blob: f00ee8abd6380943580270acaeba26614a0a612d [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedField.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/optimization.h"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/generated_enum_util.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
#include "google/protobuf/repeated_ptr_field.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
namespace internal {
template <typename T, int kHeapRepHeaderSize>
constexpr int RepeatedFieldLowerClampLimit() {
// The header is padded to be at least `sizeof(T)` when it would be smaller
// otherwise.
static_assert(sizeof(T) <= kHeapRepHeaderSize, "");
// We want to pad the minimum size to be a power of two bytes, including the
// header.
// The first allocation is kHeapRepHeaderSize bytes worth of elements for a
// total of 2*kHeapRepHeaderSize bytes. For an 8-byte header, we allocate 8
// bool, 2 ints, or 1 int64.
return kHeapRepHeaderSize / sizeof(T);
}
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
(std::numeric_limits<int>::max() / 2) + 1;
template <typename Element>
class RepeatedIterator;
// Sentinel base class.
struct RepeatedFieldBase {};
// We can't skip the destructor for, e.g., arena allocated RepeatedField<Cord>.
template <typename Element,
bool Trivial = Arena::is_destructor_skippable<Element>::value>
struct RepeatedFieldDestructorSkippableBase : RepeatedFieldBase {};
template <typename Element>
struct RepeatedFieldDestructorSkippableBase<Element, true> : RepeatedFieldBase {
using DestructorSkippable_ = void;
};
template <size_t kMinSize>
struct HeapRep {
// Avoid 'implicitly deleted dtor' warnings on certain compilers.
~HeapRep() = delete;
void* elements() { return this + 1; }
// Align to 8 as sanitizers are picky on the alignment of containers to start
// at 8 byte offsets even when compiling for 32 bit platforms.
union {
alignas(8) Arena* arena;
// We pad the header to be at least `sizeof(Element)` so that we have
// power-of-two sized allocations, which enables Arena optimizations.
char padding[kMinSize];
};
};
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
// Actually, in addition to primitive types, we use RepeatedField for repeated
// Cords, because the Cord class is in fact just a reference-counted pointer.
// We have to specialize several methods in the Cord case to get the memory
// management right; e.g. swapping when appropriate, etc.
template <typename Element>
class RepeatedField final
: private internal::RepeatedFieldDestructorSkippableBase<Element> {
static_assert(
alignof(Arena) >= alignof(Element),
"We only support types that have an alignment smaller than Arena");
static_assert(!std::is_const<Element>::value,
"We do not support const value types.");
static_assert(!std::is_volatile<Element>::value,
"We do not support volatile value types.");
static_assert(!std::is_pointer<Element>::value,
"We do not support pointer value types.");
static_assert(!std::is_reference<Element>::value,
"We do not support reference value types.");
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
static_assert(
absl::disjunction<internal::is_supported_integral_type<Element>,
internal::is_supported_floating_point_type<Element>,
std::is_same<absl::Cord, Element>,
is_proto_enum<Element>>::value,
"We only support non-string scalars in RepeatedField.");
}
public:
using value_type = Element;
using size_type = int;
using difference_type = ptrdiff_t;
using reference = Element&;
using const_reference = const Element&;
using pointer = Element*;
using const_pointer = const Element*;
using iterator = internal::RepeatedIterator<Element>;
using const_iterator = internal::RepeatedIterator<const Element>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr RepeatedField();
RepeatedField(const RepeatedField& rhs) : RepeatedField(nullptr, rhs) {}
// TODO: make this constructor private
explicit RepeatedField(Arena* arena);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedField(Iter begin, Iter end);
// Arena enabled constructors: for internal use only.
RepeatedField(internal::InternalVisibility, Arena* arena)
: RepeatedField(arena) {}
RepeatedField(internal::InternalVisibility, Arena* arena,
const RepeatedField& rhs)
: RepeatedField(arena, rhs) {}
RepeatedField& operator=(const RepeatedField& other)
ABSL_ATTRIBUTE_LIFETIME_BOUND;
RepeatedField(RepeatedField&& rhs) noexcept
: RepeatedField(nullptr, std::move(rhs)) {}
RepeatedField& operator=(RepeatedField&& other) noexcept
ABSL_ATTRIBUTE_LIFETIME_BOUND;
~RepeatedField();
bool empty() const;
int size() const;
const_reference Get(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer Mutable(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_reference operator[](int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return Get(index);
}
reference operator[](int index) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return *Mutable(index);
}
const_reference at(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
reference at(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
void Set(int index, const Element& value);
void Add(Element value);
// Appends a new element and returns a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
pointer Add() ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Appends elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
// Removes the last element in the array.
void RemoveLast();
// Extracts elements with indices in "[start .. start+num-1]".
// Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
// Caution: also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
ABSL_ATTRIBUTE_REINITIALIZES void Clear();
void MergeFrom(const RepeatedField& other);
ABSL_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);
// Replaces the contents with RepeatedField(begin, end).
template <typename Iter>
ABSL_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resizes the RepeatedField to a new, smaller size. This is O(1).
// Except for RepeatedField<Cord>, for which it is O(size-new_size).
void Truncate(int new_size);
void AddAlreadyReserved(Element value);
int Capacity() const;
// Adds `n` elements to this instance asserting there is enough capacity.
// The added elements are uninitialized if `Element` is trivial.
pointer AddAlreadyReserved() ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer AddNAlreadyReserved(int n) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(size_type new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
pointer mutable_data() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Swaps entire contents with "other". If they are separate arenas, then
// copies data between each other.
void Swap(RepeatedField* other);
// Swaps two elements.
void SwapElements(int index1, int index2);
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Reverse iterator support
reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(end());
}
reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first,
const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Gets the Arena on which this RepeatedField stores its elements.
// Note: this can be inaccurate for split default fields so we make this
// function non-const.
inline Arena* GetArena() {
return Capacity() == 0 ? static_cast<Arena*>(arena_or_elements_)
: heap_rep()->arena;
}
// For internal use only.
//
// This is public due to it being called by generated code.
inline void InternalSwap(RepeatedField* other);
private:
using InternalArenaConstructable_ = void;
// We use std::max in order to share template instantiations between
// different element types.
using HeapRep = internal::HeapRep<std::max<size_t>(sizeof(Element), 8)>;
template <typename T>
friend class Arena::InternalHelper;
friend class Arena;
static constexpr int kInitialSize = 0;
static PROTOBUF_CONSTEXPR const size_t kHeapRepHeaderSize = sizeof(HeapRep);
RepeatedField(Arena* arena, const RepeatedField& rhs);
RepeatedField(Arena* arena, RepeatedField&& rhs);
void set_size(int s) { size_ = s; }
void set_capacity(int c) { capacity_ = c; }
// Swaps entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
// heap. Swapping between different arenas is disallowed and caught by a
// ABSL_DCHECK (see API docs for details).
void UnsafeArenaSwap(RepeatedField* other);
// Copy constructs `n` instances in place into the array `dst`.
// This function is identical to `std::uninitialized_copy_n(src, n, dst)`
// except that we explicit declare the memory to not be aliased, which will
// result in `memcpy` code generation instead of `memmove` for trivial types.
static inline void UninitializedCopyN(const Element* PROTOBUF_RESTRICT src,
int n, Element* PROTOBUF_RESTRICT dst) {
std::uninitialized_copy_n(src, n, dst);
}
// Copy constructs `[begin, end)` instances in place into the array `dst`.
// See above `UninitializedCopyN()` function comments for more information.
template <typename Iter>
static inline void UninitializedCopy(Iter begin, Iter end,
Element* PROTOBUF_RESTRICT dst) {
std::uninitialized_copy(begin, end, dst);
}
// Destroys all elements in [begin, end).
// This function does nothing if `Element` is trivial.
static void Destroy(const Element* begin, const Element* end) {
if (!std::is_trivial<Element>::value) {
std::for_each(begin, end, [&](const Element& e) { e.~Element(); });
}
}
template <typename Iter>
void AddForwardIterator(Iter begin, Iter end);
template <typename Iter>
void AddInputIterator(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size.
// If the array is grown, it will always be at least doubled in size.
// If `annotate_size` is true (the default), then this function will annotate
// the old container from `old_size` to `capacity_` (unpoison memory)
// directly before it is being released, and annotate the new container from
// `capacity_` to `old_size` (poison unused memory).
void Grow(int old_size, int new_size);
void GrowNoAnnotate(int old_size, int new_size);
// Annotates a change in size of this instance. This function should be called
// with (capacity, old_size) after new memory has been allocated and
// filled from previous memory), and called with (old_size, capacity)
// right before (previously annotated) memory is released.
void AnnotateSize(int old_size, int new_size) const {
if (old_size != new_size) {
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(
unsafe_elements(), unsafe_elements() + Capacity(),
unsafe_elements() + old_size, unsafe_elements() + new_size);
if (new_size < old_size) {
ABSL_ANNOTATE_MEMORY_IS_UNINITIALIZED(
unsafe_elements() + new_size,
(old_size - new_size) * sizeof(Element));
}
}
}
// Replaces size_ with new_size and returns the previous value of
// size_. This function is intended to be the only place where
// size_ is modified, with the exception of `AddInputIterator()`
// where the size of added items is not known in advance.
inline int ExchangeCurrentSize(int new_size) {
const int prev_size = size();
AnnotateSize(prev_size, new_size);
set_size(new_size);
return prev_size;
}
// Returns a pointer to elements array.
// pre-condition: the array must have been allocated.
Element* elements() const {
ABSL_DCHECK_GT(Capacity(), 0);
// Because of above pre-condition this cast is safe.
return unsafe_elements();
}
// Returns a pointer to elements array if it exists; otherwise either null or
// an invalid pointer is returned. This only happens for empty repeated
// fields, where you can't dereference this pointer anyway (it's empty).
Element* unsafe_elements() const {
return static_cast<Element*>(arena_or_elements_);
}
// Returns a pointer to the HeapRep struct.
// pre-condition: the HeapRep must have been allocated, ie elements() is safe.
HeapRep* heap_rep() const {
return reinterpret_cast<HeapRep*>(reinterpret_cast<char*>(elements()) -
kHeapRepHeaderSize);
}
// Internal helper to delete all elements and deallocate the storage.
template <bool in_destructor = false>
void InternalDeallocate() {
const size_t bytes = Capacity() * sizeof(Element) + kHeapRepHeaderSize;
if (heap_rep()->arena == nullptr) {
internal::SizedDelete(heap_rep(), bytes);
} else if (!in_destructor) {
// If we are in the destructor, we might be being destroyed as part of
// the arena teardown. We can't try and return blocks to the arena then.
heap_rep()->arena->ReturnArrayMemory(heap_rep(), bytes);
}
}
// A note on the representation here (see also comment below for
// RepeatedPtrFieldBase's struct HeapRep):
//
// We maintain the same sizeof(RepeatedField) as before we added arena support
// so that we do not degrade performance by bloating memory usage. Directly
// adding an arena_ element to RepeatedField is quite costly. By using
// indirection in this way, we keep the same size when the RepeatedField is
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
int size_;
int capacity_;
// If capacity_ == 0 this points to an Arena otherwise it points to the
// elements member of a HeapRep struct. Using this invariant allows the
// storage of the arena pointer without an extra allocation in the
// constructor.
void* arena_or_elements_;
};
// implementation ====================================================
template <typename Element>
constexpr RepeatedField<Element>::RepeatedField()
: size_(0), capacity_(0), arena_or_elements_(nullptr) {
StaticValidityCheck();
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
: size_(0), capacity_(0), arena_or_elements_(arena) {
StaticValidityCheck();
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena,
const RepeatedField& rhs)
: size_(0), capacity_(0), arena_or_elements_(arena) {
StaticValidityCheck();
if (auto size = rhs.size()) {
Grow(0, size);
ExchangeCurrentSize(size);
UninitializedCopyN(rhs.elements(), size, unsafe_elements());
}
}
template <typename Element>
template <typename Iter, typename>
RepeatedField<Element>::RepeatedField(Iter begin, Iter end)
: size_(0), capacity_(0), arena_or_elements_(nullptr) {
StaticValidityCheck();
Add(begin, end);
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
StaticValidityCheck();
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds if arena_
// lifetime has ended before the destructor.
auto arena = GetArena();
if (arena) (void)arena->SpaceAllocated();
#endif
if (Capacity() > 0) {
Destroy(unsafe_elements(), unsafe_elements() + size());
InternalDeallocate<true>();
}
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
const RepeatedField& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena, RepeatedField&& rhs)
: RepeatedField(arena) {
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
CopyFrom(rhs);
#else // PROTOBUF_FORCE_COPY_IN_MOVE
// We don't just call Swap(&rhs) here because it would perform 3 copies if rhs
// is on a different arena.
if (arena != rhs.GetArena()) {
CopyFrom(rhs);
} else {
InternalSwap(&rhs);
}
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
RepeatedField&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (GetArena() != other.GetArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|| GetArena() == nullptr
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return size() == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return size_;
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return capacity_;
}
template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(Element value) {
ABSL_DCHECK_LT(size(), Capacity());
void* p = elements() + ExchangeCurrentSize(size() + 1);
::new (p) Element(std::move(value));
}
template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_LT(size(), Capacity());
// new (p) <TrivialType> compiles into nothing: this is intentional as this
// function is documented to return uninitialized data for trivial types.
void* p = elements() + ExchangeCurrentSize(size() + 1);
return ::new (p) Element;
}
template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(Capacity() - size(), n) << Capacity() << ", " << size();
Element* p = unsafe_elements() + ExchangeCurrentSize(size() + n);
for (Element *begin = p, *end = p + n; begin != end; ++begin) {
new (static_cast<void*>(begin)) Element;
}
return p;
}
template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
ABSL_DCHECK_GE(new_size, 0);
if (new_size > size()) {
if (new_size > Capacity()) Grow(size(), new_size);
Element* first = elements() + ExchangeCurrentSize(new_size);
std::uninitialized_fill(first, elements() + size(), value);
} else if (new_size < size()) {
Destroy(unsafe_elements() + new_size, unsafe_elements() + size());
ExchangeCurrentSize(new_size);
}
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return elements()[index];
}
template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements()[index];
}
template <typename Element>
inline Element& RepeatedField<Element>::at(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements()[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return &elements()[index];
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
elements()[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(Element value) {
int capacity = Capacity();
Element* elem = unsafe_elements();
if (ABSL_PREDICT_FALSE(size() == capacity)) {
Grow(size(), size() + 1);
capacity = Capacity();
elem = unsafe_elements();
}
int new_size = size() + 1;
void* p = elem + ExchangeCurrentSize(new_size);
::new (p) Element(std::move(value));
// The below helps the compiler optimize dense loops.
ABSL_ASSUME(new_size == size_);
ABSL_ASSUME(elem == arena_or_elements_);
ABSL_ASSUME(capacity == capacity_);
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (ABSL_PREDICT_FALSE(size() == Capacity())) {
Grow(size(), size() + 1);
}
void* p = unsafe_elements() + ExchangeCurrentSize(size() + 1);
return ::new (p) Element;
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddForwardIterator(Iter begin, Iter end) {
int capacity = Capacity();
Element* elem = unsafe_elements();
int new_size = size() + static_cast<int>(std::distance(begin, end));
if (ABSL_PREDICT_FALSE(new_size > capacity)) {
Grow(size(), new_size);
elem = unsafe_elements();
capacity = Capacity();
}
UninitializedCopy(begin, end, elem + ExchangeCurrentSize(new_size));
// The below helps the compiler optimize dense loops.
ABSL_ASSUME(new_size == size_);
ABSL_ASSUME(elem == arena_or_elements_);
ABSL_ASSUME(capacity == capacity_);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddInputIterator(Iter begin, Iter end) {
Element* first = unsafe_elements() + size();
Element* last = unsafe_elements() + Capacity();
AnnotateSize(size(), Capacity());
while (begin != end) {
if (ABSL_PREDICT_FALSE(first == last)) {
int size = first - unsafe_elements();
GrowNoAnnotate(size, size + 1);
first = unsafe_elements() + size;
last = unsafe_elements() + Capacity();
}
::new (static_cast<void*>(first)) Element(*begin);
++begin;
++first;
}
set_size(first - unsafe_elements());
AnnotateSize(Capacity(), size());
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
if (std::is_base_of<
std::forward_iterator_tag,
typename std::iterator_traits<Iter>::iterator_category>::value) {
AddForwardIterator(begin, end);
} else {
AddInputIterator(begin, end);
}
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
ABSL_DCHECK_GT(size(), 0);
elements()[size() - 1].~Element();
ExchangeCurrentSize(size() - 1);
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
Element* elements) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
ABSL_DCHECK_LE(start + num, size());
// Save the values of the removed elements if requested.
if (elements != nullptr) {
for (int i = 0; i < num; ++i) elements[i] = Get(i + start);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < size(); ++i) Set(i - num, Get(i));
Truncate(size() - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
Destroy(unsafe_elements(), unsafe_elements() + size());
ExchangeCurrentSize(0);
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
ABSL_DCHECK_NE(&other, this);
if (auto size = other.size()) {
Reserve(this->size() + size);
Element* dst = elements() + ExchangeCurrentSize(this->size() + size);
UninitializedCopyN(other.elements(), size, dst);
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
Clear();
Add(begin, end);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator first, const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
size_type first_offset = first - cbegin();
if (first != last) {
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
}
return begin() + first_offset;
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements();
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements();
}
template <typename Element>
inline void RepeatedField<Element>::InternalSwap(
RepeatedField* PROTOBUF_RESTRICT other) {
ABSL_DCHECK(this != other);
// Swap all fields at once.
static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
"offsetof() requires standard layout before c++17");
static constexpr size_t kOffset = offsetof(RepeatedField, size_);
internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
sizeof(this->arena_or_elements_) - kOffset>(
reinterpret_cast<char*>(this) + kOffset,
reinterpret_cast<char*>(other) + kOffset);
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
if (GetArena() != nullptr && GetArena() == other->GetArena()) {
#else // PROTOBUF_FORCE_COPY_IN_SWAP
if (GetArena() == other->GetArena()) {
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
InternalSwap(other);
} else {
RepeatedField<Element> temp(other->GetArena());
temp.MergeFrom(*this);
CopyFrom(*other);
other->UnsafeArenaSwap(&temp);
}
}
template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
if (this == other) return;
ABSL_DCHECK_EQ(GetArena(), other->GetArena());
InternalSwap(other);
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements()[index1], elements()[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::begin()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(unsafe_elements() + size());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements() + size());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements() + size());
}
template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
return Capacity() > 0 ? (Capacity() * sizeof(Element) + kHeapRepHeaderSize)
: 0;
}
namespace internal {
// Returns the new size for a reserved field based on its 'capacity' and the
// requested 'new_size'. The result is clamped to the closed interval:
// [internal::kMinRepeatedFieldAllocationSize,
// std::numeric_limits<int>::max()]
// Requires:
// new_size > capacity &&
// (capacity == 0 ||
// capacity >= kRepeatedFieldLowerClampLimit)
template <typename T, int kHeapRepHeaderSize>
inline int CalculateReserveSize(int capacity, int new_size) {
constexpr int lower_limit =
RepeatedFieldLowerClampLimit<T, kHeapRepHeaderSize>();
if (new_size < lower_limit) {
// Clamp to smallest allowed size.
return lower_limit;
}
constexpr int kMaxSizeBeforeClamp =
(std::numeric_limits<int>::max() - kHeapRepHeaderSize) / 2;
if (PROTOBUF_PREDICT_FALSE(capacity > kMaxSizeBeforeClamp)) {
return std::numeric_limits<int>::max();
}
// We want to double the number of bytes, not the number of elements, to try
// to stay within power-of-two allocations.
// The allocation has kHeapRepHeaderSize + sizeof(T) * capacity.
int doubled_size = 2 * capacity + kHeapRepHeaderSize / sizeof(T);
return std::max(doubled_size, new_size);
}
} // namespace internal
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (ABSL_PREDICT_FALSE(new_size > Capacity())) {
Grow(size(), new_size);
}
}
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(int old_size,
int new_size) {
ABSL_DCHECK_GT(new_size, Capacity());
HeapRep* new_rep;
Arena* arena = GetArena();
new_size = internal::CalculateReserveSize<Element, kHeapRepHeaderSize>(
Capacity(), new_size);
ABSL_DCHECK_LE(static_cast<size_t>(new_size),
(std::numeric_limits<size_t>::max() - kHeapRepHeaderSize) /
sizeof(Element))
<< "Requested size is too large to fit into size_t.";
size_t bytes =
kHeapRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
if (arena == nullptr) {
ABSL_DCHECK_LE((bytes - kHeapRepHeaderSize) / sizeof(Element),
static_cast<size_t>(std::numeric_limits<int>::max()))
<< "Requested size is too large to fit element count into int.";
internal::SizedPtr res = internal::AllocateAtLeast(bytes);
size_t num_available =
std::min((res.n - kHeapRepHeaderSize) / sizeof(Element),
static_cast<size_t>(std::numeric_limits<int>::max()));
new_size = static_cast<int>(num_available);
new_rep = static_cast<HeapRep*>(res.p);
} else {
new_rep =
reinterpret_cast<HeapRep*>(Arena::CreateArray<char>(arena, bytes));
}
new_rep->arena = arena;
if (Capacity() > 0) {
if (old_size > 0) {
Element* pnew = static_cast<Element*>(new_rep->elements());
Element* pold = elements();
// TODO: add absl::is_trivially_relocatable<Element>
if (std::is_trivial<Element>::value) {
memcpy(static_cast<void*>(pnew), pold, old_size * sizeof(Element));
} else {
for (Element* end = pnew + old_size; pnew != end; ++pnew, ++pold) {
::new (static_cast<void*>(pnew)) Element(std::move(*pold));
pold->~Element();
}
}
}
InternalDeallocate();
}
set_capacity(new_size);
arena_or_elements_ = static_cast<Element*>(new_rep->elements());
}
// Ideally we would be able to use:
// template <bool annotate_size = true>
// void Grow();
// However, as explained in b/266411038#comment9, this causes issues
// in shared libraries for Youtube (and possibly elsewhere).
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::Grow(int old_size,
int new_size) {
AnnotateSize(old_size, Capacity());
GrowNoAnnotate(old_size, new_size);
AnnotateSize(Capacity(), old_size);
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
ABSL_DCHECK_LE(new_size, size());
if (new_size < size()) {
Destroy(unsafe_elements() + new_size, unsafe_elements() + size());
ExchangeCurrentSize(new_size);
}
}
template <>
PROTOBUF_EXPORT size_t
RepeatedField<absl::Cord>::SpaceUsedExcludingSelfLong() const;
// -------------------------------------------------------------------
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// STL-like iterator implementation for RepeatedField. You should not
// refer to this class directly; use RepeatedField<T>::iterator instead.
//
// Note: All of the iterator operators *must* be inlined to avoid performance
// regressions. This is caused by the extern template declarations below (which
// are required because of the RepeatedField extern template declarations). If
// any of these functions aren't explicitly inlined (e.g. defined in the class),
// the compiler isn't allowed to inline them.
template <typename Element>
class RepeatedIterator {
private:
using traits =
std::iterator_traits<typename std::remove_const<Element>::type*>;
public:
// Note: value_type is never cv-qualified.
using value_type = typename traits::value_type;
using difference_type = typename traits::difference_type;
using pointer = Element*;
using reference = Element&;
using iterator_category = typename traits::iterator_category;
using iterator_concept = typename IteratorConceptSupport<traits>::tag;
constexpr RepeatedIterator() noexcept : it_(nullptr) {}
// Allows "upcasting" from RepeatedIterator<T**> to
// RepeatedIterator<const T*const*>.
template <typename OtherElement,
typename std::enable_if<std::is_convertible<
OtherElement*, pointer>::value>::type* = nullptr>
constexpr RepeatedIterator(
const RepeatedIterator<OtherElement>& other) noexcept
: it_(other.it_) {}
// dereferenceable
constexpr reference operator*() const noexcept { return *it_; }
constexpr pointer operator->() const noexcept { return it_; }
private:
// Helper alias to hide the internal type.
using iterator = RepeatedIterator<Element>;
public:
// {inc,dec}rementable
iterator& operator++() noexcept {
++it_;
return *this;
}
iterator operator++(int) noexcept { return iterator(it_++); }
iterator& operator--() noexcept {
--it_;
return *this;
}
iterator operator--(int) noexcept { return iterator(it_--); }
// equality_comparable
friend constexpr bool operator==(const iterator& x,
const iterator& y) noexcept {
return x.it_ == y.it_;
}
friend constexpr bool operator!=(const iterator& x,
const iterator& y) noexcept {
return x.it_ != y.it_;
}
// less_than_comparable
friend constexpr bool operator<(const iterator& x,
const iterator& y) noexcept {
return x.it_ < y.it_;
}
friend constexpr bool operator<=(const iterator& x,
const iterator& y) noexcept {
return x.it_ <= y.it_;
}
friend constexpr bool operator>(const iterator& x,
const iterator& y) noexcept {
return x.it_ > y.it_;
}
friend constexpr bool operator>=(const iterator& x,
const iterator& y) noexcept {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) noexcept {
it_ += d;
return *this;
}
constexpr iterator operator+(difference_type d) const noexcept {
return iterator(it_ + d);
}
friend constexpr iterator operator+(const difference_type d,
iterator it) noexcept {
return it + d;
}
iterator& operator-=(difference_type d) noexcept {
it_ -= d;
return *this;
}
iterator constexpr operator-(difference_type d) const noexcept {
return iterator(it_ - d);
}
// indexable
constexpr reference operator[](difference_type d) const noexcept {
return it_[d];
}
// random access iterator
friend constexpr difference_type operator-(iterator it1,
iterator it2) noexcept {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement>
friend class RepeatedIterator;
// Allow construction from RepeatedField.
friend class RepeatedField<value_type>;
explicit RepeatedIterator(pointer it) noexcept : it_(it) {}
// The internal iterator.
pointer it_;
};
// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__