Make the utf8_range implementation just in C
PiperOrigin-RevId: 590961088
diff --git a/php/ext/google/protobuf/config.m4 b/php/ext/google/protobuf/config.m4
index c5a665b..5e5fbf6 100644
--- a/php/ext/google/protobuf/config.m4
+++ b/php/ext/google/protobuf/config.m4
@@ -4,7 +4,7 @@
PHP_NEW_EXTENSION(
protobuf,
- arena.c array.c convert.c def.c map.c message.c names.c php-upb.c protobuf.c third_party/utf8_range/naive.c third_party/utf8_range/range2-neon.c third_party/utf8_range/range2-sse.c,
+ arena.c array.c convert.c def.c map.c message.c names.c php-upb.c protobuf.c third_party/utf8_range/utf8_range.c,
$ext_shared, , -std=gnu99 -I@ext_srcdir@/third_party/utf8_range)
PHP_ADD_BUILD_DIR($ext_builddir/third_party/utf8_range)
diff --git a/python/convert.c b/python/convert.c
index 2105c98..0b26bdc 100644
--- a/python/convert.c
+++ b/python/convert.c
@@ -241,7 +241,7 @@
// Use the object's bytes if they are valid UTF-8.
char* ptr;
if (PyBytes_AsStringAndSize(obj, &ptr, &size) < 0) return false;
- if (utf8_range2((const unsigned char*)ptr, size) != 0) {
+ if (!utf8_range_IsValid(ptr, size)) {
// Invalid UTF-8. Try to convert the message to a Python Unicode
// object, even though we know this will fail, just to get the
// idiomatic Python error message.
diff --git a/ruby/.gitignore b/ruby/.gitignore
index 143b48e..555af6c 100644
--- a/ruby/.gitignore
+++ b/ruby/.gitignore
@@ -8,8 +8,6 @@
tmp/
tests/google/
ext/google/protobuf_c/third_party/utf8_range/utf8_range.h
-ext/google/protobuf_c/third_party/utf8_range/range2-sse.c
-ext/google/protobuf_c/third_party/utf8_range/range2-neon.c
-ext/google/protobuf_c/third_party/utf8_range/naive.c
+ext/google/protobuf_c/third_party/utf8_range/utf8_range.c
ext/google/protobuf_c/third_party/utf8_range/LICENSE
lib/google/protobuf/*_pb.rb
\ No newline at end of file
diff --git a/ruby/Rakefile b/ruby/Rakefile
index 860bbc3..9b50e6c 100644
--- a/ruby/Rakefile
+++ b/ruby/Rakefile
@@ -75,7 +75,7 @@
# We need utf8_range in-tree.
utf8_root = '../third_party/utf8_range'
%w[
- utf8_range.h naive.c range2-neon.c range2-neon.c range2-sse.c LICENSE
+ utf8_range.h utf8_range.c LICENSE
].each do |file|
FileUtils.cp File.join(utf8_root, file),
"ext/google/protobuf_c/third_party/utf8_range"
diff --git a/ruby/ext/google/protobuf_c/extconf.rb b/ruby/ext/google/protobuf_c/extconf.rb
index 4bb49bb..ed812c9 100755
--- a/ruby/ext/google/protobuf_c/extconf.rb
+++ b/ruby/ext/google/protobuf_c/extconf.rb
@@ -22,7 +22,7 @@
$srcs = ["protobuf.c", "convert.c", "defs.c", "message.c",
"repeated_field.c", "map.c", "ruby-upb.c", "wrap_memcpy.c",
- "naive.c", "range2-neon.c", "range2-sse.c", "shared_convert.c",
+ "utf8_range.c", "shared_convert.c",
"shared_message.c"]
create_makefile(ext_name)
diff --git a/ruby/lib/google/tasks/ffi.rake b/ruby/lib/google/tasks/ffi.rake
index c7b2a8e..5de10a7 100644
--- a/ruby/lib/google/tasks/ffi.rake
+++ b/ruby/lib/google/tasks/ffi.rake
@@ -74,9 +74,7 @@
FFI::Compiler::CompileTask.new 'protobuf_c_ffi' do |c|
configure_common_compile_task c
# Ruby UPB was already compiled with different flags.
- c.exclude << "/range2-neon.c"
- c.exclude << "/range2-sse.c"
- c.exclude << "/naive.c"
+ c.exclude << "/utf8_range.c"
c.exclude << "/ruby-upb.c"
end
diff --git a/third_party/utf8_range/BUILD.bazel b/third_party/utf8_range/BUILD.bazel
index 439faaa..d24e8a1 100644
--- a/third_party/utf8_range/BUILD.bazel
+++ b/third_party/utf8_range/BUILD.bazel
@@ -23,9 +23,7 @@
filegroup(
name = "utf8_range_srcs",
srcs = [
- "naive.c",
- "range2-neon.c",
- "range2-sse.c",
+ "utf8_range.c",
"utf8_range.h",
],
visibility = ["//:__subpackages__"],
@@ -34,9 +32,7 @@
cc_library(
name = "utf8_range",
srcs = [
- "naive.c",
- "range2-neon.c",
- "range2-sse.c",
+ "utf8_range.c",
],
hdrs = ["utf8_range.h"],
strip_include_prefix = "/third_party/utf8_range",
@@ -48,14 +44,19 @@
hdrs = ["utf8_validity.h"],
strip_include_prefix = "/third_party/utf8_range",
deps = [
+ ":utf8_range",
"@com_google_absl//absl/strings",
],
)
cc_test(
name = "utf8_validity_test",
- srcs = ["utf8_validity_test.cc"],
+ srcs = [
+ "utf8_range.c",
+ "utf8_validity_test.cc",
+ ],
deps = [
+ ":utf8_range",
":utf8_validity",
"@com_google_absl//absl/strings",
"@com_google_googletest//:gtest_main",
diff --git a/third_party/utf8_range/CMakeLists.txt b/third_party/utf8_range/CMakeLists.txt
index 344952d..8d7a6e1 100644
--- a/third_party/utf8_range/CMakeLists.txt
+++ b/third_party/utf8_range/CMakeLists.txt
@@ -12,14 +12,12 @@
##
# Create the lightweight C library
add_library (utf8_range STATIC
- naive.c
- range2-neon.c
- range2-sse.c
+ utf8_range.c
)
##
# A heavier-weight C++ wrapper that supports Abseil.
-add_library (utf8_validity STATIC utf8_validity.cc)
+add_library (utf8_validity STATIC utf8_validity.cc utf8_range.c)
# Load Abseil dependency.
if (NOT TARGET absl::strings)
diff --git a/third_party/utf8_range/utf8_range.c b/third_party/utf8_range/utf8_range.c
new file mode 100644
index 0000000..9564b07
--- /dev/null
+++ b/third_party/utf8_range/utf8_range.c
@@ -0,0 +1,467 @@
+// Copyright 2023 Google LLC
+//
+// Use of this source code is governed by an MIT-style
+// license that can be found in the LICENSE file or at
+// https://opensource.org/licenses/MIT.
+
+/* This is a wrapper for the Google range-sse.cc algorithm which checks whether
+ * a sequence of bytes is a valid UTF-8 sequence and finds the longest valid
+ * prefix of the UTF-8 sequence.
+ *
+ * The key difference is that it checks for as much ASCII symbols as possible
+ * and then falls back to the range-sse.cc algorithm. The changes to the
+ * algorithm are cosmetic, mostly to trick the clang compiler to produce optimal
+ * code.
+ *
+ * For API see the utf8_validity.h header.
+ */
+#include "utf8_range.h"
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#ifdef __SSE4_1__
+#include <emmintrin.h>
+#include <smmintrin.h>
+#include <tmmintrin.h>
+#endif
+
+#if defined(__GNUC__)
+#define FORCE_INLINE_ATTR __attribute__((always_inline))
+#elif defined(_MSC_VER)
+#define FORCE_INLINE_ATTR __forceinline
+#else
+#define FORCE_INLINE_ATTR
+#endif
+
+static FORCE_INLINE_ATTR inline uint64_t utf8_range_UnalignedLoad64(
+ const void* p) {
+ uint64_t t;
+ memcpy(&t, p, sizeof t);
+ return t;
+}
+
+static FORCE_INLINE_ATTR inline int utf8_range_AsciiIsAscii(unsigned char c) {
+ return c < 128;
+}
+
+static FORCE_INLINE_ATTR inline int utf8_range_IsTrailByteOk(const char c) {
+ return (int8_t)(c) <= (int8_t)(0xBF);
+}
+
+/* If return_position is false then it returns 1 if |data| is a valid utf8
+ * sequence, otherwise returns 0.
+ * If return_position is set to true, returns the length in bytes of the prefix
+ of |data| that is all structurally valid UTF-8.
+ */
+static size_t utf8_range_ValidateUTF8Naive(const char* data, const char* end,
+ int return_position) {
+ /* We return err_pos in the loop which is always 0 if !return_position */
+ size_t err_pos = 0;
+ size_t codepoint_bytes = 0;
+ /* The early check is done because of early continue's on codepoints of all
+ * sizes, i.e. we first check for ascii and if it is, we call continue, then
+ * for 2 byte codepoints, etc. This is done in order to reduce indentation and
+ * improve readability of the codepoint validity check.
+ */
+ while (data + codepoint_bytes < end) {
+ if (return_position) {
+ err_pos += codepoint_bytes;
+ }
+ data += codepoint_bytes;
+ const size_t len = end - data;
+ const unsigned char byte1 = data[0];
+
+ /* We do not skip many ascii bytes at the same time as this function is
+ used for tail checking (< 16 bytes) and for non x86 platforms. We also
+ don't think that cases where non-ASCII codepoints are followed by ascii
+ happen often. For small strings it also introduces some penalty. For
+ purely ascii UTF8 strings (which is the overwhelming case) we call
+ SkipAscii function which is multiplatform and extremely fast.
+ */
+ /* [00..7F] ASCII -> 1 byte */
+ if (utf8_range_AsciiIsAscii(byte1)) {
+ codepoint_bytes = 1;
+ continue;
+ }
+ /* [C2..DF], [80..BF] -> 2 bytes */
+ if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF &&
+ utf8_range_IsTrailByteOk(data[1])) {
+ codepoint_bytes = 2;
+ continue;
+ }
+ if (len >= 3) {
+ const unsigned char byte2 = data[1];
+ const unsigned char byte3 = data[2];
+
+ /* Is byte2, byte3 between [0x80, 0xBF]
+ * Check for 0x80 was done above.
+ */
+ if (!utf8_range_IsTrailByteOk(byte2) ||
+ !utf8_range_IsTrailByteOk(byte3)) {
+ return err_pos;
+ }
+
+ if (/* E0, A0..BF, 80..BF */
+ ((byte1 == 0xE0 && byte2 >= 0xA0) ||
+ /* E1..EC, 80..BF, 80..BF */
+ (byte1 >= 0xE1 && byte1 <= 0xEC) ||
+ /* ED, 80..9F, 80..BF */
+ (byte1 == 0xED && byte2 <= 0x9F) ||
+ /* EE..EF, 80..BF, 80..BF */
+ (byte1 >= 0xEE && byte1 <= 0xEF))) {
+ codepoint_bytes = 3;
+ continue;
+ }
+ if (len >= 4) {
+ const unsigned char byte4 = data[3];
+ /* Is byte4 between 0x80 ~ 0xBF */
+ if (!utf8_range_IsTrailByteOk(byte4)) {
+ return err_pos;
+ }
+
+ if (/* F0, 90..BF, 80..BF, 80..BF */
+ ((byte1 == 0xF0 && byte2 >= 0x90) ||
+ /* F1..F3, 80..BF, 80..BF, 80..BF */
+ (byte1 >= 0xF1 && byte1 <= 0xF3) ||
+ /* F4, 80..8F, 80..BF, 80..BF */
+ (byte1 == 0xF4 && byte2 <= 0x8F))) {
+ codepoint_bytes = 4;
+ continue;
+ }
+ }
+ }
+ return err_pos;
+ }
+ if (return_position) {
+ err_pos += codepoint_bytes;
+ }
+ /* if return_position is false, this returns 1.
+ * if return_position is true, this returns err_pos.
+ */
+ return err_pos + (1 - return_position);
+}
+
+#ifdef __SSE4_1__
+/* Returns the number of bytes needed to skip backwards to get to the first
+ byte of codepoint.
+ */
+static inline int utf8_range_CodepointSkipBackwards(int32_t codepoint_word) {
+ const int8_t* const codepoint = (const int8_t*)(&codepoint_word);
+ if (!utf8_range_IsTrailByteOk(codepoint[3])) {
+ return 1;
+ } else if (!utf8_range_IsTrailByteOk(codepoint[2])) {
+ return 2;
+ } else if (!utf8_range_IsTrailByteOk(codepoint[1])) {
+ return 3;
+ }
+ return 0;
+}
+#endif // __SSE4_1__
+
+/* Skipping over ASCII as much as possible, per 8 bytes. It is intentional
+ as most strings to check for validity consist only of 1 byte codepoints.
+ */
+static inline const char* utf8_range_SkipAscii(const char* data,
+ const char* end) {
+ while (8 <= end - data &&
+ (utf8_range_UnalignedLoad64(data) & 0x8080808080808080) == 0) {
+ data += 8;
+ }
+ while (data < end && utf8_range_AsciiIsAscii(*data)) {
+ ++data;
+ }
+ return data;
+}
+
+static FORCE_INLINE_ATTR inline size_t utf8_range_Validate(
+ const char* data, size_t len, int return_position) {
+ if (len == 0) return 1 - return_position;
+ const char* const end = data + len;
+ data = utf8_range_SkipAscii(data, end);
+ /* SIMD algorithm always outperforms the naive version for any data of
+ length >=16.
+ */
+ if (end - data < 16) {
+ return (return_position ? (data - (end - len)) : 0) +
+ utf8_range_ValidateUTF8Naive(data, end, return_position);
+ }
+#ifndef __SSE4_1__
+ return (return_position ? (data - (end - len)) : 0) +
+ utf8_range_ValidateUTF8Naive(data, end, return_position);
+#else
+ /* This code checks that utf-8 ranges are structurally valid 16 bytes at once
+ * using superscalar instructions.
+ * The mapping between ranges of codepoint and their corresponding utf-8
+ * sequences is below.
+ */
+
+ /*
+ * U+0000...U+007F 00...7F
+ * U+0080...U+07FF C2...DF 80...BF
+ * U+0800...U+0FFF E0 A0...BF 80...BF
+ * U+1000...U+CFFF E1...EC 80...BF 80...BF
+ * U+D000...U+D7FF ED 80...9F 80...BF
+ * U+E000...U+FFFF EE...EF 80...BF 80...BF
+ * U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
+ * U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
+ * U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
+ */
+
+ /* First we compute the type for each byte, as given by the table below.
+ * This type will be used as an index later on.
+ */
+
+ /*
+ * Index Min Max Byte Type
+ * 0 00 7F Single byte sequence
+ * 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
+ * 4 A0 BF Second byte after E0
+ * 5 80 9F Second byte after ED
+ * 6 90 BF Second byte after F0
+ * 7 80 8F Second byte after F4
+ * 8 C2 F4 First non ASCII byte
+ * 9..15 7F 80 Invalid byte
+ */
+
+ /* After the first step we compute the index for all bytes, then we permute
+ the bytes according to their indices to check the ranges from the range
+ table.
+ * The range for a given type can be found in the range_min_table and
+ range_max_table, the range for type/index X is in range_min_table[X] ...
+ range_max_table[X].
+ */
+
+ /* Algorithm:
+ * Put index zero to all bytes.
+ * Find all non ASCII characters, give them index 8.
+ * For each tail byte in a codepoint sequence, give it an index corresponding
+ to the 1 based index from the end.
+ * If the first byte of the codepoint is in the [C0...DF] range, we write
+ index 1 in the following byte.
+ * If the first byte of the codepoint is in the range [E0...EF], we write
+ indices 2 and 1 in the next two bytes.
+ * If the first byte of the codepoint is in the range [F0...FF] we write
+ indices 3,2,1 into the next three bytes.
+ * For finding the number of bytes we need to look at high nibbles (4 bits)
+ and do the lookup from the table, it can be done with shift by 4 + shuffle
+ instructions. We call it `first_len`.
+ * Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
+ * Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
+ * Again to get the indices of the 4th bytes.
+ * Take OR of all that 4 values and check within range.
+ */
+ /* For example:
+ * input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
+ * first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
+ * 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
+ * 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
+ * 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
+ * 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
+ * Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
+ */
+
+ /* Checking for errors:
+ * Error checking is done by looking up the high nibble (4 bits) of each byte
+ against an error checking table.
+ * Because the lookup value for the second byte depends of the value of the
+ first byte in codepoint, we use saturated operations to adjust the index.
+ * Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
+ match the correct index.
+ * If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
+ F4 -> 5
+ * Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
+ match the adjustment
+ * Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
+ be more 128 and lookup in ef_fe_table will return 0 but for F0
+ and F4 it will be 4 and 5 accordingly
+ */
+ /*
+ * Then just check the appropriate ranges with greater/smaller equal
+ instructions. Check tail with a naive algorithm.
+ * To save from previous 16 byte checks we just align previous_first_len to
+ get correct continuations of the codepoints.
+ */
+
+ /*
+ * Map high nibble of "First Byte" to legal character length minus 1
+ * 0x00 ~ 0xBF --> 0
+ * 0xC0 ~ 0xDF --> 1
+ * 0xE0 ~ 0xEF --> 2
+ * 0xF0 ~ 0xFF --> 3
+ */
+ const __m128i first_len_table =
+ _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
+
+ /* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
+ const __m128i first_range_table =
+ _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
+
+ /*
+ * Range table, map range index to min and max values
+ */
+ const __m128i range_min_table =
+ _mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
+
+ const __m128i range_max_table =
+ _mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+
+ /*
+ * Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
+ * which the Second Byte are not 80~BF. It contains "range index adjustment".
+ * +------------+---------------+------------------+----------------+
+ * | First Byte | original range| range adjustment | adjusted range |
+ * +------------+---------------+------------------+----------------+
+ * | E0 | 2 | 2 | 4 |
+ * +------------+---------------+------------------+----------------+
+ * | ED | 2 | 3 | 5 |
+ * +------------+---------------+------------------+----------------+
+ * | F0 | 3 | 3 | 6 |
+ * +------------+---------------+------------------+----------------+
+ * | F4 | 4 | 4 | 8 |
+ * +------------+---------------+------------------+----------------+
+ */
+
+ /* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
+ // The values represent the adjustment in the Range Index table for a correct
+ // index.
+ const __m128i df_ee_table =
+ _mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
+
+ /* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
+ // The values represent the adjustment in the Range Index table for a correct
+ // index.
+ const __m128i ef_fe_table =
+ _mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+
+ __m128i prev_input = _mm_set1_epi8(0);
+ __m128i prev_first_len = _mm_set1_epi8(0);
+ __m128i error = _mm_set1_epi8(0);
+ while (end - data >= 16) {
+ const __m128i input =
+ _mm_loadu_si128((const __m128i*)(data));
+
+ /* high_nibbles = input >> 4 */
+ const __m128i high_nibbles =
+ _mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
+
+ /* first_len = legal character length minus 1 */
+ /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
+ /* first_len = first_len_table[high_nibbles] */
+ __m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
+
+ /* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
+ /* range = first_range_table[high_nibbles] */
+ __m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
+
+ /* Second Byte: set range index to first_len */
+ /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
+ /* range |= (first_len, prev_first_len) << 1 byte */
+ range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
+
+ /* Third Byte: set range index to saturate_sub(first_len, 1) */
+ /* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
+ __m128i tmp1;
+ __m128i tmp2;
+ /* tmp1 = saturate_sub(first_len, 1) */
+ tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
+ /* tmp2 = saturate_sub(prev_first_len, 1) */
+ tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
+ /* range |= (tmp1, tmp2) << 2 bytes */
+ range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
+
+ /* Fourth Byte: set range index to saturate_sub(first_len, 2) */
+ /* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
+ /* tmp1 = saturate_sub(first_len, 2) */
+ tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
+ /* tmp2 = saturate_sub(prev_first_len, 2) */
+ tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
+ /* range |= (tmp1, tmp2) << 3 bytes */
+ range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
+
+ /*
+ * Now we have below range indices calculated
+ * Correct cases:
+ * - 8 for C0~FF
+ * - 3 for 1st byte after F0~FF
+ * - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
+ * - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
+ * 3rd byte after F0~FF
+ * - 0 for others
+ * Error cases:
+ * >9 for non ascii First Byte overlapping
+ * E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
+ */
+
+ /* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
+ /* Overlaps lead to index 9~15, which are illegal in range table */
+ __m128i shift1;
+ __m128i pos;
+ __m128i range2;
+ /* shift1 = (input, prev_input) << 1 byte */
+ shift1 = _mm_alignr_epi8(input, prev_input, 15);
+ pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
+ /*
+ * shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
+ * pos: | 0 1 15 | 16 17 239| 240 241 255|
+ * pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
+ * pos+112: | 112 113 127| >= 128 | >= 128 |
+ */
+ tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
+ range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
+ tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
+ range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
+
+ range = _mm_add_epi8(range, range2);
+
+ /* Load min and max values per calculated range index */
+ __m128i min_range = _mm_shuffle_epi8(range_min_table, range);
+ __m128i max_range = _mm_shuffle_epi8(range_max_table, range);
+
+ /* Check value range */
+ if (return_position) {
+ error = _mm_cmplt_epi8(input, min_range);
+ error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
+ /* 5% performance drop from this conditional branch */
+ if (!_mm_testz_si128(error, error)) {
+ break;
+ }
+ } else {
+ error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
+ error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
+ }
+
+ prev_input = input;
+ prev_first_len = first_len;
+
+ data += 16;
+ }
+ /* If we got to the end, we don't need to skip any bytes backwards */
+ if (return_position && (data - (end - len)) == 0) {
+ return utf8_range_ValidateUTF8Naive(data, end, return_position);
+ }
+ /* Find previous codepoint (not 80~BF) */
+ data -= utf8_range_CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
+ if (return_position) {
+ return (data - (end - len)) +
+ utf8_range_ValidateUTF8Naive(data, end, return_position);
+ }
+ /* Test if there was any error */
+ if (!_mm_testz_si128(error, error)) {
+ return 0;
+ }
+ /* Check the tail */
+ return utf8_range_ValidateUTF8Naive(data, end, return_position);
+#endif
+}
+
+int utf8_range_IsValid(const char* data, size_t len) {
+ return utf8_range_Validate(data, len, /*return_position=*/0) != 0;
+}
+
+size_t utf8_range_ValidPrefix(const char* data, size_t len) {
+ return utf8_range_Validate(data, len, /*return_position=*/1);
+}
diff --git a/third_party/utf8_range/utf8_range.h b/third_party/utf8_range/utf8_range.h
index 24d5c77..d7c2326 100644
--- a/third_party/utf8_range/utf8_range.h
+++ b/third_party/utf8_range/utf8_range.h
@@ -1,18 +1,19 @@
#ifndef THIRD_PARTY_UTF8_RANGE_UTF8_RANGE_H_
#define THIRD_PARTY_UTF8_RANGE_UTF8_RANGE_H_
+#include <stddef.h>
+
#ifdef __cplusplus
extern "C" {
#endif
-#if (defined(__ARM_NEON) && defined(__aarch64__)) || defined(__SSE4_1__)
-int utf8_range2(const unsigned char* data, int len);
-#else
-int utf8_naive(const unsigned char* data, int len);
-static inline int utf8_range2(const unsigned char* data, int len) {
- return utf8_naive(data, len);
-}
-#endif
+// Returns 1 if the sequence of characters is a valid UTF-8 sequence, otherwise
+// 0.
+int utf8_range_IsValid(const char* data, size_t len);
+
+// Returns the length in bytes of the prefix of str that is all
+// structurally valid UTF-8.
+size_t utf8_range_ValidPrefix(const char* data, size_t len);
#ifdef __cplusplus
} // extern "C"
diff --git a/third_party/utf8_range/utf8_validity.cc b/third_party/utf8_range/utf8_validity.cc
index 9e94576..4f4574e 100644
--- a/third_party/utf8_range/utf8_validity.cc
+++ b/third_party/utf8_range/utf8_validity.cc
@@ -15,446 +15,22 @@
*
* For API see the utf8_validity.h header.
*/
+
#include "utf8_validity.h"
#include <cstddef>
-#include <cstdint>
-#include "absl/strings/ascii.h"
#include "absl/strings/string_view.h"
-
-#ifdef __SSE4_1__
-#include <emmintrin.h>
-#include <smmintrin.h>
-#include <tmmintrin.h>
-#endif
+#include "utf8_range.h"
namespace utf8_range {
-namespace {
-
-inline uint64_t UNALIGNED_LOAD64(const void* p) {
- uint64_t t;
- memcpy(&t, p, sizeof t);
- return t;
-}
-
-inline bool TrailByteOk(const char c) {
- return static_cast<int8_t>(c) <= static_cast<int8_t>(0xBF);
-}
-
-/* If ReturnPosition is false then it returns 1 if |data| is a valid utf8
- * sequence, otherwise returns 0.
- * If ReturnPosition is set to true, returns the length in bytes of the prefix
- of |data| that is all structurally valid UTF-8.
- */
-template <bool ReturnPosition>
-size_t ValidUTF8Span(const char* data, const char* end) {
- /* We return err_pos in the loop which is always 0 if !ReturnPosition */
- size_t err_pos = 0;
- size_t codepoint_bytes = 0;
- /* The early check is done because of early continue's on codepoints of all
- * sizes, i.e. we first check for ascii and if it is, we call continue, then
- * for 2 byte codepoints, etc. This is done in order to reduce indentation and
- * improve readability of the codepoint validity check.
- */
- while (data + codepoint_bytes < end) {
- if (ReturnPosition) {
- err_pos += codepoint_bytes;
- }
- data += codepoint_bytes;
- const size_t len = end - data;
- const unsigned char byte1 = data[0];
-
- /* We do not skip many ascii bytes at the same time as this function is
- used for tail checking (< 16 bytes) and for non x86 platforms. We also
- don't think that cases where non-ASCII codepoints are followed by ascii
- happen often. For small strings it also introduces some penalty. For
- purely ascii UTF8 strings (which is the overwhelming case) we call
- SkipAscii function which is multiplatform and extremely fast.
- */
- /* [00..7F] ASCII -> 1 byte */
- if (absl::ascii_isascii(byte1)) {
- codepoint_bytes = 1;
- continue;
- }
- /* [C2..DF], [80..BF] -> 2 bytes */
- if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF && TrailByteOk(data[1])) {
- codepoint_bytes = 2;
- continue;
- }
- if (len >= 3) {
- const unsigned char byte2 = data[1];
- const unsigned char byte3 = data[2];
-
- /* Is byte2, byte3 between [0x80, 0xBF]
- * Check for 0x80 was done above.
- */
- if (!TrailByteOk(byte2) || !TrailByteOk(byte3)) {
- return err_pos;
- }
-
- if (/* E0, A0..BF, 80..BF */
- ((byte1 == 0xE0 && byte2 >= 0xA0) ||
- /* E1..EC, 80..BF, 80..BF */
- (byte1 >= 0xE1 && byte1 <= 0xEC) ||
- /* ED, 80..9F, 80..BF */
- (byte1 == 0xED && byte2 <= 0x9F) ||
- /* EE..EF, 80..BF, 80..BF */
- (byte1 >= 0xEE && byte1 <= 0xEF))) {
- codepoint_bytes = 3;
- continue;
- }
- if (len >= 4) {
- const unsigned char byte4 = data[3];
- /* Is byte4 between 0x80 ~ 0xBF */
- if (!TrailByteOk(byte4)) {
- return err_pos;
- }
-
- if (/* F0, 90..BF, 80..BF, 80..BF */
- ((byte1 == 0xF0 && byte2 >= 0x90) ||
- /* F1..F3, 80..BF, 80..BF, 80..BF */
- (byte1 >= 0xF1 && byte1 <= 0xF3) ||
- /* F4, 80..8F, 80..BF, 80..BF */
- (byte1 == 0xF4 && byte2 <= 0x8F))) {
- codepoint_bytes = 4;
- continue;
- }
- }
- }
- return err_pos;
- }
- if (ReturnPosition) {
- err_pos += codepoint_bytes;
- }
- /* if ReturnPosition is false, this returns 1.
- * if ReturnPosition is true, this returns err_pos.
- */
- return err_pos + (1 - ReturnPosition);
-}
-
-#ifdef __SSE4_1__
-/* Returns the number of bytes needed to skip backwards to get to the first
- byte of codepoint.
- */
-inline int CodepointSkipBackwards(int32_t codepoint_word) {
- const int8_t* const codepoint =
- reinterpret_cast<const int8_t*>(&codepoint_word);
- if (!TrailByteOk(codepoint[3])) {
- return 1;
- } else if (!TrailByteOk(codepoint[2])) {
- return 2;
- } else if (!TrailByteOk(codepoint[1])) {
- return 3;
- }
- return 0;
-}
-#endif // __SSE4_1__
-
-/* Skipping over ASCII as much as possible, per 8 bytes. It is intentional
- as most strings to check for validity consist only of 1 byte codepoints.
- */
-inline const char* SkipAscii(const char* data, const char* end) {
- while (8 <= end - data &&
- (UNALIGNED_LOAD64(data) & 0x8080808080808080) == 0) {
- data += 8;
- }
- while (data < end && absl::ascii_isascii(*data)) {
- ++data;
- }
- return data;
-}
-
-template <bool ReturnPosition>
-size_t ValidUTF8(const char* data, size_t len) {
- if (len == 0) return 1 - ReturnPosition;
- const char* const end = data + len;
- data = SkipAscii(data, end);
- /* SIMD algorithm always outperforms the naive version for any data of
- length >=16.
- */
- if (end - data < 16) {
- return (ReturnPosition ? (data - (end - len)) : 0) +
- ValidUTF8Span<ReturnPosition>(data, end);
- }
-#ifndef __SSE4_1__
- return (ReturnPosition ? (data - (end - len)) : 0) +
- ValidUTF8Span<ReturnPosition>(data, end);
-#else
- /* This code checks that utf-8 ranges are structurally valid 16 bytes at once
- * using superscalar instructions.
- * The mapping between ranges of codepoint and their corresponding utf-8
- * sequences is below.
- */
-
- /*
- * U+0000...U+007F 00...7F
- * U+0080...U+07FF C2...DF 80...BF
- * U+0800...U+0FFF E0 A0...BF 80...BF
- * U+1000...U+CFFF E1...EC 80...BF 80...BF
- * U+D000...U+D7FF ED 80...9F 80...BF
- * U+E000...U+FFFF EE...EF 80...BF 80...BF
- * U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
- * U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
- * U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
- */
-
- /* First we compute the type for each byte, as given by the table below.
- * This type will be used as an index later on.
- */
-
- /*
- * Index Min Max Byte Type
- * 0 00 7F Single byte sequence
- * 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
- * 4 A0 BF Second byte after E0
- * 5 80 9F Second byte after ED
- * 6 90 BF Second byte after F0
- * 7 80 8F Second byte after F4
- * 8 C2 F4 First non ASCII byte
- * 9..15 7F 80 Invalid byte
- */
-
- /* After the first step we compute the index for all bytes, then we permute
- the bytes according to their indices to check the ranges from the range
- table.
- * The range for a given type can be found in the range_min_table and
- range_max_table, the range for type/index X is in range_min_table[X] ...
- range_max_table[X].
- */
-
- /* Algorithm:
- * Put index zero to all bytes.
- * Find all non ASCII characters, give them index 8.
- * For each tail byte in a codepoint sequence, give it an index corresponding
- to the 1 based index from the end.
- * If the first byte of the codepoint is in the [C0...DF] range, we write
- index 1 in the following byte.
- * If the first byte of the codepoint is in the range [E0...EF], we write
- indices 2 and 1 in the next two bytes.
- * If the first byte of the codepoint is in the range [F0...FF] we write
- indices 3,2,1 into the next three bytes.
- * For finding the number of bytes we need to look at high nibbles (4 bits)
- and do the lookup from the table, it can be done with shift by 4 + shuffle
- instructions. We call it `first_len`.
- * Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
- * Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
- * Again to get the indices of the 4th bytes.
- * Take OR of all that 4 values and check within range.
- */
- /* For example:
- * input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
- * first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
- * 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
- * 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
- * 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
- * 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
- * Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
- */
-
- /* Checking for errors:
- * Error checking is done by looking up the high nibble (4 bits) of each byte
- against an error checking table.
- * Because the lookup value for the second byte depends of the value of the
- first byte in codepoint, we use saturated operations to adjust the index.
- * Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
- match the correct index.
- * If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
- F4 -> 5
- * Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
- match the adjustment
- * Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
- be more 128 and lookup in ef_fe_table will return 0 but for F0
- and F4 it will be 4 and 5 accordingly
- */
- /*
- * Then just check the appropriate ranges with greater/smaller equal
- instructions. Check tail with a naive algorithm.
- * To save from previous 16 byte checks we just align previous_first_len to
- get correct continuations of the codepoints.
- */
-
- /*
- * Map high nibble of "First Byte" to legal character length minus 1
- * 0x00 ~ 0xBF --> 0
- * 0xC0 ~ 0xDF --> 1
- * 0xE0 ~ 0xEF --> 2
- * 0xF0 ~ 0xFF --> 3
- */
- const __m128i first_len_table =
- _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
-
- /* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
- const __m128i first_range_table =
- _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
-
- /*
- * Range table, map range index to min and max values
- */
- const __m128i range_min_table =
- _mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
- 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
-
- const __m128i range_max_table =
- _mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
- 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
-
- /*
- * Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
- * which the Second Byte are not 80~BF. It contains "range index adjustment".
- * +------------+---------------+------------------+----------------+
- * | First Byte | original range| range adjustment | adjusted range |
- * +------------+---------------+------------------+----------------+
- * | E0 | 2 | 2 | 4 |
- * +------------+---------------+------------------+----------------+
- * | ED | 2 | 3 | 5 |
- * +------------+---------------+------------------+----------------+
- * | F0 | 3 | 3 | 6 |
- * +------------+---------------+------------------+----------------+
- * | F4 | 4 | 4 | 8 |
- * +------------+---------------+------------------+----------------+
- */
-
- /* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
- // The values represent the adjustment in the Range Index table for a correct
- // index.
- const __m128i df_ee_table =
- _mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
-
- /* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
- // The values represent the adjustment in the Range Index table for a correct
- // index.
- const __m128i ef_fe_table =
- _mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
-
- __m128i prev_input = _mm_set1_epi8(0);
- __m128i prev_first_len = _mm_set1_epi8(0);
- __m128i error = _mm_set1_epi8(0);
- while (end - data >= 16) {
- const __m128i input =
- _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
-
- /* high_nibbles = input >> 4 */
- const __m128i high_nibbles =
- _mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
-
- /* first_len = legal character length minus 1 */
- /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
- /* first_len = first_len_table[high_nibbles] */
- __m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
-
- /* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
- /* range = first_range_table[high_nibbles] */
- __m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
-
- /* Second Byte: set range index to first_len */
- /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
- /* range |= (first_len, prev_first_len) << 1 byte */
- range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
-
- /* Third Byte: set range index to saturate_sub(first_len, 1) */
- /* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
- __m128i tmp1;
- __m128i tmp2;
- /* tmp1 = saturate_sub(first_len, 1) */
- tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
- /* tmp2 = saturate_sub(prev_first_len, 1) */
- tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
- /* range |= (tmp1, tmp2) << 2 bytes */
- range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
-
- /* Fourth Byte: set range index to saturate_sub(first_len, 2) */
- /* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
- /* tmp1 = saturate_sub(first_len, 2) */
- tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
- /* tmp2 = saturate_sub(prev_first_len, 2) */
- tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
- /* range |= (tmp1, tmp2) << 3 bytes */
- range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
-
- /*
- * Now we have below range indices calculated
- * Correct cases:
- * - 8 for C0~FF
- * - 3 for 1st byte after F0~FF
- * - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
- * - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
- * 3rd byte after F0~FF
- * - 0 for others
- * Error cases:
- * >9 for non ascii First Byte overlapping
- * E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
- */
-
- /* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
- /* Overlaps lead to index 9~15, which are illegal in range table */
- __m128i shift1;
- __m128i pos;
- __m128i range2;
- /* shift1 = (input, prev_input) << 1 byte */
- shift1 = _mm_alignr_epi8(input, prev_input, 15);
- pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
- /*
- * shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
- * pos: | 0 1 15 | 16 17 239| 240 241 255|
- * pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
- * pos+112: | 112 113 127| >= 128 | >= 128 |
- */
- tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
- range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
- tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
- range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
-
- range = _mm_add_epi8(range, range2);
-
- /* Load min and max values per calculated range index */
- __m128i min_range = _mm_shuffle_epi8(range_min_table, range);
- __m128i max_range = _mm_shuffle_epi8(range_max_table, range);
-
- /* Check value range */
- if (ReturnPosition) {
- error = _mm_cmplt_epi8(input, min_range);
- error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
- /* 5% performance drop from this conditional branch */
- if (!_mm_testz_si128(error, error)) {
- break;
- }
- } else {
- error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
- error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
- }
-
- prev_input = input;
- prev_first_len = first_len;
-
- data += 16;
- }
- /* If we got to the end, we don't need to skip any bytes backwards */
- if (ReturnPosition && (data - (end - len)) == 0) {
- return ValidUTF8Span<true>(data, end);
- }
- /* Find previous codepoint (not 80~BF) */
- data -= CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
- if (ReturnPosition) {
- return (data - (end - len)) + ValidUTF8Span<true>(data, end);
- }
- /* Test if there was any error */
- if (!_mm_testz_si128(error, error)) {
- return 0;
- }
- /* Check the tail */
- return ValidUTF8Span<false>(data, end);
-#endif
-}
-
-} // namespace
bool IsStructurallyValid(absl::string_view str) {
- return ValidUTF8</*ReturnPosition=*/false>(str.data(), str.size());
+ return utf8_range_IsValid(str.data(), str.size());
}
size_t SpanStructurallyValid(absl::string_view str) {
- return ValidUTF8</*ReturnPosition=*/true>(str.data(), str.size());
+ return utf8_range_ValidPrefix(str.data(), str.size());
}
} // namespace utf8_range
diff --git a/third_party/utf8_range/utf8_validity.h b/third_party/utf8_range/utf8_validity.h
index 4a8d75b..1f251d0 100644
--- a/third_party/utf8_range/utf8_validity.h
+++ b/third_party/utf8_range/utf8_validity.h
@@ -7,6 +7,8 @@
#ifndef THIRD_PARTY_UTF8_RANGE_UTF8_VALIDITY_H_
#define THIRD_PARTY_UTF8_RANGE_UTF8_VALIDITY_H_
+#include <cstddef>
+
#include "absl/strings/string_view.h"
namespace utf8_range {
diff --git a/upb/wire/internal/decode.h b/upb/wire/internal/decode.h
index 23648cd..f36b2b7 100644
--- a/upb/wire/internal/decode.h
+++ b/upb/wire/internal/decode.h
@@ -56,26 +56,7 @@
UPB_INLINE
bool _upb_Decoder_VerifyUtf8Inline(const char* ptr, int len) {
- const char* end = ptr + len;
-
- // Check 8 bytes at a time for any non-ASCII char.
- while (end - ptr >= 8) {
- uint64_t data;
- memcpy(&data, ptr, 8);
- if (data & 0x8080808080808080) goto non_ascii;
- ptr += 8;
- }
-
- // Check one byte at a time for non-ASCII.
- while (ptr < end) {
- if (*ptr & 0x80) goto non_ascii;
- ptr++;
- }
-
- return true;
-
-non_ascii:
- return utf8_range2((const unsigned char*)ptr, end - ptr) == 0;
+ return utf8_range_IsValid(ptr, len);
}
const char* _upb_Decoder_CheckRequired(upb_Decoder* d, const char* ptr,