|  | // Protocol Buffers - Google's data interchange format | 
|  | // Copyright 2008 Google Inc.  All rights reserved. | 
|  | // https://developers.google.com/protocol-buffers/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | /** | 
|  | * @fileoverview This file contains helper code used by jspb.utils to | 
|  | * handle 64-bit integer conversion to/from strings. | 
|  | * | 
|  | * @author cfallin@google.com (Chris Fallin) | 
|  | * | 
|  | * TODO(haberman): move this to javascript/closure/math? | 
|  | */ | 
|  |  | 
|  | goog.provide('jspb.arith.Int64'); | 
|  | goog.provide('jspb.arith.UInt64'); | 
|  |  | 
|  | /** | 
|  | * UInt64 implements some 64-bit arithmetic routines necessary for properly | 
|  | * handling 64-bit integer fields. It implements lossless integer arithmetic on | 
|  | * top of JavaScript's number type, which has only 53 bits of precision, by | 
|  | * representing 64-bit integers as two 32-bit halves. | 
|  | * | 
|  | * @param {number} lo The low 32 bits. | 
|  | * @param {number} hi The high 32 bits. | 
|  | * @constructor | 
|  | */ | 
|  | jspb.arith.UInt64 = function(lo, hi) { | 
|  | /** | 
|  | * The low 32 bits. | 
|  | * @public {number} | 
|  | */ | 
|  | this.lo = lo; | 
|  | /** | 
|  | * The high 32 bits. | 
|  | * @public {number} | 
|  | */ | 
|  | this.hi = hi; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Compare two 64-bit numbers. Returns -1 if the first is | 
|  | * less, +1 if the first is greater, or 0 if both are equal. | 
|  | * @param {!jspb.arith.UInt64} other | 
|  | * @return {number} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.cmp = function(other) { | 
|  | if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) { | 
|  | return -1; | 
|  | } else if (this.hi == other.hi && this.lo == other.lo) { | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Right-shift this number by one bit. | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.rightShift = function() { | 
|  | var hi = this.hi >>> 1; | 
|  | var lo = (this.lo >>> 1) | ((this.hi & 1) << 31); | 
|  | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Left-shift this number by one bit. | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.leftShift = function() { | 
|  | var lo = this.lo << 1; | 
|  | var hi = (this.hi << 1) | (this.lo >>> 31); | 
|  | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Test the MSB. | 
|  | * @return {boolean} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.msb = function() { | 
|  | return !!(this.hi & 0x80000000); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Test the LSB. | 
|  | * @return {boolean} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.lsb = function() { | 
|  | return !!(this.lo & 1); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Test whether this number is zero. | 
|  | * @return {boolean} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.zero = function() { | 
|  | return this.lo == 0 && this.hi == 0; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Add two 64-bit numbers to produce a 64-bit number. | 
|  | * @param {!jspb.arith.UInt64} other | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.add = function(other) { | 
|  | var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; | 
|  | var hi = | 
|  | (((this.hi + other.hi) & 0xffffffff) >>> 0) + | 
|  | (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); | 
|  | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Subtract two 64-bit numbers to produce a 64-bit number. | 
|  | * @param {!jspb.arith.UInt64} other | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.sub = function(other) { | 
|  | var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; | 
|  | var hi = | 
|  | (((this.hi - other.hi) & 0xffffffff) >>> 0) - | 
|  | (((this.lo - other.lo) < 0) ? 1 : 0); | 
|  | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Multiply two 32-bit numbers to produce a 64-bit number. | 
|  | * @param {number} a The first integer:  must be in [0, 2^32-1). | 
|  | * @param {number} b The second integer: must be in [0, 2^32-1). | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.mul32x32 = function(a, b) { | 
|  | // Directly multiplying two 32-bit numbers may produce up to 64 bits of | 
|  | // precision, thus losing precision because of the 53-bit mantissa of | 
|  | // JavaScript numbers. So we multiply with 16-bit digits (radix 65536) | 
|  | // instead. | 
|  | var aLow = (a & 0xffff); | 
|  | var aHigh = (a >>> 16); | 
|  | var bLow = (b & 0xffff); | 
|  | var bHigh = (b >>> 16); | 
|  | var productLow = | 
|  | // 32-bit result, result bits 0-31, take all 32 bits | 
|  | (aLow * bLow) + | 
|  | // 32-bit result, result bits 16-47, take bottom 16 as our top 16 | 
|  | ((aLow * bHigh) & 0xffff) * 0x10000 + | 
|  | // 32-bit result, result bits 16-47, take bottom 16 as our top 16 | 
|  | ((aHigh * bLow) & 0xffff) * 0x10000; | 
|  | var productHigh = | 
|  | // 32-bit result, result bits 32-63, take all 32 bits | 
|  | (aHigh * bHigh) + | 
|  | // 32-bit result, result bits 16-47, take top 16 as our bottom 16 | 
|  | ((aLow * bHigh) >>> 16) + | 
|  | // 32-bit result, result bits 16-47, take top 16 as our bottom 16 | 
|  | ((aHigh * bLow) >>> 16); | 
|  |  | 
|  | // Carry. Note that we actually have up to *two* carries due to addition of | 
|  | // three terms. | 
|  | while (productLow >= 0x100000000) { | 
|  | productLow -= 0x100000000; | 
|  | productHigh += 1; | 
|  | } | 
|  |  | 
|  | return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Multiply this number by a 32-bit number, producing a 96-bit number, then | 
|  | * truncate the top 32 bits. | 
|  | * @param {number} a The multiplier. | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.mul = function(a) { | 
|  | // Produce two parts: at bits 0-63, and 32-95. | 
|  | var lo = jspb.arith.UInt64.mul32x32(this.lo, a); | 
|  | var hi = jspb.arith.UInt64.mul32x32(this.hi, a); | 
|  | // Left-shift hi by 32 bits, truncating its top bits. The parts will then be | 
|  | // aligned for addition. | 
|  | hi.hi = hi.lo; | 
|  | hi.lo = 0; | 
|  | return lo.add(hi); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Divide a 64-bit number by a 32-bit number to produce a | 
|  | * 64-bit quotient and a 32-bit remainder. | 
|  | * @param {number} _divisor | 
|  | * @return {Array<jspb.arith.UInt64>} array of [quotient, remainder], | 
|  | * unless divisor is 0, in which case an empty array is returned. | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.div = function(_divisor) { | 
|  | if (_divisor == 0) { | 
|  | return []; | 
|  | } | 
|  |  | 
|  | // We perform long division using a radix-2 algorithm, for simplicity (i.e., | 
|  | // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care | 
|  | // to get the variable shifts right. | 
|  | var quotient = new jspb.arith.UInt64(0, 0); | 
|  | var remainder = new jspb.arith.UInt64(this.lo, this.hi); | 
|  | var divisor = new jspb.arith.UInt64(_divisor, 0); | 
|  | var unit = new jspb.arith.UInt64(1, 0); | 
|  |  | 
|  | // Left-shift the divisor and unit until the high bit of divisor is set. | 
|  | while (!divisor.msb()) { | 
|  | divisor = divisor.leftShift(); | 
|  | unit = unit.leftShift(); | 
|  | } | 
|  |  | 
|  | // Perform long division one bit at a time. | 
|  | while (!unit.zero()) { | 
|  | // If divisor < remainder, add unit to quotient and subtract divisor from | 
|  | // remainder. | 
|  | if (divisor.cmp(remainder) <= 0) { | 
|  | quotient = quotient.add(unit); | 
|  | remainder = remainder.sub(divisor); | 
|  | } | 
|  | // Right-shift the divisor and unit. | 
|  | divisor = divisor.rightShift(); | 
|  | unit = unit.rightShift(); | 
|  | } | 
|  |  | 
|  | return [quotient, remainder]; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert a 64-bit number to a string. | 
|  | * @return {string} | 
|  | * @override | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.toString = function() { | 
|  | var result = ''; | 
|  | var num = this; | 
|  | while (!num.zero()) { | 
|  | var divResult = num.div(10); | 
|  | var quotient = divResult[0], remainder = divResult[1]; | 
|  | result = remainder.lo + result; | 
|  | num = quotient; | 
|  | } | 
|  | if (result == '') { | 
|  | result = '0'; | 
|  | } | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Parse a string into a 64-bit number. Returns `null` on a parse error. | 
|  | * @param {string} s | 
|  | * @return {?jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.fromString = function(s) { | 
|  | var result = new jspb.arith.UInt64(0, 0); | 
|  | // optimization: reuse this instance for each digit. | 
|  | var digit64 = new jspb.arith.UInt64(0, 0); | 
|  | for (var i = 0; i < s.length; i++) { | 
|  | if (s[i] < '0' || s[i] > '9') { | 
|  | return null; | 
|  | } | 
|  | var digit = parseInt(s[i], 10); | 
|  | digit64.lo = digit; | 
|  | result = result.mul(10).add(digit64); | 
|  | } | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Make a copy of the uint64. | 
|  | * @return {!jspb.arith.UInt64} | 
|  | */ | 
|  | jspb.arith.UInt64.prototype.clone = function() { | 
|  | return new jspb.arith.UInt64(this.lo, this.hi); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Int64 is like UInt64, but modifies string conversions to interpret the stored | 
|  | * 64-bit value as a twos-complement-signed integer. It does *not* support the | 
|  | * full range of operations that UInt64 does: only add, subtract, and string | 
|  | * conversions. | 
|  | * | 
|  | * N.B. that multiply and divide routines are *NOT* supported. They will throw | 
|  | * exceptions. (They are not necessary to implement string conversions, which | 
|  | * are the only operations we really need in jspb.) | 
|  | * | 
|  | * @param {number} lo The low 32 bits. | 
|  | * @param {number} hi The high 32 bits. | 
|  | * @constructor | 
|  | */ | 
|  | jspb.arith.Int64 = function(lo, hi) { | 
|  | /** | 
|  | * The low 32 bits. | 
|  | * @public {number} | 
|  | */ | 
|  | this.lo = lo; | 
|  | /** | 
|  | * The high 32 bits. | 
|  | * @public {number} | 
|  | */ | 
|  | this.hi = hi; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Add two 64-bit numbers to produce a 64-bit number. | 
|  | * @param {!jspb.arith.Int64} other | 
|  | * @return {!jspb.arith.Int64} | 
|  | */ | 
|  | jspb.arith.Int64.prototype.add = function(other) { | 
|  | var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; | 
|  | var hi = | 
|  | (((this.hi + other.hi) & 0xffffffff) >>> 0) + | 
|  | (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); | 
|  | return new jspb.arith.Int64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Subtract two 64-bit numbers to produce a 64-bit number. | 
|  | * @param {!jspb.arith.Int64} other | 
|  | * @return {!jspb.arith.Int64} | 
|  | */ | 
|  | jspb.arith.Int64.prototype.sub = function(other) { | 
|  | var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; | 
|  | var hi = | 
|  | (((this.hi - other.hi) & 0xffffffff) >>> 0) - | 
|  | (((this.lo - other.lo) < 0) ? 1 : 0); | 
|  | return new jspb.arith.Int64(lo >>> 0, hi >>> 0); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Make a copy of the int64. | 
|  | * @return {!jspb.arith.Int64} | 
|  | */ | 
|  | jspb.arith.Int64.prototype.clone = function() { | 
|  | return new jspb.arith.Int64(this.lo, this.hi); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert a 64-bit number to a string. | 
|  | * @return {string} | 
|  | * @override | 
|  | */ | 
|  | jspb.arith.Int64.prototype.toString = function() { | 
|  | // If the number is negative, find its twos-complement inverse. | 
|  | var sign = (this.hi & 0x80000000) != 0; | 
|  | var num = new jspb.arith.UInt64(this.lo, this.hi); | 
|  | if (sign) { | 
|  | num = new jspb.arith.UInt64(0, 0).sub(num); | 
|  | } | 
|  | return (sign ? '-' : '') + num.toString(); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Parse a string into a 64-bit number. Returns `null` on a parse error. | 
|  | * @param {string} s | 
|  | * @return {?jspb.arith.Int64} | 
|  | */ | 
|  | jspb.arith.Int64.fromString = function(s) { | 
|  | var hasNegative = (s.length > 0 && s[0] == '-'); | 
|  | if (hasNegative) { | 
|  | s = s.substring(1); | 
|  | } | 
|  | var num = jspb.arith.UInt64.fromString(s); | 
|  | if (num === null) { | 
|  | return null; | 
|  | } | 
|  | if (hasNegative) { | 
|  | num = new jspb.arith.UInt64(0, 0).sub(num); | 
|  | } | 
|  | return new jspb.arith.Int64(num.lo, num.hi); | 
|  | }; |