimerCrashDeliveredToCallerThread) {
// Setup a signal handler so that SIGABRT doesn't cause a crash but just
// records the current thread id.
struct sigaction oldact;
struct sigaction newact = {};
newact.sa_handler = SIGABRTHandler;
ASSERT_EQ(sigaction(SIGABRT, &newact, &oldact), 0);
base::ScopedResource<const struct sigaction*, RestoreSIGABRT, nullptr>
auto_restore(&oldact);
// Create 8 threads. All of them but one will just sleep. The selected one
// will register a watchdog and fail.
const size_t kKillThreadNum = 3;
std::mutex mutex;
std::condition_variable cv;
bool quit = false;
g_aborted_thread = 0;
PlatformThreadId expected_tid = 0;
auto thread_fn = [&mutex, &cv, &quit, &expected_tid](size_t thread_num) {
if (thread_num == kKillThreadNum) {
expected_tid = GetThreadId();
TestWatchdog watchdog(100);
watchdog.Start();
auto handle = watchdog.CreateFatalTimer(2, kCrashReasonIgnored);
usleep(200 * 1000); // This will be interrupted by the fatal timer.
std::unique_lock<std::mutex> lock(mutex);
quit = true;
cv.notify_all();
} else {
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [&quit] { return quit; });
}
};
std::vector<std::thread> threads;
for (size_t i = 0; i < 8; i++)
threads.emplace_back(thread_fn, i);
// Join them all.
for (auto& thread : threads)
thread.join();
EXPECT_EQ(g_aborted_thread, expected_tid);
}
} // namespace
} // namespace base
} // namespace perfetto