|  | // Protocol Buffers - Google's data interchange format | 
|  | // Copyright 2008 Google Inc.  All rights reserved. | 
|  | // https://developers.google.com/protocol-buffers/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | /** | 
|  | * @fileoverview This file contains helper code used by jspb.BinaryReader | 
|  | * and BinaryWriter. | 
|  | * | 
|  | * @suppress {missingRequire} TODO(b/152540451): this shouldn't be needed | 
|  | * @author aappleby@google.com (Austin Appleby) | 
|  | */ | 
|  |  | 
|  | goog.provide('jspb.utils'); | 
|  |  | 
|  | goog.require('goog.asserts'); | 
|  | goog.require('goog.crypt'); | 
|  | goog.require('goog.crypt.base64'); | 
|  | goog.require('goog.string'); | 
|  | goog.require('jspb.BinaryConstants'); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Javascript can't natively handle 64-bit data types, so to manipulate them we | 
|  | * have to split them into two 32-bit halves and do the math manually. | 
|  | * | 
|  | * Instead of instantiating and passing small structures around to do this, we | 
|  | * instead just use two global temporary values. This one stores the low 32 | 
|  | * bits of a split value - for example, if the original value was a 64-bit | 
|  | * integer, this temporary value will contain the low 32 bits of that integer. | 
|  | * If the original value was a double, this temporary value will contain the | 
|  | * low 32 bits of the binary representation of that double, etcetera. | 
|  | * @type {number} | 
|  | */ | 
|  | jspb.utils.split64Low = 0; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * And correspondingly, this temporary variable will contain the high 32 bits | 
|  | * of whatever value was split. | 
|  | * @type {number} | 
|  | */ | 
|  | jspb.utils.split64High = 0; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Splits an unsigned Javascript integer into two 32-bit halves and stores it | 
|  | * in the temp values above. | 
|  | * @param {number} value The number to split. | 
|  | */ | 
|  | jspb.utils.splitUint64 = function(value) { | 
|  | // Extract low 32 bits and high 32 bits as unsigned integers. | 
|  | var lowBits = value >>> 0; | 
|  | var highBits = Math.floor((value - lowBits) / | 
|  | jspb.BinaryConstants.TWO_TO_32) >>> 0; | 
|  |  | 
|  | jspb.utils.split64Low = lowBits; | 
|  | jspb.utils.split64High = highBits; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Splits a signed Javascript integer into two 32-bit halves and stores it in | 
|  | * the temp values above. | 
|  | * @param {number} value The number to split. | 
|  | */ | 
|  | jspb.utils.splitInt64 = function(value) { | 
|  | // Convert to sign-magnitude representation. | 
|  | var sign = (value < 0); | 
|  | value = Math.abs(value); | 
|  |  | 
|  | // Extract low 32 bits and high 32 bits as unsigned integers. | 
|  | var lowBits = value >>> 0; | 
|  | var highBits = Math.floor((value - lowBits) / | 
|  | jspb.BinaryConstants.TWO_TO_32); | 
|  | highBits = highBits >>> 0; | 
|  |  | 
|  | // Perform two's complement conversion if the sign bit was set. | 
|  | if (sign) { | 
|  | highBits = ~highBits >>> 0; | 
|  | lowBits = ~lowBits >>> 0; | 
|  | lowBits += 1; | 
|  | if (lowBits > 0xFFFFFFFF) { | 
|  | lowBits = 0; | 
|  | highBits++; | 
|  | if (highBits > 0xFFFFFFFF) highBits = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | jspb.utils.split64Low = lowBits; | 
|  | jspb.utils.split64High = highBits; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a signed Javascript integer into zigzag format, splits it into two | 
|  | * 32-bit halves, and stores it in the temp values above. | 
|  | * @param {number} value The number to split. | 
|  | */ | 
|  | jspb.utils.splitZigzag64 = function(value) { | 
|  | // Convert to sign-magnitude and scale by 2 before we split the value. | 
|  | var sign = (value < 0); | 
|  | value = Math.abs(value) * 2; | 
|  |  | 
|  | jspb.utils.splitUint64(value); | 
|  | var lowBits = jspb.utils.split64Low; | 
|  | var highBits = jspb.utils.split64High; | 
|  |  | 
|  | // If the value is negative, subtract 1 from the split representation so we | 
|  | // don't lose the sign bit due to precision issues. | 
|  | if (sign) { | 
|  | if (lowBits == 0) { | 
|  | if (highBits == 0) { | 
|  | lowBits = 0xFFFFFFFF; | 
|  | highBits = 0xFFFFFFFF; | 
|  | } else { | 
|  | highBits--; | 
|  | lowBits = 0xFFFFFFFF; | 
|  | } | 
|  | } else { | 
|  | lowBits--; | 
|  | } | 
|  | } | 
|  |  | 
|  | jspb.utils.split64Low = lowBits; | 
|  | jspb.utils.split64High = highBits; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a floating-point number into 32-bit IEEE representation and stores | 
|  | * it in the temp values above. | 
|  | * @param {number} value | 
|  | */ | 
|  | jspb.utils.splitFloat32 = function(value) { | 
|  | var sign = (value < 0) ? 1 : 0; | 
|  | value = sign ? -value : value; | 
|  | var exp; | 
|  | var mant; | 
|  |  | 
|  | // Handle zeros. | 
|  | if (value === 0) { | 
|  | if ((1 / value) > 0) { | 
|  | // Positive zero. | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = 0x00000000; | 
|  | } else { | 
|  | // Negative zero. | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = 0x80000000; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle nans. | 
|  | if (isNaN(value)) { | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = 0x7FFFFFFF; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle infinities. | 
|  | if (value > jspb.BinaryConstants.FLOAT32_MAX) { | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle denormals. | 
|  | if (value < jspb.BinaryConstants.FLOAT32_MIN) { | 
|  | // Number is a denormal. | 
|  | mant = Math.round(value / Math.pow(2, -149)); | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = ((sign << 31) | mant) >>> 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | exp = Math.floor(Math.log(value) / Math.LN2); | 
|  | mant = value * Math.pow(2, -exp); | 
|  | mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF; | 
|  |  | 
|  | jspb.utils.split64High = 0; | 
|  | jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a floating-point number into 64-bit IEEE representation and stores | 
|  | * it in the temp values above. | 
|  | * @param {number} value | 
|  | */ | 
|  | jspb.utils.splitFloat64 = function(value) { | 
|  | var sign = (value < 0) ? 1 : 0; | 
|  | value = sign ? -value : value; | 
|  |  | 
|  | // Handle zeros. | 
|  | if (value === 0) { | 
|  | if ((1 / value) > 0) { | 
|  | // Positive zero. | 
|  | jspb.utils.split64High = 0x00000000; | 
|  | jspb.utils.split64Low = 0x00000000; | 
|  | } else { | 
|  | // Negative zero. | 
|  | jspb.utils.split64High = 0x80000000; | 
|  | jspb.utils.split64Low = 0x00000000; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle nans. | 
|  | if (isNaN(value)) { | 
|  | jspb.utils.split64High = 0x7FFFFFFF; | 
|  | jspb.utils.split64Low = 0xFFFFFFFF; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle infinities. | 
|  | if (value > jspb.BinaryConstants.FLOAT64_MAX) { | 
|  | jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0; | 
|  | jspb.utils.split64Low = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle denormals. | 
|  | if (value < jspb.BinaryConstants.FLOAT64_MIN) { | 
|  | // Number is a denormal. | 
|  | var mant = value / Math.pow(2, -1074); | 
|  | var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32); | 
|  | jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0; | 
|  | jspb.utils.split64Low = (mant >>> 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the least significant exponent needed to represent the magnitude of | 
|  | // the value by repeadly dividing/multiplying by 2 until the magnitude | 
|  | // crosses 2. While tempting to use log math to find the exponent, at the | 
|  | // boundaries of precision, the result can be off by one. | 
|  | var maxDoubleExponent = 1023; | 
|  | var minDoubleExponent = -1022; | 
|  | var x = value; | 
|  | var exp = 0; | 
|  | if (x >= 2) { | 
|  | while (x >= 2 && exp < maxDoubleExponent) { | 
|  | exp++; | 
|  | x = x / 2; | 
|  | } | 
|  | } else { | 
|  | while (x < 1 && exp > minDoubleExponent) { | 
|  | x = x * 2; | 
|  | exp--; | 
|  | } | 
|  | } | 
|  | var mant = value * Math.pow(2, -exp); | 
|  |  | 
|  | var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF; | 
|  | var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0; | 
|  |  | 
|  | jspb.utils.split64High = | 
|  | ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0; | 
|  | jspb.utils.split64Low = mantLow; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts an 8-character hash string into two 32-bit numbers and stores them | 
|  | * in the temp values above. | 
|  | * @param {string} hash | 
|  | */ | 
|  | jspb.utils.splitHash64 = function(hash) { | 
|  | var a = hash.charCodeAt(0); | 
|  | var b = hash.charCodeAt(1); | 
|  | var c = hash.charCodeAt(2); | 
|  | var d = hash.charCodeAt(3); | 
|  | var e = hash.charCodeAt(4); | 
|  | var f = hash.charCodeAt(5); | 
|  | var g = hash.charCodeAt(6); | 
|  | var h = hash.charCodeAt(7); | 
|  |  | 
|  | jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0; | 
|  | jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be | 
|  | * lost if the result is greater than 2^52. | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.joinUint64 = function(bitsLow, bitsHigh) { | 
|  | return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + (bitsLow >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost | 
|  | * if the result is greater than 2^52. | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.joinInt64 = function(bitsLow, bitsHigh) { | 
|  | // If the high bit is set, do a manual two's complement conversion. | 
|  | var sign = (bitsHigh & 0x80000000); | 
|  | if (sign) { | 
|  | bitsLow = (~bitsLow + 1) >>> 0; | 
|  | bitsHigh = ~bitsHigh >>> 0; | 
|  | if (bitsLow == 0) { | 
|  | bitsHigh = (bitsHigh + 1) >>> 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | var result = jspb.utils.joinUint64(bitsLow, bitsHigh); | 
|  | return sign ? -result : result; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Converts split 64-bit values from standard two's complement encoding to | 
|  | * zig-zag encoding. Invokes the provided function to produce final result. | 
|  | * | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @param {function(number, number): T} convert Conversion function to produce | 
|  | *     the result value, takes parameters (lowBits, highBits). | 
|  | * @return {T} | 
|  | * @template T | 
|  | */ | 
|  | jspb.utils.toZigzag64 = function(bitsLow, bitsHigh, convert) { | 
|  | // See | 
|  | // https://engdoc.corp.google.com/eng/howto/protocolbuffers/developerguide/encoding.shtml?cl=head#types | 
|  | // 64-bit math is: (n << 1) ^ (n >> 63) | 
|  | // | 
|  | // To do this in 32 bits, we can get a 32-bit sign-flipping mask from the | 
|  | // high word. | 
|  | // Then we can operate on each word individually, with the addition of the | 
|  | // "carry" to get the most significant bit from the low word into the high | 
|  | // word. | 
|  | var signFlipMask = bitsHigh >> 31; | 
|  | bitsHigh = (bitsHigh << 1 | bitsLow >>> 31) ^ signFlipMask; | 
|  | bitsLow = (bitsLow << 1) ^ signFlipMask; | 
|  | return convert(bitsLow, bitsHigh); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag | 
|  | * decoding. Precision will be lost if the result is greater than 2^52. | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) { | 
|  | return jspb.utils.fromZigzag64(bitsLow, bitsHigh, jspb.utils.joinInt64); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts split 64-bit values from zigzag encoding to standard two's | 
|  | * complement encoding. Invokes the provided function to produce final result. | 
|  | * | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @param {function(number, number): T} convert Conversion function to produce | 
|  | *     the result value, takes parameters (lowBits, highBits). | 
|  | * @return {T} | 
|  | * @template T | 
|  | */ | 
|  | jspb.utils.fromZigzag64 = function(bitsLow, bitsHigh, convert) { | 
|  | // 64 bit math is: | 
|  | //   signmask = (zigzag & 1) ? -1 : 0; | 
|  | //   twosComplement = (zigzag >> 1) ^ signmask; | 
|  | // | 
|  | // To work with 32 bit, we can operate on both but "carry" the lowest bit | 
|  | // from the high word by shifting it up 31 bits to be the most significant bit | 
|  | // of the low word. | 
|  | var signFlipMask = -(bitsLow & 1); | 
|  | bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) ^ signFlipMask; | 
|  | bitsHigh = (bitsHigh >>> 1) ^ signFlipMask; | 
|  | return convert(bitsLow, bitsHigh); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into a 32-bit IEEE floating point number and | 
|  | * converts it back into a Javascript number. | 
|  | * @param {number} bitsLow The low 32 bits of the binary number; | 
|  | * @param {number} bitsHigh The high 32 bits of the binary number. | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) { | 
|  | var sign = ((bitsLow >> 31) * 2 + 1); | 
|  | var exp = (bitsLow >>> 23) & 0xFF; | 
|  | var mant = bitsLow & 0x7FFFFF; | 
|  |  | 
|  | if (exp == 0xFF) { | 
|  | if (mant) { | 
|  | return NaN; | 
|  | } else { | 
|  | return sign * Infinity; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (exp == 0) { | 
|  | // Denormal. | 
|  | return sign * Math.pow(2, -149) * mant; | 
|  | } else { | 
|  | return sign * Math.pow(2, exp - 150) * | 
|  | (mant + Math.pow(2, 23)); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into a 64-bit IEEE floating point number and | 
|  | * converts it back into a Javascript number. | 
|  | * @param {number} bitsLow The low 32 bits of the binary number; | 
|  | * @param {number} bitsHigh The high 32 bits of the binary number. | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) { | 
|  | var sign = ((bitsHigh >> 31) * 2 + 1); | 
|  | var exp = (bitsHigh >>> 20) & 0x7FF; | 
|  | var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow; | 
|  |  | 
|  | if (exp == 0x7FF) { | 
|  | if (mant) { | 
|  | return NaN; | 
|  | } else { | 
|  | return sign * Infinity; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (exp == 0) { | 
|  | // Denormal. | 
|  | return sign * Math.pow(2, -1074) * mant; | 
|  | } else { | 
|  | return sign * Math.pow(2, exp - 1075) * | 
|  | (mant + jspb.BinaryConstants.TWO_TO_52); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Joins two 32-bit values into an 8-character hash string. | 
|  | * @param {number} bitsLow | 
|  | * @param {number} bitsHigh | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.joinHash64 = function(bitsLow, bitsHigh) { | 
|  | var a = (bitsLow >>> 0) & 0xFF; | 
|  | var b = (bitsLow >>> 8) & 0xFF; | 
|  | var c = (bitsLow >>> 16) & 0xFF; | 
|  | var d = (bitsLow >>> 24) & 0xFF; | 
|  | var e = (bitsHigh >>> 0) & 0xFF; | 
|  | var f = (bitsHigh >>> 8) & 0xFF; | 
|  | var g = (bitsHigh >>> 16) & 0xFF; | 
|  | var h = (bitsHigh >>> 24) & 0xFF; | 
|  |  | 
|  | return String.fromCharCode(a, b, c, d, e, f, g, h); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Individual digits for number->string conversion. | 
|  | * @const {!Array<string>} | 
|  | */ | 
|  | jspb.utils.DIGITS = [ | 
|  | '0', '1', '2', '3', '4', '5', '6', '7', | 
|  | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' | 
|  | ]; | 
|  |  | 
|  | /** @const @private {number} '0' */ | 
|  | jspb.utils.ZERO_CHAR_CODE_ = 48; | 
|  |  | 
|  | /** @const @private {number} 'a' */ | 
|  | jspb.utils.A_CHAR_CODE_ = 97; | 
|  |  | 
|  | /** | 
|  | * Losslessly converts a 64-bit unsigned integer in 32:32 split representation | 
|  | * into a decimal string. | 
|  | * @param {number} bitsLow The low 32 bits of the binary number; | 
|  | * @param {number} bitsHigh The high 32 bits of the binary number. | 
|  | * @return {string} The binary number represented as a string. | 
|  | */ | 
|  | jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) { | 
|  | // Skip the expensive conversion if the number is small enough to use the | 
|  | // built-in conversions. | 
|  | if (bitsHigh <= 0x1FFFFF) { | 
|  | return '' + jspb.utils.joinUint64(bitsLow, bitsHigh); | 
|  | } | 
|  |  | 
|  | // What this code is doing is essentially converting the input number from | 
|  | // base-2 to base-1e7, which allows us to represent the 64-bit range with | 
|  | // only 3 (very large) digits. Those digits are then trivial to convert to | 
|  | // a base-10 string. | 
|  |  | 
|  | // The magic numbers used here are - | 
|  | // 2^24 = 16777216 = (1,6777216) in base-1e7. | 
|  | // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7. | 
|  |  | 
|  | // Split 32:32 representation into 16:24:24 representation so our | 
|  | // intermediate digits don't overflow. | 
|  | var low = bitsLow & 0xFFFFFF; | 
|  | var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF; | 
|  | var high = (bitsHigh >> 16) & 0xFFFF; | 
|  |  | 
|  | // Assemble our three base-1e7 digits, ignoring carries. The maximum | 
|  | // value in a digit at this step is representable as a 48-bit integer, which | 
|  | // can be stored in a 64-bit floating point number. | 
|  | var digitA = low + (mid * 6777216) + (high * 6710656); | 
|  | var digitB = mid + (high * 8147497); | 
|  | var digitC = (high * 2); | 
|  |  | 
|  | // Apply carries from A to B and from B to C. | 
|  | var base = 10000000; | 
|  | if (digitA >= base) { | 
|  | digitB += Math.floor(digitA / base); | 
|  | digitA %= base; | 
|  | } | 
|  |  | 
|  | if (digitB >= base) { | 
|  | digitC += Math.floor(digitB / base); | 
|  | digitB %= base; | 
|  | } | 
|  |  | 
|  | // Convert base-1e7 digits to base-10, with optional leading zeroes. | 
|  | function decimalFrom1e7(digit1e7, needLeadingZeros) { | 
|  | var partial = digit1e7 ? String(digit1e7) : ''; | 
|  | if (needLeadingZeros) { | 
|  | return '0000000'.slice(partial.length) + partial; | 
|  | } | 
|  | return partial; | 
|  | } | 
|  |  | 
|  | return decimalFrom1e7(digitC, /*needLeadingZeros=*/ 0) + | 
|  | decimalFrom1e7(digitB, /*needLeadingZeros=*/ digitC) + | 
|  | // If the final 1e7 digit didn't need leading zeros, we would have | 
|  | // returned via the trivial code path at the top. | 
|  | decimalFrom1e7(digitA, /*needLeadingZeros=*/ 1); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Losslessly converts a 64-bit signed integer in 32:32 split representation | 
|  | * into a decimal string. | 
|  | * @param {number} bitsLow The low 32 bits of the binary number; | 
|  | * @param {number} bitsHigh The high 32 bits of the binary number. | 
|  | * @return {string} The binary number represented as a string. | 
|  | */ | 
|  | jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) { | 
|  | // If we're treating the input as a signed value and the high bit is set, do | 
|  | // a manual two's complement conversion before the decimal conversion. | 
|  | var negative = (bitsHigh & 0x80000000); | 
|  | if (negative) { | 
|  | bitsLow = (~bitsLow + 1) >>> 0; | 
|  | var carry = (bitsLow == 0) ? 1 : 0; | 
|  | bitsHigh = (~bitsHigh + carry) >>> 0; | 
|  | } | 
|  |  | 
|  | var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); | 
|  | return negative ? '-' + result : result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert an 8-character hash string representing either a signed or unsigned | 
|  | * 64-bit integer into its decimal representation without losing accuracy. | 
|  | * @param {string} hash The hash string to convert. | 
|  | * @param {boolean} signed True if we should treat the hash string as encoding | 
|  | *     a signed integer. | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.hash64ToDecimalString = function(hash, signed) { | 
|  | jspb.utils.splitHash64(hash); | 
|  | var bitsLow = jspb.utils.split64Low; | 
|  | var bitsHigh = jspb.utils.split64High; | 
|  | return signed ? | 
|  | jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) : | 
|  | jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts an array of 8-character hash strings into their decimal | 
|  | * representations. | 
|  | * @param {!Array<string>} hashes The array of hash strings to convert. | 
|  | * @param {boolean} signed True if we should treat the hash string as encoding | 
|  | *     a signed integer. | 
|  | * @return {!Array<string>} | 
|  | */ | 
|  | jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) { | 
|  | var result = new Array(hashes.length); | 
|  | for (var i = 0; i < hashes.length; i++) { | 
|  | result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed); | 
|  | } | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a signed or unsigned decimal string into its hash string | 
|  | * representation. | 
|  | * @param {string} dec | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.decimalStringToHash64 = function(dec) { | 
|  | goog.asserts.assert(dec.length > 0); | 
|  |  | 
|  | // Check for minus sign. | 
|  | var minus = false; | 
|  | if (dec[0] === '-') { | 
|  | minus = true; | 
|  | dec = dec.slice(1); | 
|  | } | 
|  |  | 
|  | // Store result as a byte array. | 
|  | var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0]; | 
|  |  | 
|  | // Set result to m*result + c. | 
|  | function muladd(m, c) { | 
|  | for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) { | 
|  | var r = m * resultBytes[i] + c; | 
|  | resultBytes[i] = r & 0xFF; | 
|  | c = r >>> 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Negate the result bits. | 
|  | function neg() { | 
|  | for (var i = 0; i < 8; i++) { | 
|  | resultBytes[i] = (~resultBytes[i]) & 0xFF; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each decimal digit, set result to 10*result + digit. | 
|  | for (var i = 0; i < dec.length; i++) { | 
|  | muladd(10, dec.charCodeAt(i) - jspb.utils.ZERO_CHAR_CODE_); | 
|  | } | 
|  |  | 
|  | // If there's a minus sign, convert into two's complement. | 
|  | if (minus) { | 
|  | neg(); | 
|  | muladd(1, 1); | 
|  | } | 
|  |  | 
|  | return goog.crypt.byteArrayToString(resultBytes); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a signed or unsigned decimal string into two 32-bit halves, and | 
|  | * stores them in the temp variables listed above. | 
|  | * @param {string} value The decimal string to convert. | 
|  | */ | 
|  | jspb.utils.splitDecimalString = function(value) { | 
|  | jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value)); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @param {number} nibble A 4-bit integer. | 
|  | * @return {string} | 
|  | * @private | 
|  | */ | 
|  | jspb.utils.toHexDigit_ = function(nibble) { | 
|  | return String.fromCharCode( | 
|  | nibble < 10 ? jspb.utils.ZERO_CHAR_CODE_ + nibble : | 
|  | jspb.utils.A_CHAR_CODE_ - 10 + nibble); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @param {number} hexCharCode | 
|  | * @return {number} | 
|  | * @private | 
|  | */ | 
|  | jspb.utils.fromHexCharCode_ = function(hexCharCode) { | 
|  | if (hexCharCode >= jspb.utils.A_CHAR_CODE_) { | 
|  | return hexCharCode - jspb.utils.A_CHAR_CODE_ + 10; | 
|  | } | 
|  | return hexCharCode - jspb.utils.ZERO_CHAR_CODE_; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Converts an 8-character hash string into its hexadecimal representation. | 
|  | * @param {string} hash | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.hash64ToHexString = function(hash) { | 
|  | var temp = new Array(18); | 
|  | temp[0] = '0'; | 
|  | temp[1] = 'x'; | 
|  |  | 
|  | for (var i = 0; i < 8; i++) { | 
|  | var c = hash.charCodeAt(7 - i); | 
|  | temp[i * 2 + 2] = jspb.utils.toHexDigit_(c >> 4); | 
|  | temp[i * 2 + 3] = jspb.utils.toHexDigit_(c & 0xF); | 
|  | } | 
|  |  | 
|  | var result = temp.join(''); | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts a '0x<16 digits>' hex string into its hash string representation. | 
|  | * @param {string} hex | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.hexStringToHash64 = function(hex) { | 
|  | hex = hex.toLowerCase(); | 
|  | goog.asserts.assert(hex.length == 18); | 
|  | goog.asserts.assert(hex[0] == '0'); | 
|  | goog.asserts.assert(hex[1] == 'x'); | 
|  |  | 
|  | var result = ''; | 
|  | for (var i = 0; i < 8; i++) { | 
|  | var hi = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 2)); | 
|  | var lo = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 3)); | 
|  | result = String.fromCharCode(hi * 16 + lo) + result; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert an 8-character hash string representing either a signed or unsigned | 
|  | * 64-bit integer into a Javascript number. Will lose accuracy if the result is | 
|  | * larger than 2^52. | 
|  | * @param {string} hash The hash string to convert. | 
|  | * @param {boolean} signed True if the has should be interpreted as a signed | 
|  | *     number. | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.utils.hash64ToNumber = function(hash, signed) { | 
|  | jspb.utils.splitHash64(hash); | 
|  | var bitsLow = jspb.utils.split64Low; | 
|  | var bitsHigh = jspb.utils.split64High; | 
|  | return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) : | 
|  | jspb.utils.joinUint64(bitsLow, bitsHigh); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert a Javascript number into an 8-character hash string. Will lose | 
|  | * precision if the value is non-integral or greater than 2^64. | 
|  | * @param {number} value The integer to convert. | 
|  | * @return {string} | 
|  | */ | 
|  | jspb.utils.numberToHash64 = function(value) { | 
|  | jspb.utils.splitInt64(value); | 
|  | return jspb.utils.joinHash64(jspb.utils.split64Low, | 
|  | jspb.utils.split64High); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous varints in a buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @return {number} The number of varints in the buffer. | 
|  | */ | 
|  | jspb.utils.countVarints = function(buffer, start, end) { | 
|  | // Count how many high bits of each byte were set in the buffer. | 
|  | var count = 0; | 
|  | for (var i = start; i < end; i++) { | 
|  | count += buffer[i] >> 7; | 
|  | } | 
|  |  | 
|  | // The number of varints in the buffer equals the size of the buffer minus | 
|  | // the number of non-terminal bytes in the buffer (those with the high bit | 
|  | // set). | 
|  | return (end - start) - count; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous varint fields with the given field number in | 
|  | * the buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @param {number} field The field number to count. | 
|  | * @return {number} The number of matching fields in the buffer. | 
|  | */ | 
|  | jspb.utils.countVarintFields = function(buffer, start, end, field) { | 
|  | var count = 0; | 
|  | var cursor = start; | 
|  | var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT; | 
|  |  | 
|  | if (tag < 128) { | 
|  | // Single-byte field tag, we can use a slightly quicker count. | 
|  | while (cursor < end) { | 
|  | // Skip the field tag, or exit if we find a non-matching tag. | 
|  | if (buffer[cursor++] != tag) return count; | 
|  |  | 
|  | // Field tag matches, we've found a valid field. | 
|  | count++; | 
|  |  | 
|  | // Skip the varint. | 
|  | while (1) { | 
|  | var x = buffer[cursor++]; | 
|  | if ((x & 0x80) == 0) break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | while (cursor < end) { | 
|  | // Skip the field tag, or exit if we find a non-matching tag. | 
|  | var temp = tag; | 
|  | while (temp > 128) { | 
|  | if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count; | 
|  | cursor++; | 
|  | temp >>= 7; | 
|  | } | 
|  | if (buffer[cursor++] != temp) return count; | 
|  |  | 
|  | // Field tag matches, we've found a valid field. | 
|  | count++; | 
|  |  | 
|  | // Skip the varint. | 
|  | while (1) { | 
|  | var x = buffer[cursor++]; | 
|  | if ((x & 0x80) == 0) break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return count; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous fixed32 fields with the given tag in the | 
|  | * buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @param {number} tag The tag value to count. | 
|  | * @param {number} stride The number of bytes to skip per field. | 
|  | * @return {number} The number of fields with a matching tag in the buffer. | 
|  | * @private | 
|  | */ | 
|  | jspb.utils.countFixedFields_ = | 
|  | function(buffer, start, end, tag, stride) { | 
|  | var count = 0; | 
|  | var cursor = start; | 
|  |  | 
|  | if (tag < 128) { | 
|  | // Single-byte field tag, we can use a slightly quicker count. | 
|  | while (cursor < end) { | 
|  | // Skip the field tag, or exit if we find a non-matching tag. | 
|  | if (buffer[cursor++] != tag) return count; | 
|  |  | 
|  | // Field tag matches, we've found a valid field. | 
|  | count++; | 
|  |  | 
|  | // Skip the value. | 
|  | cursor += stride; | 
|  | } | 
|  | } else { | 
|  | while (cursor < end) { | 
|  | // Skip the field tag, or exit if we find a non-matching tag. | 
|  | var temp = tag; | 
|  | while (temp > 128) { | 
|  | if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; | 
|  | temp >>= 7; | 
|  | } | 
|  | if (buffer[cursor++] != temp) return count; | 
|  |  | 
|  | // Field tag matches, we've found a valid field. | 
|  | count++; | 
|  |  | 
|  | // Skip the value. | 
|  | cursor += stride; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous fixed32 fields with the given field number | 
|  | * in the buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @param {number} field The field number to count. | 
|  | * @return {number} The number of matching fields in the buffer. | 
|  | */ | 
|  | jspb.utils.countFixed32Fields = function(buffer, start, end, field) { | 
|  | var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32; | 
|  | return jspb.utils.countFixedFields_(buffer, start, end, tag, 4); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous fixed64 fields with the given field number | 
|  | * in the buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @param {number} field The field number to count | 
|  | * @return {number} The number of matching fields in the buffer. | 
|  | */ | 
|  | jspb.utils.countFixed64Fields = function(buffer, start, end, field) { | 
|  | var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64; | 
|  | return jspb.utils.countFixedFields_(buffer, start, end, tag, 8); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Counts the number of contiguous delimited fields with the given field number | 
|  | * in the buffer. | 
|  | * @param {!Uint8Array} buffer The buffer to scan. | 
|  | * @param {number} start The starting point in the buffer to scan. | 
|  | * @param {number} end The end point in the buffer to scan. | 
|  | * @param {number} field The field number to count. | 
|  | * @return {number} The number of matching fields in the buffer. | 
|  | */ | 
|  | jspb.utils.countDelimitedFields = function(buffer, start, end, field) { | 
|  | var count = 0; | 
|  | var cursor = start; | 
|  | var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED; | 
|  |  | 
|  | while (cursor < end) { | 
|  | // Skip the field tag, or exit if we find a non-matching tag. | 
|  | var temp = tag; | 
|  | while (temp > 128) { | 
|  | if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; | 
|  | temp >>= 7; | 
|  | } | 
|  | if (buffer[cursor++] != temp) return count; | 
|  |  | 
|  | // Field tag matches, we've found a valid field. | 
|  | count++; | 
|  |  | 
|  | // Decode the length prefix. | 
|  | var length = 0; | 
|  | var shift = 1; | 
|  | while (1) { | 
|  | temp = buffer[cursor++]; | 
|  | length += (temp & 0x7f) * shift; | 
|  | shift *= 128; | 
|  | if ((temp & 0x80) == 0) break; | 
|  | } | 
|  |  | 
|  | // Advance the cursor past the blob. | 
|  | cursor += length; | 
|  | } | 
|  | return count; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * String-ify bytes for text format. Should be optimized away in non-debug. | 
|  | * The returned string uses \xXX escapes for all values and is itself quoted. | 
|  | * [1, 31] serializes to '"\x01\x1f"'. | 
|  | * @param {jspb.ByteSource} byteSource The bytes to serialize. | 
|  | * @return {string} Stringified bytes for text format. | 
|  | */ | 
|  | jspb.utils.debugBytesToTextFormat = function(byteSource) { | 
|  | var s = '"'; | 
|  | if (byteSource) { | 
|  | var bytes = jspb.utils.byteSourceToUint8Array(byteSource); | 
|  | for (var i = 0; i < bytes.length; i++) { | 
|  | s += '\\x'; | 
|  | if (bytes[i] < 16) s += '0'; | 
|  | s += bytes[i].toString(16); | 
|  | } | 
|  | } | 
|  | return s + '"'; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * String-ify a scalar for text format. Should be optimized away in non-debug. | 
|  | * @param {string|number|boolean} scalar The scalar to stringify. | 
|  | * @return {string} Stringified scalar for text format. | 
|  | */ | 
|  | jspb.utils.debugScalarToTextFormat = function(scalar) { | 
|  | if (typeof scalar === 'string') { | 
|  | return goog.string.quote(scalar); | 
|  | } else { | 
|  | return scalar.toString(); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Utility function: convert a string with codepoints 0--255 inclusive to a | 
|  | * Uint8Array. If any codepoints greater than 255 exist in the string, throws an | 
|  | * exception. | 
|  | * @param {string} str | 
|  | * @return {!Uint8Array} | 
|  | */ | 
|  | jspb.utils.stringToByteArray = function(str) { | 
|  | var arr = new Uint8Array(str.length); | 
|  | for (var i = 0; i < str.length; i++) { | 
|  | var codepoint = str.charCodeAt(i); | 
|  | if (codepoint > 255) { | 
|  | throw new Error('Conversion error: string contains codepoint ' + | 
|  | 'outside of byte range'); | 
|  | } | 
|  | arr[i] = codepoint; | 
|  | } | 
|  | return arr; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Converts any type defined in jspb.ByteSource into a Uint8Array. | 
|  | * @param {!jspb.ByteSource} data | 
|  | * @return {!Uint8Array} | 
|  | * @suppress {invalidCasts} | 
|  | */ | 
|  | jspb.utils.byteSourceToUint8Array = function(data) { | 
|  | if (data.constructor === Uint8Array) { | 
|  | return /** @type {!Uint8Array} */(data); | 
|  | } | 
|  |  | 
|  | if (data.constructor === ArrayBuffer) { | 
|  | data = /** @type {!ArrayBuffer} */(data); | 
|  | return /** @type {!Uint8Array} */(new Uint8Array(data)); | 
|  | } | 
|  |  | 
|  | if (typeof Buffer != 'undefined' && data.constructor === Buffer) { | 
|  | return /** @type {!Uint8Array} */ ( | 
|  | new Uint8Array(/** @type {?} */ (data))); | 
|  | } | 
|  |  | 
|  | if (data.constructor === Array) { | 
|  | data = /** @type {!Array<number>} */(data); | 
|  | return /** @type {!Uint8Array} */(new Uint8Array(data)); | 
|  | } | 
|  |  | 
|  | if (data.constructor === String) { | 
|  | data = /** @type {string} */(data); | 
|  | return goog.crypt.base64.decodeStringToUint8Array(data); | 
|  | } | 
|  |  | 
|  | goog.asserts.fail('Type not convertible to Uint8Array.'); | 
|  | return /** @type {!Uint8Array} */(new Uint8Array(0)); | 
|  | }; |