| // Ruby is still using proto3 enum semantics for proto2 |
| #define UPB_DISABLE_CLOSED_ENUM_CHECKING |
| /* Amalgamated source file */ |
| |
| /* |
| * This is where we define internal portability macros used across upb. |
| * |
| * All of these macros are undef'd in undef.inc to avoid leaking them to users. |
| * |
| * The correct usage is: |
| * |
| * #include "upb/foobar.h" |
| * #include "upb/baz.h" |
| * |
| * // MUST be last included header. |
| * #include "upb/port/def.inc" |
| * |
| * // Code for this file. |
| * // <...> |
| * |
| * // Can be omitted for .c files, required for .h. |
| * #include "upb/port/undef.inc" |
| * |
| * This file is private and must not be included by users! |
| */ |
| |
| #if !((defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || \ |
| (defined(__cplusplus) && __cplusplus >= 201402L) || \ |
| (defined(_MSC_VER) && _MSC_VER >= 1900)) |
| #error upb requires C99 or C++14 or MSVC >= 2015. |
| #endif |
| |
| // Portable check for GCC minimum version: |
| // https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html |
| #if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__) |
| #define UPB_GNUC_MIN(x, y) \ |
| (__GNUC__ > (x) || __GNUC__ == (x) && __GNUC_MINOR__ >= (y)) |
| #else |
| #define UPB_GNUC_MIN(x, y) 0 |
| #endif |
| |
| #include <assert.h> |
| #include <setjmp.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #ifndef UINTPTR_MAX |
| Error, UINTPTR_MAX is undefined |
| #endif |
| |
| #if UINTPTR_MAX == 0xffffffff |
| #define UPB_SIZE(size32, size64) size32 |
| #else |
| #define UPB_SIZE(size32, size64) size64 |
| #endif |
| |
| /* If we always read/write as a consistent type to each address, this shouldn't |
| * violate aliasing. |
| */ |
| #define UPB_PTR_AT(msg, ofs, type) ((type*)((char*)(msg) + (ofs))) |
| |
| #define UPB_MAPTYPE_STRING 0 |
| |
| // UPB_EXPORT: always generate a public symbol. |
| #if defined(__GNUC__) || defined(__clang__) |
| #define UPB_EXPORT __attribute__((visibility("default"))) __attribute__((used)) |
| #else |
| #define UPB_EXPORT |
| #endif |
| |
| // UPB_INLINE: inline if possible, emit standalone code if required. |
| #ifdef __cplusplus |
| #define UPB_INLINE inline |
| #elif defined (__GNUC__) || defined(__clang__) |
| #define UPB_INLINE static __inline__ |
| #else |
| #define UPB_INLINE static |
| #endif |
| |
| #ifdef UPB_BUILD_API |
| #define UPB_API UPB_EXPORT |
| #define UPB_API_INLINE UPB_EXPORT |
| #else |
| #define UPB_API |
| #define UPB_API_INLINE UPB_INLINE |
| #endif |
| |
| #ifdef EXPORT_UPBC |
| #define UPBC_API UPB_EXPORT |
| #else |
| #define UPBC_API |
| #endif |
| |
| #define UPB_MALLOC_ALIGN 8 |
| #define UPB_ALIGN_UP(size, align) (((size) + (align) - 1) / (align) * (align)) |
| #define UPB_ALIGN_DOWN(size, align) ((size) / (align) * (align)) |
| #define UPB_ALIGN_MALLOC(size) UPB_ALIGN_UP(size, UPB_MALLOC_ALIGN) |
| #ifdef __clang__ |
| #define UPB_ALIGN_OF(type) _Alignof(type) |
| #else |
| #define UPB_ALIGN_OF(type) offsetof (struct { char c; type member; }, member) |
| #endif |
| |
| #ifdef _MSC_VER |
| // Some versions of our Windows compiler don't support the C11 syntax. |
| #define UPB_ALIGN_AS(x) __declspec(align(x)) |
| #else |
| #define UPB_ALIGN_AS(x) _Alignas(x) |
| #endif |
| |
| // Hints to the compiler about likely/unlikely branches. |
| #if defined (__GNUC__) || defined(__clang__) |
| #define UPB_LIKELY(x) __builtin_expect((bool)(x), 1) |
| #define UPB_UNLIKELY(x) __builtin_expect((bool)(x), 0) |
| #else |
| #define UPB_LIKELY(x) (x) |
| #define UPB_UNLIKELY(x) (x) |
| #endif |
| |
| // Macros for function attributes on compilers that support them. |
| #ifdef __GNUC__ |
| #define UPB_FORCEINLINE __inline__ __attribute__((always_inline)) static |
| #define UPB_NOINLINE __attribute__((noinline)) |
| #define UPB_NORETURN __attribute__((__noreturn__)) |
| #define UPB_PRINTF(str, first_vararg) __attribute__((format (printf, str, first_vararg))) |
| #elif defined(_MSC_VER) |
| #define UPB_NOINLINE |
| #define UPB_FORCEINLINE static |
| #define UPB_NORETURN __declspec(noreturn) |
| #define UPB_PRINTF(str, first_vararg) |
| #else /* !defined(__GNUC__) */ |
| #define UPB_FORCEINLINE static |
| #define UPB_NOINLINE |
| #define UPB_NORETURN |
| #define UPB_PRINTF(str, first_vararg) |
| #endif |
| |
| #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y)) |
| #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y)) |
| |
| #define UPB_UNUSED(var) (void)var |
| |
| // UPB_ASSUME(): in release mode, we tell the compiler to assume this is true. |
| #ifdef NDEBUG |
| #ifdef __GNUC__ |
| #define UPB_ASSUME(expr) if (!(expr)) __builtin_unreachable() |
| #elif defined _MSC_VER |
| #define UPB_ASSUME(expr) if (!(expr)) __assume(0) |
| #else |
| #define UPB_ASSUME(expr) do {} while (false && (expr)) |
| #endif |
| #else |
| #define UPB_ASSUME(expr) assert(expr) |
| #endif |
| |
| /* UPB_ASSERT(): in release mode, we use the expression without letting it be |
| * evaluated. This prevents "unused variable" warnings. */ |
| #ifdef NDEBUG |
| #define UPB_ASSERT(expr) do {} while (false && (expr)) |
| #else |
| #define UPB_ASSERT(expr) assert(expr) |
| #endif |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #define UPB_UNREACHABLE() do { assert(0); __builtin_unreachable(); } while(0) |
| #elif defined(_MSC_VER) |
| #define UPB_UNREACHABLE() \ |
| do { \ |
| assert(0); \ |
| __assume(0); \ |
| } while (0) |
| #else |
| #define UPB_UNREACHABLE() do { assert(0); } while(0) |
| #endif |
| |
| /* UPB_SETJMP() / UPB_LONGJMP(): avoid setting/restoring signal mask. */ |
| #ifdef __APPLE__ |
| #define UPB_SETJMP(buf) _setjmp(buf) |
| #define UPB_LONGJMP(buf, val) _longjmp(buf, val) |
| #elif defined(WASM_WAMR) |
| #define UPB_SETJMP(buf) 0 |
| #define UPB_LONGJMP(buf, val) abort() |
| #else |
| #define UPB_SETJMP(buf) setjmp(buf) |
| #define UPB_LONGJMP(buf, val) longjmp(buf, val) |
| #endif |
| |
| #ifdef __GNUC__ |
| #define UPB_USE_C11_ATOMICS |
| #define UPB_ATOMIC(T) _Atomic(T) |
| #else |
| #define UPB_ATOMIC(T) T |
| #endif |
| |
| /* UPB_PTRADD(ptr, ofs): add pointer while avoiding "NULL + 0" UB */ |
| #define UPB_PTRADD(ptr, ofs) ((ofs) ? (ptr) + (ofs) : (ptr)) |
| |
| #define UPB_PRIVATE(x) x##_dont_copy_me__upb_internal_use_only |
| |
| #ifdef UPB_ALLOW_PRIVATE_ACCESS__FOR_BITS_ONLY |
| #define UPB_ONLYBITS(x) x |
| #else |
| #define UPB_ONLYBITS(x) UPB_PRIVATE(x) |
| #endif |
| |
| /* Configure whether fasttable is switched on or not. *************************/ |
| |
| #ifdef __has_attribute |
| #define UPB_HAS_ATTRIBUTE(x) __has_attribute(x) |
| #else |
| #define UPB_HAS_ATTRIBUTE(x) 0 |
| #endif |
| |
| #if UPB_HAS_ATTRIBUTE(musttail) |
| #define UPB_MUSTTAIL __attribute__((musttail)) |
| #else |
| #define UPB_MUSTTAIL |
| #endif |
| |
| #undef UPB_HAS_ATTRIBUTE |
| |
| /* This check is not fully robust: it does not require that we have "musttail" |
| * support available. We need tail calls to avoid consuming arbitrary amounts |
| * of stack space. |
| * |
| * GCC/Clang can mostly be trusted to generate tail calls as long as |
| * optimization is enabled, but, debug builds will not generate tail calls |
| * unless "musttail" is available. |
| * |
| * We should probably either: |
| * 1. require that the compiler supports musttail. |
| * 2. add some fallback code for when musttail isn't available (ie. return |
| * instead of tail calling). This is safe and portable, but this comes at |
| * a CPU cost. |
| */ |
| #if (defined(__x86_64__) || defined(__aarch64__)) && defined(__GNUC__) |
| #define UPB_FASTTABLE_SUPPORTED 1 |
| #else |
| #define UPB_FASTTABLE_SUPPORTED 0 |
| #endif |
| |
| /* define UPB_ENABLE_FASTTABLE to force fast table support. |
| * This is useful when we want to ensure we are really getting fasttable, |
| * for example for testing or benchmarking. */ |
| #if defined(UPB_ENABLE_FASTTABLE) |
| #if !UPB_FASTTABLE_SUPPORTED |
| #error fasttable is x86-64/ARM64 only and requires GCC or Clang. |
| #endif |
| #define UPB_FASTTABLE 1 |
| /* Define UPB_TRY_ENABLE_FASTTABLE to use fasttable if possible. |
| * This is useful for releasing code that might be used on multiple platforms, |
| * for example the PHP or Ruby C extensions. */ |
| #elif defined(UPB_TRY_ENABLE_FASTTABLE) |
| #define UPB_FASTTABLE UPB_FASTTABLE_SUPPORTED |
| #else |
| #define UPB_FASTTABLE 0 |
| #endif |
| |
| /* UPB_FASTTABLE_INIT() allows protos compiled for fasttable to gracefully |
| * degrade to non-fasttable if the runtime or platform do not support it. */ |
| #if !UPB_FASTTABLE |
| #define UPB_FASTTABLE_INIT(...) |
| #define UPB_FASTTABLE_MASK(mask) -1 |
| #else |
| #define UPB_FASTTABLE_INIT(...) __VA_ARGS__ |
| #define UPB_FASTTABLE_MASK(mask) mask |
| #endif |
| |
| #undef UPB_FASTTABLE_SUPPORTED |
| |
| /* ASAN poisoning (for arena). |
| * If using UPB from an interpreted language like Ruby, a build of the |
| * interpreter compiled with ASAN enabled must be used in order to get sane and |
| * expected behavior. |
| */ |
| |
| /* Due to preprocessor limitations, the conditional logic for setting |
| * UPN_CLANG_ASAN below cannot be consolidated into a portable one-liner. |
| * See https://gcc.gnu.org/onlinedocs/cpp/_005f_005fhas_005fattribute.html. |
| */ |
| #if defined(__has_feature) |
| #if __has_feature(address_sanitizer) |
| #define UPB_CLANG_ASAN 1 |
| #else |
| #define UPB_CLANG_ASAN 0 |
| #endif |
| #else |
| #define UPB_CLANG_ASAN 0 |
| #endif |
| |
| #if defined(__SANITIZE_ADDRESS__) || UPB_CLANG_ASAN |
| #define UPB_ASAN 1 |
| #define UPB_ASAN_GUARD_SIZE 32 |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| void __asan_poison_memory_region(void const volatile *addr, size_t size); |
| void __asan_unpoison_memory_region(void const volatile *addr, size_t size); |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| #define UPB_POISON_MEMORY_REGION(addr, size) \ |
| __asan_poison_memory_region((addr), (size)) |
| #define UPB_UNPOISON_MEMORY_REGION(addr, size) \ |
| __asan_unpoison_memory_region((addr), (size)) |
| #else |
| #define UPB_ASAN 0 |
| #define UPB_ASAN_GUARD_SIZE 0 |
| #define UPB_POISON_MEMORY_REGION(addr, size) \ |
| ((void)(addr), (void)(size)) |
| #define UPB_UNPOISON_MEMORY_REGION(addr, size) \ |
| ((void)(addr), (void)(size)) |
| #endif |
| |
| /* Disable proto2 arena behavior (TEMPORARY) **********************************/ |
| |
| #ifdef UPB_DISABLE_CLOSED_ENUM_CHECKING |
| #define UPB_TREAT_CLOSED_ENUMS_LIKE_OPEN 1 |
| #else |
| #define UPB_TREAT_CLOSED_ENUMS_LIKE_OPEN 0 |
| #endif |
| |
| #if defined(__cplusplus) |
| #if defined(__clang__) || UPB_GNUC_MIN(6, 0) |
| // https://gcc.gnu.org/gcc-6/changes.html |
| #if __cplusplus >= 201402L |
| #define UPB_DEPRECATED [[deprecated]] |
| #else |
| #define UPB_DEPRECATED __attribute__((deprecated)) |
| #endif |
| #else |
| #define UPB_DEPRECATED |
| #endif |
| #else |
| #define UPB_DEPRECATED |
| #endif |
| |
| #if defined(UPB_IS_GOOGLE3) && \ |
| (!defined(UPB_BOOTSTRAP_STAGE) || UPB_BOOTSTRAP_STAGE != 0) |
| #define UPB_DESC(sym) proto2_##sym |
| #define UPB_DESC_MINITABLE(sym) &proto2__##sym##_msg_init |
| #elif defined(UPB_BOOTSTRAP_STAGE) && UPB_BOOTSTRAP_STAGE == 0 |
| #define UPB_DESC(sym) google_protobuf_##sym |
| #define UPB_DESC_MINITABLE(sym) google__protobuf__##sym##_msg_init() |
| #else |
| #define UPB_DESC(sym) google_protobuf_##sym |
| #define UPB_DESC_MINITABLE(sym) &google__protobuf__##sym##_msg_init |
| #endif |
| |
| #undef UPB_IS_GOOGLE3 |
| |
| // Linker arrays combine elements from multiple translation units into a single |
| // array that can be iterated over at runtime. |
| // |
| // It is an alternative to pre-main "registration" functions. |
| // |
| // Usage: |
| // |
| // // In N translation units. |
| // UPB_LINKARR_APPEND(foo_array) static int elems[3] = {1, 2, 3}; |
| // |
| // // At runtime: |
| // UPB_LINKARR_DECLARE(foo_array, int); |
| // |
| // void f() { |
| // const int* start = UPB_LINKARR_START(foo_array); |
| // const int* stop = UPB_LINKARR_STOP(foo_array); |
| // for (const int* p = start; p < stop; p++) { |
| // // Windows can introduce zero padding, so we have to skip zeroes. |
| // if (*p != 0) { |
| // vec.push_back(*p); |
| // } |
| // } |
| // } |
| |
| #if defined(__ELF__) || defined(__wasm__) |
| |
| #define UPB_LINKARR_APPEND(name) \ |
| __attribute__((retain, used, section("linkarr_" #name), \ |
| no_sanitize("address"))) |
| #define UPB_LINKARR_DECLARE(name, type) \ |
| extern type const __start_linkarr_##name; \ |
| extern type const __stop_linkarr_##name; \ |
| UPB_LINKARR_APPEND(name) type UPB_linkarr_internal_empty_##name[1] |
| #define UPB_LINKARR_START(name) (&__start_linkarr_##name) |
| #define UPB_LINKARR_STOP(name) (&__stop_linkarr_##name) |
| |
| #elif defined(__MACH__) |
| |
| /* As described in: https://stackoverflow.com/a/22366882 */ |
| #define UPB_LINKARR_APPEND(name) \ |
| __attribute__((retain, used, section("__DATA,__la_" #name), \ |
| no_sanitize("address"))) |
| #define UPB_LINKARR_DECLARE(name, type) \ |
| extern type const __start_linkarr_##name __asm( \ |
| "section$start$__DATA$__la_" #name); \ |
| extern type const __stop_linkarr_##name __asm( \ |
| "section$end$__DATA$" \ |
| "__la_" #name); \ |
| UPB_LINKARR_APPEND(name) type UPB_linkarr_internal_empty_##name[1] |
| #define UPB_LINKARR_START(name) (&__start_linkarr_##name) |
| #define UPB_LINKARR_STOP(name) (&__stop_linkarr_##name) |
| |
| #elif defined(_MSC_VER) && defined(__clang__) |
| |
| /* See: |
| * https://devblogs.microsoft.com/oldnewthing/20181107-00/?p=100155 |
| * https://devblogs.microsoft.com/oldnewthing/20181108-00/?p=100165 |
| * https://devblogs.microsoft.com/oldnewthing/20181109-00/?p=100175 */ |
| |
| // Usage of __attribute__ here probably means this is Clang-specific, and would |
| // not work on MSVC. |
| #define UPB_LINKARR_APPEND(name) \ |
| __declspec(allocate("la_" #name "$j")) \ |
| __attribute__((retain, used, no_sanitize("address"))) |
| #define UPB_LINKARR_DECLARE(name, type) \ |
| __declspec(allocate("la_" #name "$a")) type __start_linkarr_##name; \ |
| __declspec(allocate("la_" #name "$z")) type __stop_linkarr_##name; \ |
| UPB_LINKARR_APPEND(name) type UPB_linkarr_internal_empty_##name[1] = {0} |
| #define UPB_LINKARR_START(name) (&__start_linkarr_##name) |
| #define UPB_LINKARR_STOP(name) (&__stop_linkarr_##name) |
| |
| #else |
| |
| // Linker arrays are not supported on this platform. Make appends a no-op but |
| // don't define the other macros. |
| #define UPB_LINKARR_APPEND(name) |
| |
| #endif |
| |
| // Future versions of upb will include breaking changes to some APIs. |
| // This macro can be set to enable these API changes ahead of time, so that |
| // user code can be updated before upgrading versions of protobuf. |
| #ifdef UPB_FUTURE_BREAKING_CHANGES |
| |
| // Properly enforce closed enums in python. |
| // Owner: mkruskal@ |
| #define UPB_FUTURE_PYTHON_CLOSED_ENUM_ENFORCEMENT 1 |
| |
| #endif |
| |
| #ifndef UPB_BASE_STATUS_H_ |
| #define UPB_BASE_STATUS_H_ |
| |
| #include <stdarg.h> |
| |
| // Must be last. |
| |
| #define _kUpb_Status_MaxMessage 511 |
| |
| typedef struct { |
| bool ok; |
| char msg[_kUpb_Status_MaxMessage]; // Error message; NULL-terminated. |
| } upb_Status; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API const char* upb_Status_ErrorMessage(const upb_Status* status); |
| UPB_API bool upb_Status_IsOk(const upb_Status* status); |
| |
| // These are no-op if |status| is NULL. |
| UPB_API void upb_Status_Clear(upb_Status* status); |
| void upb_Status_SetErrorMessage(upb_Status* status, const char* msg); |
| void upb_Status_SetErrorFormat(upb_Status* status, const char* fmt, ...) |
| UPB_PRINTF(2, 3); |
| void upb_Status_VSetErrorFormat(upb_Status* status, const char* fmt, |
| va_list args) UPB_PRINTF(2, 0); |
| void upb_Status_VAppendErrorFormat(upb_Status* status, const char* fmt, |
| va_list args) UPB_PRINTF(2, 0); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_BASE_STATUS_H_ */ |
| |
| #ifndef UPB_WIRE_EPS_COPY_INPUT_STREAM_H_ |
| #define UPB_WIRE_EPS_COPY_INPUT_STREAM_H_ |
| |
| #include <string.h> |
| |
| |
| /* upb_Arena is a specific allocator implementation that uses arena allocation. |
| * The user provides an allocator that will be used to allocate the underlying |
| * arena blocks. Arenas by nature do not require the individual allocations |
| * to be freed. However the Arena does allow users to register cleanup |
| * functions that will run when the arena is destroyed. |
| * |
| * A upb_Arena is *not* thread-safe. |
| * |
| * You could write a thread-safe arena allocator that satisfies the |
| * upb_alloc interface, but it would not be as efficient for the |
| * single-threaded case. */ |
| |
| #ifndef UPB_MEM_ARENA_H_ |
| #define UPB_MEM_ARENA_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MEM_ALLOC_H_ |
| #define UPB_MEM_ALLOC_H_ |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| typedef struct upb_alloc upb_alloc; |
| |
| /* A combined `malloc()`/`free()` function. |
| * If `size` is 0 then the function acts like `free()`, otherwise it acts like |
| * `realloc()`. Only `oldsize` bytes from a previous allocation are |
| * preserved. */ |
| typedef void* upb_alloc_func(upb_alloc* alloc, void* ptr, size_t oldsize, |
| size_t size); |
| |
| /* A upb_alloc is a possibly-stateful allocator object. |
| * |
| * It could either be an arena allocator (which doesn't require individual |
| * `free()` calls) or a regular `malloc()` (which does). The client must |
| * therefore free memory unless it knows that the allocator is an arena |
| * allocator. */ |
| struct upb_alloc { |
| upb_alloc_func* func; |
| }; |
| |
| UPB_INLINE void* upb_malloc(upb_alloc* alloc, size_t size) { |
| UPB_ASSERT(alloc); |
| return alloc->func(alloc, NULL, 0, size); |
| } |
| |
| UPB_INLINE void* upb_realloc(upb_alloc* alloc, void* ptr, size_t oldsize, |
| size_t size) { |
| UPB_ASSERT(alloc); |
| return alloc->func(alloc, ptr, oldsize, size); |
| } |
| |
| UPB_INLINE void upb_free(upb_alloc* alloc, void* ptr) { |
| UPB_ASSERT(alloc); |
| alloc->func(alloc, ptr, 0, 0); |
| } |
| |
| // The global allocator used by upb. Uses the standard malloc()/free(). |
| |
| extern upb_alloc upb_alloc_global; |
| |
| /* Functions that hard-code the global malloc. |
| * |
| * We still get benefit because we can put custom logic into our global |
| * allocator, like injecting out-of-memory faults in debug/testing builds. */ |
| |
| UPB_INLINE void* upb_gmalloc(size_t size) { |
| return upb_malloc(&upb_alloc_global, size); |
| } |
| |
| UPB_INLINE void* upb_grealloc(void* ptr, size_t oldsize, size_t size) { |
| return upb_realloc(&upb_alloc_global, ptr, oldsize, size); |
| } |
| |
| UPB_INLINE void upb_gfree(void* ptr) { upb_free(&upb_alloc_global, ptr); } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MEM_ALLOC_H_ */ |
| |
| #ifndef UPB_MEM_INTERNAL_ARENA_H_ |
| #define UPB_MEM_INTERNAL_ARENA_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| // Must be last. |
| |
| // This is QUITE an ugly hack, which specifies the number of pointers needed |
| // to equal (or exceed) the storage required for one upb_Arena. |
| // |
| // We need this because the decoder inlines a upb_Arena for performance but |
| // the full struct is not visible outside of arena.c. Yes, I know, it's awful. |
| #define UPB_ARENA_SIZE_HACK 7 |
| |
| // LINT.IfChange(upb_Arena) |
| |
| struct upb_Arena { |
| char* UPB_ONLYBITS(ptr); |
| char* UPB_ONLYBITS(end); |
| }; |
| |
| // LINT.ThenChange(//depot/google3/third_party/upb/bits/typescript/arena.ts:upb_Arena) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| void UPB_PRIVATE(_upb_Arena_SwapIn)(struct upb_Arena* des, |
| const struct upb_Arena* src); |
| void UPB_PRIVATE(_upb_Arena_SwapOut)(struct upb_Arena* des, |
| const struct upb_Arena* src); |
| |
| // Returns whether |ptr| was allocated directly by |a| (so care must be used |
| // with fused arenas). |
| UPB_API bool UPB_ONLYBITS(_upb_Arena_Contains)(const struct upb_Arena* a, |
| void* ptr); |
| |
| UPB_INLINE size_t UPB_PRIVATE(_upb_ArenaHas)(const struct upb_Arena* a) { |
| return (size_t)(a->UPB_ONLYBITS(end) - a->UPB_ONLYBITS(ptr)); |
| } |
| |
| UPB_API_INLINE void* upb_Arena_Malloc(struct upb_Arena* a, size_t size) { |
| void* UPB_PRIVATE(_upb_Arena_SlowMalloc)(struct upb_Arena * a, size_t size); |
| |
| size = UPB_ALIGN_MALLOC(size); |
| const size_t span = size + UPB_ASAN_GUARD_SIZE; |
| if (UPB_UNLIKELY(UPB_PRIVATE(_upb_ArenaHas)(a) < span)) { |
| return UPB_PRIVATE(_upb_Arena_SlowMalloc)(a, span); |
| } |
| |
| // We have enough space to do a fast malloc. |
| void* ret = a->UPB_ONLYBITS(ptr); |
| UPB_ASSERT(UPB_ALIGN_MALLOC((uintptr_t)ret) == (uintptr_t)ret); |
| UPB_ASSERT(UPB_ALIGN_MALLOC(size) == size); |
| UPB_UNPOISON_MEMORY_REGION(ret, size); |
| |
| a->UPB_ONLYBITS(ptr) += span; |
| |
| return ret; |
| } |
| |
| UPB_API_INLINE void* upb_Arena_Realloc(struct upb_Arena* a, void* ptr, |
| size_t oldsize, size_t size) { |
| oldsize = UPB_ALIGN_MALLOC(oldsize); |
| size = UPB_ALIGN_MALLOC(size); |
| bool is_most_recent_alloc = |
| (uintptr_t)ptr + oldsize == (uintptr_t)a->UPB_ONLYBITS(ptr); |
| |
| if (is_most_recent_alloc) { |
| ptrdiff_t diff = size - oldsize; |
| if ((ptrdiff_t)UPB_PRIVATE(_upb_ArenaHas)(a) >= diff) { |
| a->UPB_ONLYBITS(ptr) += diff; |
| return ptr; |
| } |
| } else if (size <= oldsize) { |
| return ptr; |
| } |
| |
| void* ret = upb_Arena_Malloc(a, size); |
| |
| if (ret && oldsize > 0) { |
| memcpy(ret, ptr, UPB_MIN(oldsize, size)); |
| } |
| |
| return ret; |
| } |
| |
| UPB_API_INLINE void upb_Arena_ShrinkLast(struct upb_Arena* a, void* ptr, |
| size_t oldsize, size_t size) { |
| oldsize = UPB_ALIGN_MALLOC(oldsize); |
| size = UPB_ALIGN_MALLOC(size); |
| // Must be the last alloc. |
| UPB_ASSERT((char*)ptr + oldsize == |
| a->UPB_ONLYBITS(ptr) - UPB_ASAN_GUARD_SIZE); |
| UPB_ASSERT(size <= oldsize); |
| a->UPB_ONLYBITS(ptr) = (char*)ptr + size; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MEM_INTERNAL_ARENA_H_ */ |
| |
| // Must be last. |
| |
| typedef struct upb_Arena upb_Arena; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Creates an arena from the given initial block (if any -- n may be 0). |
| // Additional blocks will be allocated from |alloc|. If |alloc| is NULL, this |
| // is a fixed-size arena and cannot grow. |
| UPB_API upb_Arena* upb_Arena_Init(void* mem, size_t n, upb_alloc* alloc); |
| |
| UPB_API void upb_Arena_Free(upb_Arena* a); |
| UPB_API bool upb_Arena_Fuse(upb_Arena* a, upb_Arena* b); |
| |
| bool upb_Arena_IncRefFor(upb_Arena* a, const void* owner); |
| void upb_Arena_DecRefFor(upb_Arena* a, const void* owner); |
| |
| size_t upb_Arena_SpaceAllocated(upb_Arena* a, size_t* fused_count); |
| uint32_t upb_Arena_DebugRefCount(upb_Arena* a); |
| |
| UPB_API_INLINE upb_Arena* upb_Arena_New(void) { |
| return upb_Arena_Init(NULL, 0, &upb_alloc_global); |
| } |
| |
| UPB_API_INLINE void* upb_Arena_Malloc(struct upb_Arena* a, size_t size); |
| |
| UPB_API_INLINE void* upb_Arena_Realloc(upb_Arena* a, void* ptr, size_t oldsize, |
| size_t size); |
| |
| // Sets the maximum block size for all arenas. This is a global configuration |
| // setting that will affect all existing and future arenas. If |
| // upb_Arena_Malloc() is called with a size larger than this, we will exceed |
| // this size and allocate a larger block. |
| // |
| // This API is meant for experimentation only. It will likely be removed in |
| // the future. |
| void upb_Arena_SetMaxBlockSize(size_t max); |
| |
| // Shrinks the last alloc from arena. |
| // REQUIRES: (ptr, oldsize) was the last malloc/realloc from this arena. |
| // We could also add a upb_Arena_TryShrinkLast() which is simply a no-op if |
| // this was not the last alloc. |
| UPB_API_INLINE void upb_Arena_ShrinkLast(upb_Arena* a, void* ptr, |
| size_t oldsize, size_t size); |
| |
| #ifdef UPB_TRACING_ENABLED |
| void upb_Arena_SetTraceHandler(void (*initArenaTraceHandler)(const upb_Arena*, |
| size_t size), |
| void (*fuseArenaTraceHandler)(const upb_Arena*, |
| const upb_Arena*), |
| void (*freeArenaTraceHandler)(const upb_Arena*)); |
| #endif |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MEM_ARENA_H_ */ |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // The maximum number of bytes a single protobuf field can take up in the |
| // wire format. We only want to do one bounds check per field, so the input |
| // stream guarantees that after upb_EpsCopyInputStream_IsDone() is called, |
| // the decoder can read this many bytes without performing another bounds |
| // check. The stream will copy into a patch buffer as necessary to guarantee |
| // this invariant. |
| #define kUpb_EpsCopyInputStream_SlopBytes 16 |
| |
| enum { |
| kUpb_EpsCopyInputStream_NoAliasing = 0, |
| kUpb_EpsCopyInputStream_OnPatch = 1, |
| kUpb_EpsCopyInputStream_NoDelta = 2 |
| }; |
| |
| typedef struct { |
| const char* end; // Can read up to SlopBytes bytes beyond this. |
| const char* limit_ptr; // For bounds checks, = end + UPB_MIN(limit, 0) |
| uintptr_t aliasing; |
| int limit; // Submessage limit relative to end |
| bool error; // To distinguish between EOF and error. |
| char patch[kUpb_EpsCopyInputStream_SlopBytes * 2]; |
| } upb_EpsCopyInputStream; |
| |
| // Returns true if the stream is in the error state. A stream enters the error |
| // state when the user reads past a limit (caught in IsDone()) or the |
| // ZeroCopyInputStream returns an error. |
| UPB_INLINE bool upb_EpsCopyInputStream_IsError(upb_EpsCopyInputStream* e) { |
| return e->error; |
| } |
| |
| typedef const char* upb_EpsCopyInputStream_BufferFlipCallback( |
| upb_EpsCopyInputStream* e, const char* old_end, const char* new_start); |
| |
| typedef const char* upb_EpsCopyInputStream_IsDoneFallbackFunc( |
| upb_EpsCopyInputStream* e, const char* ptr, int overrun); |
| |
| // Initializes a upb_EpsCopyInputStream using the contents of the buffer |
| // [*ptr, size]. Updates `*ptr` as necessary to guarantee that at least |
| // kUpb_EpsCopyInputStream_SlopBytes are available to read. |
| UPB_INLINE void upb_EpsCopyInputStream_Init(upb_EpsCopyInputStream* e, |
| const char** ptr, size_t size, |
| bool enable_aliasing) { |
| if (size <= kUpb_EpsCopyInputStream_SlopBytes) { |
| memset(&e->patch, 0, 32); |
| if (size) memcpy(&e->patch, *ptr, size); |
| e->aliasing = enable_aliasing ? (uintptr_t)*ptr - (uintptr_t)e->patch |
| : kUpb_EpsCopyInputStream_NoAliasing; |
| *ptr = e->patch; |
| e->end = *ptr + size; |
| e->limit = 0; |
| } else { |
| e->end = *ptr + size - kUpb_EpsCopyInputStream_SlopBytes; |
| e->limit = kUpb_EpsCopyInputStream_SlopBytes; |
| e->aliasing = enable_aliasing ? kUpb_EpsCopyInputStream_NoDelta |
| : kUpb_EpsCopyInputStream_NoAliasing; |
| } |
| e->limit_ptr = e->end; |
| e->error = false; |
| } |
| |
| typedef enum { |
| // The current stream position is at a limit. |
| kUpb_IsDoneStatus_Done, |
| |
| // The current stream position is not at a limit. |
| kUpb_IsDoneStatus_NotDone, |
| |
| // The current stream position is not at a limit, and the stream needs to |
| // be flipped to a new buffer before more data can be read. |
| kUpb_IsDoneStatus_NeedFallback, |
| } upb_IsDoneStatus; |
| |
| // Returns the status of the current stream position. This is a low-level |
| // function, it is simpler to call upb_EpsCopyInputStream_IsDone() if possible. |
| UPB_INLINE upb_IsDoneStatus upb_EpsCopyInputStream_IsDoneStatus( |
| upb_EpsCopyInputStream* e, const char* ptr, int* overrun) { |
| *overrun = ptr - e->end; |
| if (UPB_LIKELY(ptr < e->limit_ptr)) { |
| return kUpb_IsDoneStatus_NotDone; |
| } else if (UPB_LIKELY(*overrun == e->limit)) { |
| return kUpb_IsDoneStatus_Done; |
| } else { |
| return kUpb_IsDoneStatus_NeedFallback; |
| } |
| } |
| |
| // Returns true if the stream has hit a limit, either the current delimited |
| // limit or the overall end-of-stream. As a side effect, this function may flip |
| // the pointer to a new buffer if there are less than |
| // kUpb_EpsCopyInputStream_SlopBytes of data to be read in the current buffer. |
| // |
| // Postcondition: if the function returns false, there are at least |
| // kUpb_EpsCopyInputStream_SlopBytes of data available to read at *ptr. |
| UPB_INLINE bool upb_EpsCopyInputStream_IsDoneWithCallback( |
| upb_EpsCopyInputStream* e, const char** ptr, |
| upb_EpsCopyInputStream_IsDoneFallbackFunc* func) { |
| int overrun; |
| switch (upb_EpsCopyInputStream_IsDoneStatus(e, *ptr, &overrun)) { |
| case kUpb_IsDoneStatus_Done: |
| return true; |
| case kUpb_IsDoneStatus_NotDone: |
| return false; |
| case kUpb_IsDoneStatus_NeedFallback: |
| *ptr = func(e, *ptr, overrun); |
| return *ptr == NULL; |
| } |
| UPB_UNREACHABLE(); |
| } |
| |
| const char* _upb_EpsCopyInputStream_IsDoneFallbackNoCallback( |
| upb_EpsCopyInputStream* e, const char* ptr, int overrun); |
| |
| // A simpler version of IsDoneWithCallback() that does not support a buffer flip |
| // callback. Useful in cases where we do not need to insert custom logic at |
| // every buffer flip. |
| // |
| // If this returns true, the user must call upb_EpsCopyInputStream_IsError() |
| // to distinguish between EOF and error. |
| UPB_INLINE bool upb_EpsCopyInputStream_IsDone(upb_EpsCopyInputStream* e, |
| const char** ptr) { |
| return upb_EpsCopyInputStream_IsDoneWithCallback( |
| e, ptr, _upb_EpsCopyInputStream_IsDoneFallbackNoCallback); |
| } |
| |
| // Returns the total number of bytes that are safe to read from the current |
| // buffer without reading uninitialized or unallocated memory. |
| // |
| // Note that this check does not respect any semantic limits on the stream, |
| // either limits from PushLimit() or the overall stream end, so some of these |
| // bytes may have unpredictable, nonsense values in them. The guarantee is only |
| // that the bytes are valid to read from the perspective of the C language |
| // (ie. you can read without triggering UBSAN or ASAN). |
| UPB_INLINE size_t upb_EpsCopyInputStream_BytesAvailable( |
| upb_EpsCopyInputStream* e, const char* ptr) { |
| return (e->end - ptr) + kUpb_EpsCopyInputStream_SlopBytes; |
| } |
| |
| // Returns true if the given delimited field size is valid (it does not extend |
| // beyond any previously-pushed limits). `ptr` should point to the beginning |
| // of the field data, after the delimited size. |
| // |
| // Note that this does *not* guarantee that all of the data for this field is in |
| // the current buffer. |
| UPB_INLINE bool upb_EpsCopyInputStream_CheckSize( |
| const upb_EpsCopyInputStream* e, const char* ptr, int size) { |
| UPB_ASSERT(size >= 0); |
| return ptr - e->end + size <= e->limit; |
| } |
| |
| UPB_INLINE bool _upb_EpsCopyInputStream_CheckSizeAvailable( |
| upb_EpsCopyInputStream* e, const char* ptr, int size, bool submessage) { |
| // This is one extra branch compared to the more normal: |
| // return (size_t)(end - ptr) < size; |
| // However it is one less computation if we are just about to use "ptr + len": |
| // https://godbolt.org/z/35YGPz |
| // In microbenchmarks this shows a small improvement. |
| uintptr_t uptr = (uintptr_t)ptr; |
| uintptr_t uend = (uintptr_t)e->limit_ptr; |
| uintptr_t res = uptr + (size_t)size; |
| if (!submessage) uend += kUpb_EpsCopyInputStream_SlopBytes; |
| // NOTE: this check depends on having a linear address space. This is not |
| // technically guaranteed by uintptr_t. |
| bool ret = res >= uptr && res <= uend; |
| if (size < 0) UPB_ASSERT(!ret); |
| return ret; |
| } |
| |
| // Returns true if the given delimited field size is valid (it does not extend |
| // beyond any previously-pushed limited) *and* all of the data for this field is |
| // available to be read in the current buffer. |
| // |
| // If the size is negative, this function will always return false. This |
| // property can be useful in some cases. |
| UPB_INLINE bool upb_EpsCopyInputStream_CheckDataSizeAvailable( |
| upb_EpsCopyInputStream* e, const char* ptr, int size) { |
| return _upb_EpsCopyInputStream_CheckSizeAvailable(e, ptr, size, false); |
| } |
| |
| // Returns true if the given sub-message size is valid (it does not extend |
| // beyond any previously-pushed limited) *and* all of the data for this |
| // sub-message is available to be parsed in the current buffer. |
| // |
| // This implies that all fields from the sub-message can be parsed from the |
| // current buffer while maintaining the invariant that we always have at least |
| // kUpb_EpsCopyInputStream_SlopBytes of data available past the beginning of |
| // any individual field start. |
| // |
| // If the size is negative, this function will always return false. This |
| // property can be useful in some cases. |
| UPB_INLINE bool upb_EpsCopyInputStream_CheckSubMessageSizeAvailable( |
| upb_EpsCopyInputStream* e, const char* ptr, int size) { |
| return _upb_EpsCopyInputStream_CheckSizeAvailable(e, ptr, size, true); |
| } |
| |
| // Returns true if aliasing_enabled=true was passed to |
| // upb_EpsCopyInputStream_Init() when this stream was initialized. |
| UPB_INLINE bool upb_EpsCopyInputStream_AliasingEnabled( |
| upb_EpsCopyInputStream* e) { |
| return e->aliasing != kUpb_EpsCopyInputStream_NoAliasing; |
| } |
| |
| // Returns true if aliasing_enabled=true was passed to |
| // upb_EpsCopyInputStream_Init() when this stream was initialized *and* we can |
| // alias into the region [ptr, size] in an input buffer. |
| UPB_INLINE bool upb_EpsCopyInputStream_AliasingAvailable( |
| upb_EpsCopyInputStream* e, const char* ptr, size_t size) { |
| // When EpsCopyInputStream supports streaming, this will need to become a |
| // runtime check. |
| return upb_EpsCopyInputStream_CheckDataSizeAvailable(e, ptr, size) && |
| e->aliasing >= kUpb_EpsCopyInputStream_NoDelta; |
| } |
| |
| // Returns a pointer into an input buffer that corresponds to the parsing |
| // pointer `ptr`. The returned pointer may be the same as `ptr`, but also may |
| // be different if we are currently parsing out of the patch buffer. |
| // |
| // REQUIRES: Aliasing must be available for the given pointer. If the input is a |
| // flat buffer and aliasing is enabled, then aliasing will always be available. |
| UPB_INLINE const char* upb_EpsCopyInputStream_GetAliasedPtr( |
| upb_EpsCopyInputStream* e, const char* ptr) { |
| UPB_ASSUME(upb_EpsCopyInputStream_AliasingAvailable(e, ptr, 0)); |
| uintptr_t delta = |
| e->aliasing == kUpb_EpsCopyInputStream_NoDelta ? 0 : e->aliasing; |
| return (const char*)((uintptr_t)ptr + delta); |
| } |
| |
| // Reads string data from the input, aliasing into the input buffer instead of |
| // copying. The parsing pointer is passed in `*ptr`, and will be updated if |
| // necessary to point to the actual input buffer. Returns the new parsing |
| // pointer, which will be advanced past the string data. |
| // |
| // REQUIRES: Aliasing must be available for this data region (test with |
| // upb_EpsCopyInputStream_AliasingAvailable(). |
| UPB_INLINE const char* upb_EpsCopyInputStream_ReadStringAliased( |
| upb_EpsCopyInputStream* e, const char** ptr, size_t size) { |
| UPB_ASSUME(upb_EpsCopyInputStream_AliasingAvailable(e, *ptr, size)); |
| const char* ret = *ptr + size; |
| *ptr = upb_EpsCopyInputStream_GetAliasedPtr(e, *ptr); |
| UPB_ASSUME(ret != NULL); |
| return ret; |
| } |
| |
| // Skips `size` bytes of data from the input and returns a pointer past the end. |
| // Returns NULL on end of stream or error. |
| UPB_INLINE const char* upb_EpsCopyInputStream_Skip(upb_EpsCopyInputStream* e, |
| const char* ptr, int size) { |
| if (!upb_EpsCopyInputStream_CheckDataSizeAvailable(e, ptr, size)) return NULL; |
| return ptr + size; |
| } |
| |
| // Copies `size` bytes of data from the input `ptr` into the buffer `to`, and |
| // returns a pointer past the end. Returns NULL on end of stream or error. |
| UPB_INLINE const char* upb_EpsCopyInputStream_Copy(upb_EpsCopyInputStream* e, |
| const char* ptr, void* to, |
| int size) { |
| if (!upb_EpsCopyInputStream_CheckDataSizeAvailable(e, ptr, size)) return NULL; |
| memcpy(to, ptr, size); |
| return ptr + size; |
| } |
| |
| // Reads string data from the stream and advances the pointer accordingly. |
| // If aliasing was enabled when the stream was initialized, then the returned |
| // pointer will point into the input buffer if possible, otherwise new data |
| // will be allocated from arena and copied into. We may be forced to copy even |
| // if aliasing was enabled if the input data spans input buffers. |
| // |
| // Returns NULL if memory allocation failed, or we reached a premature EOF. |
| UPB_INLINE const char* upb_EpsCopyInputStream_ReadString( |
| upb_EpsCopyInputStream* e, const char** ptr, size_t size, |
| upb_Arena* arena) { |
| if (upb_EpsCopyInputStream_AliasingAvailable(e, *ptr, size)) { |
| return upb_EpsCopyInputStream_ReadStringAliased(e, ptr, size); |
| } else { |
| // We need to allocate and copy. |
| if (!upb_EpsCopyInputStream_CheckDataSizeAvailable(e, *ptr, size)) { |
| return NULL; |
| } |
| UPB_ASSERT(arena); |
| char* data = (char*)upb_Arena_Malloc(arena, size); |
| if (!data) return NULL; |
| const char* ret = upb_EpsCopyInputStream_Copy(e, *ptr, data, size); |
| *ptr = data; |
| return ret; |
| } |
| } |
| |
| UPB_INLINE void _upb_EpsCopyInputStream_CheckLimit(upb_EpsCopyInputStream* e) { |
| UPB_ASSERT(e->limit_ptr == e->end + UPB_MIN(0, e->limit)); |
| } |
| |
| // Pushes a limit onto the stack of limits for the current stream. The limit |
| // will extend for `size` bytes beyond the position in `ptr`. Future calls to |
| // upb_EpsCopyInputStream_IsDone() will return `true` when the stream position |
| // reaches this limit. |
| // |
| // Returns a delta that the caller must store and supply to PopLimit() below. |
| UPB_INLINE int upb_EpsCopyInputStream_PushLimit(upb_EpsCopyInputStream* e, |
| const char* ptr, int size) { |
| int limit = size + (int)(ptr - e->end); |
| int delta = e->limit - limit; |
| _upb_EpsCopyInputStream_CheckLimit(e); |
| UPB_ASSERT(limit <= e->limit); |
| e->limit = limit; |
| e->limit_ptr = e->end + UPB_MIN(0, limit); |
| _upb_EpsCopyInputStream_CheckLimit(e); |
| return delta; |
| } |
| |
| // Pops the last limit that was pushed on this stream. This may only be called |
| // once IsDone() returns true. The user must pass the delta that was returned |
| // from PushLimit(). |
| UPB_INLINE void upb_EpsCopyInputStream_PopLimit(upb_EpsCopyInputStream* e, |
| const char* ptr, |
| int saved_delta) { |
| UPB_ASSERT(ptr - e->end == e->limit); |
| _upb_EpsCopyInputStream_CheckLimit(e); |
| e->limit += saved_delta; |
| e->limit_ptr = e->end + UPB_MIN(0, e->limit); |
| _upb_EpsCopyInputStream_CheckLimit(e); |
| } |
| |
| UPB_INLINE const char* _upb_EpsCopyInputStream_IsDoneFallbackInline( |
| upb_EpsCopyInputStream* e, const char* ptr, int overrun, |
| upb_EpsCopyInputStream_BufferFlipCallback* callback) { |
| if (overrun < e->limit) { |
| // Need to copy remaining data into patch buffer. |
| UPB_ASSERT(overrun < kUpb_EpsCopyInputStream_SlopBytes); |
| const char* old_end = ptr; |
| const char* new_start = &e->patch[0] + overrun; |
| memset(e->patch + kUpb_EpsCopyInputStream_SlopBytes, 0, |
| kUpb_EpsCopyInputStream_SlopBytes); |
| memcpy(e->patch, e->end, kUpb_EpsCopyInputStream_SlopBytes); |
| ptr = new_start; |
| e->end = &e->patch[kUpb_EpsCopyInputStream_SlopBytes]; |
| e->limit -= kUpb_EpsCopyInputStream_SlopBytes; |
| e->limit_ptr = e->end + e->limit; |
| UPB_ASSERT(ptr < e->limit_ptr); |
| if (e->aliasing != kUpb_EpsCopyInputStream_NoAliasing) { |
| e->aliasing = (uintptr_t)old_end - (uintptr_t)new_start; |
| } |
| return callback(e, old_end, new_start); |
| } else { |
| UPB_ASSERT(overrun > e->limit); |
| e->error = true; |
| return callback(e, NULL, NULL); |
| } |
| } |
| |
| typedef const char* upb_EpsCopyInputStream_ParseDelimitedFunc( |
| upb_EpsCopyInputStream* e, const char* ptr, void* ctx); |
| |
| // Tries to perform a fast-path handling of the given delimited message data. |
| // If the sub-message beginning at `*ptr` and extending for `len` is short and |
| // fits within this buffer, calls `func` with `ctx` as a parameter, where the |
| // pushing and popping of limits is handled automatically and with lower cost |
| // than the normal PushLimit()/PopLimit() sequence. |
| UPB_FORCEINLINE bool upb_EpsCopyInputStream_TryParseDelimitedFast( |
| upb_EpsCopyInputStream* e, const char** ptr, int len, |
| upb_EpsCopyInputStream_ParseDelimitedFunc* func, void* ctx) { |
| if (!upb_EpsCopyInputStream_CheckSubMessageSizeAvailable(e, *ptr, len)) { |
| return false; |
| } |
| |
| // Fast case: Sub-message is <128 bytes and fits in the current buffer. |
| // This means we can preserve limit/limit_ptr verbatim. |
| const char* saved_limit_ptr = e->limit_ptr; |
| int saved_limit = e->limit; |
| e->limit_ptr = *ptr + len; |
| e->limit = e->limit_ptr - e->end; |
| UPB_ASSERT(e->limit_ptr == e->end + UPB_MIN(0, e->limit)); |
| *ptr = func(e, *ptr, ctx); |
| e->limit_ptr = saved_limit_ptr; |
| e->limit = saved_limit; |
| UPB_ASSERT(e->limit_ptr == e->end + UPB_MIN(0, e->limit)); |
| return true; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif // UPB_WIRE_EPS_COPY_INPUT_STREAM_H_ |
| |
| #ifndef UPB_JSON_DECODE_H_ |
| #define UPB_JSON_DECODE_H_ |
| |
| |
| #ifndef UPB_REFLECTION_DEF_H_ |
| #define UPB_REFLECTION_DEF_H_ |
| |
| // IWYU pragma: begin_exports |
| |
| // IWYU pragma: private, include "upb/reflection/def.h" |
| |
| #ifndef UPB_REFLECTION_DEF_POOL_H_ |
| #define UPB_REFLECTION_DEF_POOL_H_ |
| |
| #ifndef UPB_BASE_STRING_VIEW_H_ |
| #define UPB_BASE_STRING_VIEW_H_ |
| |
| #include <string.h> |
| |
| // Must be last. |
| |
| #define UPB_STRINGVIEW_INIT(ptr, len) \ |
| { ptr, len } |
| |
| #define UPB_STRINGVIEW_FORMAT "%.*s" |
| #define UPB_STRINGVIEW_ARGS(view) (int)(view).size, (view).data |
| |
| // LINT.IfChange(struct_definition) |
| typedef struct { |
| const char* data; |
| size_t size; |
| } upb_StringView; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE upb_StringView upb_StringView_FromDataAndSize(const char* data, |
| size_t size) { |
| upb_StringView ret; |
| ret.data = data; |
| ret.size = size; |
| return ret; |
| } |
| |
| UPB_INLINE upb_StringView upb_StringView_FromString(const char* data) { |
| return upb_StringView_FromDataAndSize(data, strlen(data)); |
| } |
| |
| UPB_INLINE bool upb_StringView_IsEqual(upb_StringView a, upb_StringView b) { |
| return (a.size == b.size) && (!a.size || !memcmp(a.data, b.data, a.size)); |
| } |
| |
| // LINT.ThenChange( |
| // GoogleInternalName1, |
| // //depot/google3/third_party/upb/bits/golang/accessor.go:map_go_string, |
| // //depot/google3/third_party/upb/bits/typescript/string_view.ts |
| // ) |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_BASE_STRING_VIEW_H_ */ |
| |
| // IWYU pragma: private, include "upb/reflection/def.h" |
| |
| // Declarations common to all public def types. |
| |
| #ifndef UPB_REFLECTION_COMMON_H_ |
| #define UPB_REFLECTION_COMMON_H_ |
| |
| #ifndef THIRD_PARTY_UPB_UPB_REFLECTION_DESCRIPTOR_BOOTSTRAP_H_ |
| #define THIRD_PARTY_UPB_UPB_REFLECTION_DESCRIPTOR_BOOTSTRAP_H_ |
| |
| // IWYU pragma: begin_exports |
| |
| #if defined(UPB_BOOTSTRAP_STAGE) && UPB_BOOTSTRAP_STAGE == 0 |
| // This header is checked in. |
| #elif UPB_BOOTSTRAP_STAGE == 1 |
| // This header is generated at build time by the bootstrapping process. |
| #else |
| // This is the normal header, generated by upb_c_proto_library(). |
| /* This file was generated by upb_generator from the input file: |
| * |
| * google/protobuf/descriptor.proto |
| * |
| * Do not edit -- your changes will be discarded when the file is |
| * regenerated. |
| * NO CHECKED-IN PROTOBUF GENCODE */ |
| |
| #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_PROTO_UPB_H__UPB_H_ |
| #define GOOGLE_PROTOBUF_DESCRIPTOR_PROTO_UPB_H__UPB_H_ |
| |
| |
| #ifndef UPB_GENERATED_CODE_SUPPORT_H_ |
| #define UPB_GENERATED_CODE_SUPPORT_H_ |
| |
| // IWYU pragma: begin_exports |
| |
| #ifndef UPB_BASE_UPCAST_H_ |
| #define UPB_BASE_UPCAST_H_ |
| |
| // Must be last. |
| |
| // This macro provides a way to upcast message pointers in a way that is |
| // somewhat more bulletproof than blindly casting a pointer. Example: |
| // |
| // typedef struct { |
| // upb_Message UPB_PRIVATE(base); |
| // } pkg_FooMessage; |
| // |
| // void f(pkg_FooMessage* msg) { |
| // upb_Decode(UPB_UPCAST(msg), ...); |
| // } |
| |
| #define UPB_UPCAST(x) (&(x)->base##_dont_copy_me__upb_internal_use_only) |
| |
| |
| #endif /* UPB_BASE_UPCAST_H_ */ |
| |
| #ifndef UPB_MESSAGE_ACCESSORS_H_ |
| #define UPB_MESSAGE_ACCESSORS_H_ |
| |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MESSAGE_ARRAY_H_ |
| #define UPB_MESSAGE_ARRAY_H_ |
| |
| #include <stddef.h> |
| |
| |
| #ifndef UPB_BASE_DESCRIPTOR_CONSTANTS_H_ |
| #define UPB_BASE_DESCRIPTOR_CONSTANTS_H_ |
| |
| // Must be last. |
| |
| // The types a field can have. Note that this list is not identical to the |
| // types defined in descriptor.proto, which gives INT32 and SINT32 separate |
| // types (we distinguish the two with the "integer encoding" enum below). |
| // This enum is an internal convenience only and has no meaning outside of upb. |
| typedef enum { |
| kUpb_CType_Bool = 1, |
| kUpb_CType_Float = 2, |
| kUpb_CType_Int32 = 3, |
| kUpb_CType_UInt32 = 4, |
| kUpb_CType_Enum = 5, // Enum values are int32. TODO: rename |
| kUpb_CType_Message = 6, |
| kUpb_CType_Double = 7, |
| kUpb_CType_Int64 = 8, |
| kUpb_CType_UInt64 = 9, |
| kUpb_CType_String = 10, |
| kUpb_CType_Bytes = 11 |
| } upb_CType; |
| |
| // The repeated-ness of each field; this matches descriptor.proto. |
| typedef enum { |
| kUpb_Label_Optional = 1, |
| kUpb_Label_Required = 2, |
| kUpb_Label_Repeated = 3 |
| } upb_Label; |
| |
| // Descriptor types, as defined in descriptor.proto. |
| typedef enum { |
| kUpb_FieldType_Double = 1, |
| kUpb_FieldType_Float = 2, |
| kUpb_FieldType_Int64 = 3, |
| kUpb_FieldType_UInt64 = 4, |
| kUpb_FieldType_Int32 = 5, |
| kUpb_FieldType_Fixed64 = 6, |
| kUpb_FieldType_Fixed32 = 7, |
| kUpb_FieldType_Bool = 8, |
| kUpb_FieldType_String = 9, |
| kUpb_FieldType_Group = 10, |
| kUpb_FieldType_Message = 11, |
| kUpb_FieldType_Bytes = 12, |
| kUpb_FieldType_UInt32 = 13, |
| kUpb_FieldType_Enum = 14, |
| kUpb_FieldType_SFixed32 = 15, |
| kUpb_FieldType_SFixed64 = 16, |
| kUpb_FieldType_SInt32 = 17, |
| kUpb_FieldType_SInt64 = 18, |
| } upb_FieldType; |
| |
| #define kUpb_FieldType_SizeOf 19 |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Convert from upb_FieldType to upb_CType |
| UPB_INLINE upb_CType upb_FieldType_CType(upb_FieldType field_type) { |
| static const upb_CType c_type[] = { |
| kUpb_CType_Double, // kUpb_FieldType_Double |
| kUpb_CType_Float, // kUpb_FieldType_Float |
| kUpb_CType_Int64, // kUpb_FieldType_Int64 |
| kUpb_CType_UInt64, // kUpb_FieldType_UInt64 |
| kUpb_CType_Int32, // kUpb_FieldType_Int32 |
| kUpb_CType_UInt64, // kUpb_FieldType_Fixed64 |
| kUpb_CType_UInt32, // kUpb_FieldType_Fixed32 |
| kUpb_CType_Bool, // kUpb_FieldType_Bool |
| kUpb_CType_String, // kUpb_FieldType_String |
| kUpb_CType_Message, // kUpb_FieldType_Group |
| kUpb_CType_Message, // kUpb_FieldType_Message |
| kUpb_CType_Bytes, // kUpb_FieldType_Bytes |
| kUpb_CType_UInt32, // kUpb_FieldType_UInt32 |
| kUpb_CType_Enum, // kUpb_FieldType_Enum |
| kUpb_CType_Int32, // kUpb_FieldType_SFixed32 |
| kUpb_CType_Int64, // kUpb_FieldType_SFixed64 |
| kUpb_CType_Int32, // kUpb_FieldType_SInt32 |
| kUpb_CType_Int64, // kUpb_FieldType_SInt64 |
| }; |
| |
| // -1 here because the enum is one-based but the table is zero-based. |
| return c_type[field_type - 1]; |
| } |
| |
| UPB_INLINE bool upb_FieldType_IsPackable(upb_FieldType field_type) { |
| // clang-format off |
| const unsigned kUnpackableTypes = |
| (1 << kUpb_FieldType_String) | |
| (1 << kUpb_FieldType_Bytes) | |
| (1 << kUpb_FieldType_Message) | |
| (1 << kUpb_FieldType_Group); |
| // clang-format on |
| return (1 << field_type) & ~kUnpackableTypes; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_BASE_DESCRIPTOR_CONSTANTS_H_ */ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_ARRAY_H_ |
| #define UPB_MESSAGE_INTERNAL_ARRAY_H_ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| |
| // Must be last. |
| |
| #define _UPB_ARRAY_MASK_IMM 0x4 // Frozen/immutable bit. |
| #define _UPB_ARRAY_MASK_LG2 0x3 // Encoded elem size. |
| #define _UPB_ARRAY_MASK_ALL (_UPB_ARRAY_MASK_IMM | _UPB_ARRAY_MASK_LG2) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // LINT.IfChange(upb_Array) |
| |
| // Our internal representation for repeated fields. |
| struct upb_Array { |
| // This is a tagged pointer. Bits #0 and #1 encode the elem size as follows: |
| // 0 maps to elem size 1 |
| // 1 maps to elem size 4 |
| // 2 maps to elem size 8 |
| // 3 maps to elem size 16 |
| // |
| // Bit #2 contains the frozen/immutable flag. |
| uintptr_t UPB_ONLYBITS(data); |
| |
| size_t UPB_ONLYBITS(size); // The number of elements in the array. |
| size_t UPB_PRIVATE(capacity); // Allocated storage. Measured in elements. |
| }; |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Array_ShallowFreeze)(struct upb_Array* arr) { |
| arr->UPB_ONLYBITS(data) |= _UPB_ARRAY_MASK_IMM; |
| } |
| |
| UPB_API_INLINE bool upb_Array_IsFrozen(const struct upb_Array* arr) { |
| return (arr->UPB_ONLYBITS(data) & _UPB_ARRAY_MASK_IMM) != 0; |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Array_SetTaggedPtr)(struct upb_Array* array, |
| void* data, size_t lg2) { |
| UPB_ASSERT(lg2 != 1); |
| UPB_ASSERT(lg2 <= 4); |
| const size_t bits = lg2 - (lg2 != 0); |
| array->UPB_ONLYBITS(data) = (uintptr_t)data | bits; |
| } |
| |
| UPB_INLINE size_t |
| UPB_PRIVATE(_upb_Array_ElemSizeLg2)(const struct upb_Array* array) { |
| const size_t bits = array->UPB_ONLYBITS(data) & _UPB_ARRAY_MASK_LG2; |
| const size_t lg2 = bits + (bits != 0); |
| return lg2; |
| } |
| |
| UPB_API_INLINE const void* upb_Array_DataPtr(const struct upb_Array* array) { |
| UPB_PRIVATE(_upb_Array_ElemSizeLg2)(array); // Check assertions. |
| return (void*)(array->UPB_ONLYBITS(data) & ~(uintptr_t)_UPB_ARRAY_MASK_ALL); |
| } |
| |
| UPB_API_INLINE void* upb_Array_MutableDataPtr(struct upb_Array* array) { |
| return (void*)upb_Array_DataPtr(array); |
| } |
| |
| UPB_INLINE struct upb_Array* UPB_PRIVATE(_upb_Array_New)(upb_Arena* arena, |
| size_t init_capacity, |
| int elem_size_lg2) { |
| UPB_ASSERT(elem_size_lg2 != 1); |
| UPB_ASSERT(elem_size_lg2 <= 4); |
| const size_t array_size = |
| UPB_ALIGN_UP(sizeof(struct upb_Array), UPB_MALLOC_ALIGN); |
| const size_t bytes = array_size + (init_capacity << elem_size_lg2); |
| struct upb_Array* array = (struct upb_Array*)upb_Arena_Malloc(arena, bytes); |
| if (!array) return NULL; |
| UPB_PRIVATE(_upb_Array_SetTaggedPtr) |
| (array, UPB_PTR_AT(array, array_size, void), elem_size_lg2); |
| array->UPB_ONLYBITS(size) = 0; |
| array->UPB_PRIVATE(capacity) = init_capacity; |
| return array; |
| } |
| |
| // Resizes the capacity of the array to be at least min_size. |
| bool UPB_PRIVATE(_upb_Array_Realloc)(struct upb_Array* array, size_t min_size, |
| upb_Arena* arena); |
| |
| UPB_API_INLINE bool upb_Array_Reserve(struct upb_Array* array, size_t size, |
| upb_Arena* arena) { |
| UPB_ASSERT(!upb_Array_IsFrozen(array)); |
| if (array->UPB_PRIVATE(capacity) < size) |
| return UPB_PRIVATE(_upb_Array_Realloc)(array, size, arena); |
| return true; |
| } |
| |
| // Resize without initializing new elements. |
| UPB_INLINE bool UPB_PRIVATE(_upb_Array_ResizeUninitialized)( |
| struct upb_Array* array, size_t size, upb_Arena* arena) { |
| UPB_ASSERT(!upb_Array_IsFrozen(array)); |
| UPB_ASSERT(size <= array->UPB_ONLYBITS(size) || |
| arena); // Allow NULL arena when shrinking. |
| if (!upb_Array_Reserve(array, size, arena)) return false; |
| array->UPB_ONLYBITS(size) = size; |
| return true; |
| } |
| |
| // This function is intended for situations where elem_size is compile-time |
| // constant or a known expression of the form (1 << lg2), so that the expression |
| // i*elem_size does not result in an actual multiplication. |
| UPB_INLINE void UPB_PRIVATE(_upb_Array_Set)(struct upb_Array* array, size_t i, |
| const void* data, |
| size_t elem_size) { |
| UPB_ASSERT(!upb_Array_IsFrozen(array)); |
| UPB_ASSERT(i < array->UPB_ONLYBITS(size)); |
| UPB_ASSERT(elem_size == 1U << UPB_PRIVATE(_upb_Array_ElemSizeLg2)(array)); |
| char* arr_data = (char*)upb_Array_MutableDataPtr(array); |
| memcpy(arr_data + (i * elem_size), data, elem_size); |
| } |
| |
| UPB_API_INLINE size_t upb_Array_Size(const struct upb_Array* arr) { |
| return arr->UPB_ONLYBITS(size); |
| } |
| |
| // LINT.ThenChange(GoogleInternalName0) |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| #undef _UPB_ARRAY_MASK_IMM |
| #undef _UPB_ARRAY_MASK_LG2 |
| #undef _UPB_ARRAY_MASK_ALL |
| |
| |
| #endif /* UPB_MESSAGE_INTERNAL_ARRAY_H_ */ |
| |
| // Users should include array.h or map.h instead. |
| // IWYU pragma: private, include "upb/message/array.h" |
| |
| #ifndef UPB_MESSAGE_VALUE_H_ |
| #define UPB_MESSAGE_VALUE_H_ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| typedef union { |
| bool bool_val; |
| float float_val; |
| double double_val; |
| int32_t int32_val; |
| int64_t int64_val; |
| uint32_t uint32_val; |
| uint64_t uint64_val; |
| const struct upb_Array* array_val; |
| const struct upb_Map* map_val; |
| const struct upb_Message* msg_val; |
| upb_StringView str_val; |
| |
| // EXPERIMENTAL: A tagged upb_Message*. Users must use this instead of |
| // msg_val if unlinked sub-messages may possibly be in use. See the |
| // documentation in kUpb_DecodeOption_ExperimentalAllowUnlinked for more |
| // information. |
| uintptr_t tagged_msg_val; // upb_TaggedMessagePtr |
| } upb_MessageValue; |
| |
| UPB_API_INLINE upb_MessageValue upb_MessageValue_Zero(void) { |
| upb_MessageValue zero; |
| memset(&zero, 0, sizeof(zero)); |
| return zero; |
| } |
| |
| typedef union { |
| struct upb_Array* array; |
| struct upb_Map* map; |
| struct upb_Message* msg; |
| } upb_MutableMessageValue; |
| |
| UPB_API_INLINE upb_MutableMessageValue upb_MutableMessageValue_Zero(void) { |
| upb_MutableMessageValue zero; |
| memset(&zero, 0, sizeof(zero)); |
| return zero; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MESSAGE_VALUE_H_ */ |
| |
| #ifndef UPB_MINI_TABLE_FIELD_H_ |
| #define UPB_MINI_TABLE_FIELD_H_ |
| |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_FIELD_H_ |
| #define UPB_MINI_TABLE_INTERNAL_FIELD_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_SIZE_LOG2_H_ |
| #define UPB_MINI_TABLE_INTERNAL_SIZE_LOG2_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Return the log2 of the storage size in bytes for a upb_CType |
| UPB_INLINE int UPB_PRIVATE(_upb_CType_SizeLg2)(upb_CType c_type) { |
| static const int8_t size[] = { |
| 0, // kUpb_CType_Bool |
| 2, // kUpb_CType_Float |
| 2, // kUpb_CType_Int32 |
| 2, // kUpb_CType_UInt32 |
| 2, // kUpb_CType_Enum |
| UPB_SIZE(2, 3), // kUpb_CType_Message |
| 3, // kUpb_CType_Double |
| 3, // kUpb_CType_Int64 |
| 3, // kUpb_CType_UInt64 |
| UPB_SIZE(3, 4), // kUpb_CType_String |
| UPB_SIZE(3, 4), // kUpb_CType_Bytes |
| }; |
| |
| // -1 here because the enum is one-based but the table is zero-based. |
| return size[c_type - 1]; |
| } |
| |
| // Return the log2 of the storage size in bytes for a upb_FieldType |
| UPB_INLINE int UPB_PRIVATE(_upb_FieldType_SizeLg2)(upb_FieldType field_type) { |
| static const int8_t size[] = { |
| 3, // kUpb_FieldType_Double |
| 2, // kUpb_FieldType_Float |
| 3, // kUpb_FieldType_Int64 |
| 3, // kUpb_FieldType_UInt64 |
| 2, // kUpb_FieldType_Int32 |
| 3, // kUpb_FieldType_Fixed64 |
| 2, // kUpb_FieldType_Fixed32 |
| 0, // kUpb_FieldType_Bool |
| UPB_SIZE(3, 4), // kUpb_FieldType_String |
| UPB_SIZE(2, 3), // kUpb_FieldType_Group |
| UPB_SIZE(2, 3), // kUpb_FieldType_Message |
| UPB_SIZE(3, 4), // kUpb_FieldType_Bytes |
| 2, // kUpb_FieldType_UInt32 |
| 2, // kUpb_FieldType_Enum |
| 2, // kUpb_FieldType_SFixed32 |
| 3, // kUpb_FieldType_SFixed64 |
| 2, // kUpb_FieldType_SInt32 |
| 3, // kUpb_FieldType_SInt64 |
| }; |
| |
| // -1 here because the enum is one-based but the table is zero-based. |
| return size[field_type - 1]; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_SIZE_LOG2_H_ */ |
| |
| // Must be last. |
| |
| // LINT.IfChange(struct_definition) |
| struct upb_MiniTableField { |
| uint32_t UPB_ONLYBITS(number); |
| uint16_t UPB_ONLYBITS(offset); |
| int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index |
| |
| // Indexes into `upb_MiniTable.subs` |
| // Will be set to `kUpb_NoSub` if `descriptortype` != MESSAGE/GROUP/ENUM |
| uint16_t UPB_PRIVATE(submsg_index); |
| |
| uint8_t UPB_PRIVATE(descriptortype); |
| |
| // upb_FieldMode | upb_LabelFlags | (upb_FieldRep << kUpb_FieldRep_Shift) |
| uint8_t UPB_ONLYBITS(mode); |
| }; |
| |
| #define kUpb_NoSub ((uint16_t) - 1) |
| |
| typedef enum { |
| kUpb_FieldMode_Map = 0, |
| kUpb_FieldMode_Array = 1, |
| kUpb_FieldMode_Scalar = 2, |
| } upb_FieldMode; |
| |
| // Mask to isolate the upb_FieldMode from field.mode. |
| #define kUpb_FieldMode_Mask 3 |
| |
| // Extra flags on the mode field. |
| typedef enum { |
| kUpb_LabelFlags_IsPacked = 4, |
| kUpb_LabelFlags_IsExtension = 8, |
| // Indicates that this descriptor type is an "alternate type": |
| // - for Int32, this indicates that the actual type is Enum (but was |
| // rewritten to Int32 because it is an open enum that requires no check). |
| // - for Bytes, this indicates that the actual type is String (but does |
| // not require any UTF-8 check). |
| kUpb_LabelFlags_IsAlternate = 16, |
| } upb_LabelFlags; |
| |
| // Note: we sort by this number when calculating layout order. |
| typedef enum { |
| kUpb_FieldRep_1Byte = 0, |
| kUpb_FieldRep_4Byte = 1, |
| kUpb_FieldRep_StringView = 2, |
| kUpb_FieldRep_8Byte = 3, |
| |
| kUpb_FieldRep_NativePointer = |
| UPB_SIZE(kUpb_FieldRep_4Byte, kUpb_FieldRep_8Byte), |
| kUpb_FieldRep_Max = kUpb_FieldRep_8Byte, |
| } upb_FieldRep; |
| |
| #define kUpb_FieldRep_Shift 6 |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_INLINE upb_FieldMode |
| UPB_PRIVATE(_upb_MiniTableField_Mode)(const struct upb_MiniTableField* f) { |
| return (upb_FieldMode)(f->UPB_ONLYBITS(mode) & kUpb_FieldMode_Mask); |
| } |
| |
| UPB_INLINE upb_FieldRep |
| UPB_PRIVATE(_upb_MiniTableField_GetRep)(const struct upb_MiniTableField* f) { |
| return (upb_FieldRep)(f->UPB_ONLYBITS(mode) >> kUpb_FieldRep_Shift); |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsArray( |
| const struct upb_MiniTableField* f) { |
| return UPB_PRIVATE(_upb_MiniTableField_Mode)(f) == kUpb_FieldMode_Array; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsMap( |
| const struct upb_MiniTableField* f) { |
| return UPB_PRIVATE(_upb_MiniTableField_Mode)(f) == kUpb_FieldMode_Map; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsScalar( |
| const struct upb_MiniTableField* f) { |
| return UPB_PRIVATE(_upb_MiniTableField_Mode)(f) == kUpb_FieldMode_Scalar; |
| } |
| |
| UPB_INLINE bool UPB_PRIVATE(_upb_MiniTableField_IsAlternate)( |
| const struct upb_MiniTableField* f) { |
| return (f->UPB_ONLYBITS(mode) & kUpb_LabelFlags_IsAlternate) != 0; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsExtension( |
| const struct upb_MiniTableField* f) { |
| return (f->UPB_ONLYBITS(mode) & kUpb_LabelFlags_IsExtension) != 0; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsPacked( |
| const struct upb_MiniTableField* f) { |
| return (f->UPB_ONLYBITS(mode) & kUpb_LabelFlags_IsPacked) != 0; |
| } |
| |
| UPB_API_INLINE upb_FieldType |
| upb_MiniTableField_Type(const struct upb_MiniTableField* f) { |
| const upb_FieldType type = (upb_FieldType)f->UPB_PRIVATE(descriptortype); |
| if (UPB_PRIVATE(_upb_MiniTableField_IsAlternate)(f)) { |
| if (type == kUpb_FieldType_Int32) return kUpb_FieldType_Enum; |
| if (type == kUpb_FieldType_Bytes) return kUpb_FieldType_String; |
| UPB_ASSERT(false); |
| } |
| return type; |
| } |
| |
| UPB_API_INLINE |
| upb_CType upb_MiniTableField_CType(const struct upb_MiniTableField* f) { |
| return upb_FieldType_CType(upb_MiniTableField_Type(f)); |
| } |
| |
| UPB_INLINE bool UPB_PRIVATE(_upb_MiniTableField_HasHasbit)( |
| const struct upb_MiniTableField* f) { |
| return f->presence > 0; |
| } |
| |
| UPB_INLINE char UPB_PRIVATE(_upb_MiniTableField_HasbitMask)( |
| const struct upb_MiniTableField* f) { |
| UPB_ASSERT(UPB_PRIVATE(_upb_MiniTableField_HasHasbit)(f)); |
| const size_t index = f->presence; |
| return 1 << (index % 8); |
| } |
| |
| UPB_INLINE size_t UPB_PRIVATE(_upb_MiniTableField_HasbitOffset)( |
| const struct upb_MiniTableField* f) { |
| UPB_ASSERT(UPB_PRIVATE(_upb_MiniTableField_HasHasbit)(f)); |
| const size_t index = f->presence; |
| return index / 8; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsClosedEnum( |
| const struct upb_MiniTableField* f) { |
| return f->UPB_PRIVATE(descriptortype) == kUpb_FieldType_Enum; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsInOneof( |
| const struct upb_MiniTableField* f) { |
| return f->presence < 0; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsSubMessage( |
| const struct upb_MiniTableField* f) { |
| return f->UPB_PRIVATE(descriptortype) == kUpb_FieldType_Message || |
| f->UPB_PRIVATE(descriptortype) == kUpb_FieldType_Group; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTableField_HasPresence( |
| const struct upb_MiniTableField* f) { |
| if (upb_MiniTableField_IsExtension(f)) { |
| return upb_MiniTableField_IsScalar(f); |
| } else { |
| return f->presence != 0; |
| } |
| } |
| |
| UPB_API_INLINE uint32_t |
| upb_MiniTableField_Number(const struct upb_MiniTableField* f) { |
| return f->UPB_ONLYBITS(number); |
| } |
| |
| UPB_INLINE uint16_t |
| UPB_PRIVATE(_upb_MiniTableField_Offset)(const struct upb_MiniTableField* f) { |
| return f->UPB_ONLYBITS(offset); |
| } |
| |
| UPB_INLINE size_t UPB_PRIVATE(_upb_MiniTableField_OneofOffset)( |
| const struct upb_MiniTableField* f) { |
| UPB_ASSERT(upb_MiniTableField_IsInOneof(f)); |
| return ~(ptrdiff_t)f->presence; |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_MiniTableField_CheckIsArray)( |
| const struct upb_MiniTableField* f) { |
| UPB_ASSUME(UPB_PRIVATE(_upb_MiniTableField_GetRep)(f) == |
| kUpb_FieldRep_NativePointer); |
| UPB_ASSUME(upb_MiniTableField_IsArray(f)); |
| UPB_ASSUME(f->presence == 0); |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_MiniTableField_CheckIsMap)( |
| const struct upb_MiniTableField* f) { |
| UPB_ASSUME(UPB_PRIVATE(_upb_MiniTableField_GetRep)(f) == |
| kUpb_FieldRep_NativePointer); |
| UPB_ASSUME(upb_MiniTableField_IsMap(f)); |
| UPB_ASSUME(f->presence == 0); |
| } |
| |
| UPB_INLINE size_t UPB_PRIVATE(_upb_MiniTableField_ElemSizeLg2)( |
| const struct upb_MiniTableField* f) { |
| const upb_FieldType field_type = upb_MiniTableField_Type(f); |
| return UPB_PRIVATE(_upb_FieldType_SizeLg2)(field_type); |
| } |
| |
| // LINT.ThenChange(//depot/google3/third_party/upb/bits/typescript/mini_table_field.ts) |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_FIELD_H_ */ |
| |
| // Must be last. |
| |
| typedef struct upb_MiniTableField upb_MiniTableField; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE upb_CType upb_MiniTableField_CType(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_HasPresence(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsArray(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsClosedEnum( |
| const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsExtension(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsInOneof(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsMap(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsPacked(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsScalar(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE bool upb_MiniTableField_IsSubMessage( |
| const upb_MiniTableField* f); |
| |
| UPB_API_INLINE uint32_t upb_MiniTableField_Number(const upb_MiniTableField* f); |
| |
| UPB_API_INLINE upb_FieldType |
| upb_MiniTableField_Type(const upb_MiniTableField* f); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_FIELD_H_ */ |
| |
| #ifndef UPB_MINI_TABLE_MESSAGE_H_ |
| #define UPB_MINI_TABLE_MESSAGE_H_ |
| |
| |
| #ifndef UPB_MINI_TABLE_ENUM_H_ |
| #define UPB_MINI_TABLE_ENUM_H_ |
| |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_ENUM_H_ |
| #define UPB_MINI_TABLE_INTERNAL_ENUM_H_ |
| |
| #include <stdint.h> |
| |
| // Must be last. |
| |
| struct upb_MiniTableEnum { |
| uint32_t UPB_PRIVATE(mask_limit); // Highest that can be tested with mask. |
| uint32_t UPB_PRIVATE(value_count); // Number of values after the bitfield. |
| uint32_t UPB_PRIVATE(data)[]; // Bitmask + enumerated values follow. |
| }; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE bool upb_MiniTableEnum_CheckValue( |
| const struct upb_MiniTableEnum* e, uint32_t val) { |
| if (UPB_LIKELY(val < 64)) { |
| const uint64_t mask = |
| e->UPB_PRIVATE(data)[0] | ((uint64_t)e->UPB_PRIVATE(data)[1] << 32); |
| const uint64_t bit = 1ULL << val; |
| return (mask & bit) != 0; |
| } |
| if (UPB_LIKELY(val < e->UPB_PRIVATE(mask_limit))) { |
| const uint32_t mask = e->UPB_PRIVATE(data)[val / 32]; |
| const uint32_t bit = 1ULL << (val % 32); |
| return (mask & bit) != 0; |
| } |
| |
| // OPT: binary search long lists? |
| const uint32_t* start = |
| &e->UPB_PRIVATE(data)[e->UPB_PRIVATE(mask_limit) / 32]; |
| const uint32_t* limit = &e->UPB_PRIVATE( |
| data)[e->UPB_PRIVATE(mask_limit) / 32 + e->UPB_PRIVATE(value_count)]; |
| for (const uint32_t* p = start; p < limit; p++) { |
| if (*p == val) return true; |
| } |
| return false; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_ENUM_H_ */ |
| |
| // Must be last |
| |
| typedef struct upb_MiniTableEnum upb_MiniTableEnum; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Validates enum value against range defined by enum mini table. |
| UPB_API_INLINE bool upb_MiniTableEnum_CheckValue(const upb_MiniTableEnum* e, |
| uint32_t val); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_ENUM_H_ */ |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_MESSAGE_H_ |
| #define UPB_MINI_TABLE_INTERNAL_MESSAGE_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_SUB_H_ |
| #define UPB_MINI_TABLE_INTERNAL_SUB_H_ |
| |
| // Must be last. |
| |
| typedef union { |
| const struct upb_MiniTable* const* UPB_PRIVATE(submsg); |
| const struct upb_MiniTableEnum* UPB_PRIVATE(subenum); |
| } upb_MiniTableSubInternal; |
| |
| union upb_MiniTableSub { |
| const struct upb_MiniTable* UPB_PRIVATE(submsg); |
| const struct upb_MiniTableEnum* UPB_PRIVATE(subenum); |
| }; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE union upb_MiniTableSub upb_MiniTableSub_FromEnum( |
| const struct upb_MiniTableEnum* subenum) { |
| union upb_MiniTableSub out; |
| out.UPB_PRIVATE(subenum) = subenum; |
| return out; |
| } |
| |
| UPB_API_INLINE union upb_MiniTableSub upb_MiniTableSub_FromMessage( |
| const struct upb_MiniTable* submsg) { |
| union upb_MiniTableSub out; |
| out.UPB_PRIVATE(submsg) = submsg; |
| return out; |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTableEnum* upb_MiniTableSub_Enum( |
| const union upb_MiniTableSub sub) { |
| return sub.UPB_PRIVATE(subenum); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTable* upb_MiniTableSub_Message( |
| const union upb_MiniTableSub sub) { |
| return sub.UPB_PRIVATE(submsg); |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_SUB_H_ */ |
| |
| // Must be last. |
| |
| struct upb_Decoder; |
| struct upb_Message; |
| typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr, |
| struct upb_Message* msg, intptr_t table, |
| uint64_t hasbits, uint64_t data); |
| typedef struct { |
| uint64_t field_data; |
| _upb_FieldParser* field_parser; |
| } _upb_FastTable_Entry; |
| |
| typedef enum { |
| kUpb_ExtMode_NonExtendable = 0, // Non-extendable message. |
| kUpb_ExtMode_Extendable = 1, // Normal extendable message. |
| kUpb_ExtMode_IsMessageSet = 2, // MessageSet message. |
| kUpb_ExtMode_IsMessageSet_ITEM = |
| 3, // MessageSet item (temporary only, see decode.c) |
| |
| // During table building we steal a bit to indicate that the message is a map |
| // entry. *Only* used during table building! |
| kUpb_ExtMode_IsMapEntry = 4, |
| } upb_ExtMode; |
| |
| // upb_MiniTable represents the memory layout of a given upb_MessageDef. |
| // The members are public so generated code can initialize them, |
| // but users MUST NOT directly read or write any of its members. |
| |
| // LINT.IfChange(minitable_struct_definition) |
| struct upb_MiniTable { |
| const upb_MiniTableSubInternal* UPB_PRIVATE(subs); |
| const struct upb_MiniTableField* UPB_ONLYBITS(fields); |
| |
| // Must be aligned to sizeof(void*). Doesn't include internal members like |
| // unknown fields, extension dict, pointer to msglayout, etc. |
| uint16_t UPB_PRIVATE(size); |
| |
| uint16_t UPB_ONLYBITS(field_count); |
| |
| uint8_t UPB_PRIVATE(ext); // upb_ExtMode, uint8_t here so sizeof(ext) == 1 |
| uint8_t UPB_PRIVATE(dense_below); |
| uint8_t UPB_PRIVATE(table_mask); |
| uint8_t UPB_PRIVATE(required_count); // Required fields have the low hasbits. |
| |
| #ifdef UPB_TRACING_ENABLED |
| const char* UPB_PRIVATE(full_name); |
| #endif |
| |
| #ifdef UPB_FASTTABLE_ENABLED |
| // To statically initialize the tables of variable length, we need a flexible |
| // array member, and we need to compile in gnu99 mode (constant initialization |
| // of flexible array members is a GNU extension, not in C99 unfortunately. |
| _upb_FastTable_Entry UPB_PRIVATE(fasttable)[]; |
| #endif |
| }; |
| // LINT.ThenChange(//depot/google3/third_party/upb/bits/typescript/mini_table.ts) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_INLINE const struct upb_MiniTable* UPB_PRIVATE( |
| _upb_MiniTable_StrongReference)(const struct upb_MiniTable* mt) { |
| #if defined(__GNUC__) |
| __asm__("" : : "r"(mt)); |
| #else |
| const struct upb_MiniTable* volatile unused = mt; |
| (void)&unused; // Use address to avoid an extra load of "unused". |
| #endif |
| return mt; |
| } |
| |
| UPB_INLINE const struct upb_MiniTable* UPB_PRIVATE(_upb_MiniTable_Empty)(void) { |
| extern const struct upb_MiniTable UPB_PRIVATE(_kUpb_MiniTable_Empty); |
| |
| return &UPB_PRIVATE(_kUpb_MiniTable_Empty); |
| } |
| |
| UPB_API_INLINE int upb_MiniTable_FieldCount(const struct upb_MiniTable* m) { |
| return m->UPB_ONLYBITS(field_count); |
| } |
| |
| UPB_INLINE bool UPB_PRIVATE(_upb_MiniTable_IsEmpty)( |
| const struct upb_MiniTable* m) { |
| extern const struct upb_MiniTable UPB_PRIVATE(_kUpb_MiniTable_Empty); |
| |
| return m == &UPB_PRIVATE(_kUpb_MiniTable_Empty); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTableField* upb_MiniTable_GetFieldByIndex( |
| const struct upb_MiniTable* m, uint32_t i) { |
| return &m->UPB_ONLYBITS(fields)[i]; |
| } |
| |
| UPB_INLINE const struct upb_MiniTable* UPB_PRIVATE( |
| _upb_MiniTable_GetSubTableByIndex)(const struct upb_MiniTable* m, |
| uint32_t i) { |
| return *m->UPB_PRIVATE(subs)[i].UPB_PRIVATE(submsg); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTable* upb_MiniTable_SubMessage( |
| const struct upb_MiniTable* m, const struct upb_MiniTableField* f) { |
| if (upb_MiniTableField_CType(f) != kUpb_CType_Message) { |
| return NULL; |
| } |
| return UPB_PRIVATE(_upb_MiniTable_GetSubTableByIndex)( |
| m, f->UPB_PRIVATE(submsg_index)); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTable* upb_MiniTable_GetSubMessageTable( |
| const struct upb_MiniTable* m, const struct upb_MiniTableField* f) { |
| UPB_ASSUME(upb_MiniTableField_CType(f) == kUpb_CType_Message); |
| const struct upb_MiniTable* ret = upb_MiniTable_SubMessage(m, f); |
| UPB_ASSUME(ret); |
| return UPB_PRIVATE(_upb_MiniTable_IsEmpty)(ret) ? NULL : ret; |
| } |
| |
| UPB_API_INLINE bool upb_MiniTable_FieldIsLinked( |
| const struct upb_MiniTable* m, const struct upb_MiniTableField* f) { |
| return upb_MiniTable_GetSubMessageTable(m, f) != NULL; |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTable* upb_MiniTable_MapEntrySubMessage( |
| const struct upb_MiniTable* m, const struct upb_MiniTableField* f) { |
| UPB_ASSERT(upb_MiniTable_FieldIsLinked(m, f)); // Map entries must be linked. |
| UPB_ASSERT(upb_MiniTableField_IsMap(f)); // Function precondition. |
| return upb_MiniTable_SubMessage(m, f); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTableEnum* upb_MiniTable_GetSubEnumTable( |
| const struct upb_MiniTable* m, const struct upb_MiniTableField* f) { |
| UPB_ASSERT(upb_MiniTableField_CType(f) == kUpb_CType_Enum); |
| return m->UPB_PRIVATE(subs)[f->UPB_PRIVATE(submsg_index)].UPB_PRIVATE( |
| subenum); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTableField* upb_MiniTable_MapKey( |
| const struct upb_MiniTable* m) { |
| UPB_ASSERT(upb_MiniTable_FieldCount(m) == 2); |
| const struct upb_MiniTableField* f = upb_MiniTable_GetFieldByIndex(m, 0); |
| UPB_ASSERT(upb_MiniTableField_Number(f) == 1); |
| return f; |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTableField* upb_MiniTable_MapValue( |
| const struct upb_MiniTable* m) { |
| UPB_ASSERT(upb_MiniTable_FieldCount(m) == 2); |
| const struct upb_MiniTableField* f = upb_MiniTable_GetFieldByIndex(m, 1); |
| UPB_ASSERT(upb_MiniTableField_Number(f) == 2); |
| return f; |
| } |
| |
| // Computes a bitmask in which the |m->required_count| lowest bits are set. |
| // |
| // Sample output: |
| // RequiredMask(1) => 0b1 (0x1) |
| // RequiredMask(5) => 0b11111 (0x1f) |
| UPB_INLINE uint64_t |
| UPB_PRIVATE(_upb_MiniTable_RequiredMask)(const struct upb_MiniTable* m) { |
| int n = m->UPB_PRIVATE(required_count); |
| UPB_ASSERT(0 < n && n <= 64); |
| return (1ULL << n) - 1; |
| } |
| |
| #ifdef UPB_TRACING_ENABLED |
| UPB_INLINE const char* upb_MiniTable_FullName( |
| const struct upb_MiniTable* mini_table) { |
| return mini_table->UPB_PRIVATE(full_name); |
| } |
| // Initializes tracing proto name from language runtimes that construct |
| // mini tables dynamically at runtime. The runtime is responsible for passing |
| // controlling lifetime of name such as storing in same arena as mini_table. |
| UPB_INLINE void upb_MiniTable_SetFullName(struct upb_MiniTable* mini_table, |
| const char* full_name) { |
| mini_table->UPB_PRIVATE(full_name) = full_name; |
| } |
| #endif |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_MESSAGE_H_ */ |
| |
| // Must be last. |
| |
| typedef struct upb_MiniTable upb_MiniTable; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API const upb_MiniTableField* upb_MiniTable_FindFieldByNumber( |
| const upb_MiniTable* m, uint32_t number); |
| |
| UPB_API_INLINE const upb_MiniTableField* upb_MiniTable_GetFieldByIndex( |
| const upb_MiniTable* m, uint32_t index); |
| |
| UPB_API_INLINE int upb_MiniTable_FieldCount(const upb_MiniTable* m); |
| |
| // DEPRECATED: use upb_MiniTable_SubMessage() instead |
| // Returns the MiniTable for a message field, NULL if the field is unlinked. |
| UPB_API_INLINE const upb_MiniTable* upb_MiniTable_GetSubMessageTable( |
| const upb_MiniTable* m, const upb_MiniTableField* f); |
| |
| // Returns the MiniTable for a message field if it is a submessage, otherwise |
| // returns NULL. |
| // |
| // WARNING: if dynamic tree shaking is in use, the return value may be the |
| // "empty", zero-field placeholder message instead of the real message type. |
| // If the message is later linked, this function will begin returning the real |
| // message type. |
| UPB_API_INLINE const upb_MiniTable* upb_MiniTable_SubMessage( |
| const upb_MiniTable* m, const upb_MiniTableField* f); |
| |
| // Returns the MiniTable for a map field. The given field must refer to a map. |
| UPB_API_INLINE const upb_MiniTable* upb_MiniTable_MapEntrySubMessage( |
| const upb_MiniTable* m, const upb_MiniTableField* f); |
| |
| // Returns the MiniTableEnum for a message field, NULL if the field is unlinked. |
| UPB_API_INLINE const upb_MiniTableEnum* upb_MiniTable_GetSubEnumTable( |
| const upb_MiniTable* m, const upb_MiniTableField* f); |
| |
| // Returns the MiniTableField for the key of a map. |
| UPB_API_INLINE const upb_MiniTableField* upb_MiniTable_MapKey( |
| const upb_MiniTable* m); |
| |
| // Returns the MiniTableField for the value of a map. |
| UPB_API_INLINE const upb_MiniTableField* upb_MiniTable_MapValue( |
| const upb_MiniTable* m); |
| |
| // Returns true if this MiniTable field is linked to a MiniTable for the |
| // sub-message. |
| UPB_API_INLINE bool upb_MiniTable_FieldIsLinked(const upb_MiniTable* m, |
| const upb_MiniTableField* f); |
| |
| // If this field is in a oneof, returns the first field in the oneof. |
| // |
| // Otherwise returns NULL. |
| // |
| // Usage: |
| // const upb_MiniTableField* field = upb_MiniTable_GetOneof(m, f); |
| // do { |
| // .. |
| // } while (upb_MiniTable_NextOneofField(m, &field); |
| // |
| const upb_MiniTableField* upb_MiniTable_GetOneof(const upb_MiniTable* m, |
| const upb_MiniTableField* f); |
| |
| // Iterates to the next field in the oneof. If this is the last field in the |
| // oneof, returns false. The ordering of fields in the oneof is not |
| // guaranteed. |
| // REQUIRES: |f| is the field initialized by upb_MiniTable_GetOneof and updated |
| // by prior upb_MiniTable_NextOneofField calls. |
| bool upb_MiniTable_NextOneofField(const upb_MiniTable* m, |
| const upb_MiniTableField** f); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_MESSAGE_H_ */ |
| |
| // Must be last. |
| |
| typedef struct upb_Array upb_Array; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Creates a new array on the given arena that holds elements of this type. |
| UPB_API upb_Array* upb_Array_New(upb_Arena* a, upb_CType type); |
| |
| // Returns the number of elements in the array. |
| UPB_API_INLINE size_t upb_Array_Size(const upb_Array* arr); |
| |
| // Returns the given element, which must be within the array's current size. |
| UPB_API upb_MessageValue upb_Array_Get(const upb_Array* arr, size_t i); |
| |
| // Returns a mutating pointer to the given element, which must be within the |
| // array's current size. |
| UPB_API upb_MutableMessageValue upb_Array_GetMutable(upb_Array* arr, size_t i); |
| |
| // Sets the given element, which must be within the array's current size. |
| UPB_API void upb_Array_Set(upb_Array* arr, size_t i, upb_MessageValue val); |
| |
| // Appends an element to the array. Returns false on allocation failure. |
| UPB_API bool upb_Array_Append(upb_Array* array, upb_MessageValue val, |
| upb_Arena* arena); |
| |
| // Moves elements within the array using memmove(). |
| // Like memmove(), the source and destination elements may be overlapping. |
| UPB_API void upb_Array_Move(upb_Array* array, size_t dst_idx, size_t src_idx, |
| size_t count); |
| |
| // Inserts one or more empty elements into the array. |
| // Existing elements are shifted right. |
| // The new elements have undefined state and must be set with `upb_Array_Set()`. |
| // REQUIRES: `i <= upb_Array_Size(arr)` |
| UPB_API bool upb_Array_Insert(upb_Array* array, size_t i, size_t count, |
| upb_Arena* arena); |
| |
| // Deletes one or more elements from the array. |
| // Existing elements are shifted left. |
| // REQUIRES: `i + count <= upb_Array_Size(arr)` |
| UPB_API void upb_Array_Delete(upb_Array* array, size_t i, size_t count); |
| |
| // Reserves |size| elements of storage for the array. |
| UPB_API_INLINE bool upb_Array_Reserve(struct upb_Array* array, size_t size, |
| upb_Arena* arena); |
| |
| // Changes the size of a vector. New elements are initialized to NULL/0. |
| // Returns false on allocation failure. |
| UPB_API bool upb_Array_Resize(upb_Array* array, size_t size, upb_Arena* arena); |
| |
| // Returns pointer to array data. |
| UPB_API_INLINE const void* upb_Array_DataPtr(const upb_Array* arr); |
| |
| // Returns mutable pointer to array data. |
| UPB_API_INLINE void* upb_Array_MutableDataPtr(upb_Array* arr); |
| |
| // Mark an array and all of its descendents as frozen/immutable. |
| // If the array elements are messages then |m| must point to the minitable for |
| // those messages. Otherwise |m| must be NULL. |
| UPB_API void upb_Array_Freeze(upb_Array* arr, const upb_MiniTable* m); |
| |
| // Returns whether an array has been frozen. |
| UPB_API_INLINE bool upb_Array_IsFrozen(const upb_Array* arr); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MESSAGE_ARRAY_H_ */ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_ACCESSORS_H_ |
| #define UPB_MESSAGE_INTERNAL_ACCESSORS_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| |
| #ifndef UPB_BASE_INTERNAL_ENDIAN_H_ |
| #define UPB_BASE_INTERNAL_ENDIAN_H_ |
| |
| #include <stdint.h> |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_INLINE bool upb_IsLittleEndian(void) { |
| const int x = 1; |
| return *(char*)&x == 1; |
| } |
| |
| UPB_INLINE uint32_t upb_BigEndian32(uint32_t val) { |
| if (upb_IsLittleEndian()) return val; |
| |
| return ((val & 0xff) << 24) | ((val & 0xff00) << 8) | |
| ((val & 0xff0000) >> 8) | ((val & 0xff000000) >> 24); |
| } |
| |
| UPB_INLINE uint64_t upb_BigEndian64(uint64_t val) { |
| if (upb_IsLittleEndian()) return val; |
| |
| const uint64_t hi = ((uint64_t)upb_BigEndian32((uint32_t)val)) << 32; |
| const uint64_t lo = upb_BigEndian32((uint32_t)(val >> 32)); |
| return hi | lo; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_BASE_INTERNAL_ENDIAN_H_ */ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_EXTENSION_H_ |
| #define UPB_MESSAGE_INTERNAL_EXTENSION_H_ |
| |
| #include <stddef.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_EXTENSION_H_ |
| #define UPB_MINI_TABLE_EXTENSION_H_ |
| |
| #include <stdint.h> |
| |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_EXTENSION_H_ |
| #define UPB_MINI_TABLE_INTERNAL_EXTENSION_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| |
| // Must be last. |
| |
| struct upb_MiniTableExtension { |
| // Do not move this field. We need to be able to alias pointers. |
| struct upb_MiniTableField UPB_PRIVATE(field); |
| |
| const struct upb_MiniTable* UPB_PRIVATE(extendee); |
| union upb_MiniTableSub UPB_PRIVATE(sub); // NULL unless submsg or proto2 enum |
| }; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE upb_CType |
| upb_MiniTableExtension_CType(const struct upb_MiniTableExtension* e) { |
| return upb_MiniTableField_CType(&e->UPB_PRIVATE(field)); |
| } |
| |
| UPB_API_INLINE uint32_t |
| upb_MiniTableExtension_Number(const struct upb_MiniTableExtension* e) { |
| return e->UPB_PRIVATE(field).UPB_ONLYBITS(number); |
| } |
| |
| UPB_API_INLINE const struct upb_MiniTable* upb_MiniTableExtension_GetSubMessage( |
| const struct upb_MiniTableExtension* e) { |
| if (upb_MiniTableExtension_CType(e) != kUpb_CType_Message) { |
| return NULL; |
| } |
| return upb_MiniTableSub_Message(e->UPB_PRIVATE(sub)); |
| } |
| |
| UPB_API_INLINE void upb_MiniTableExtension_SetSubMessage( |
| struct upb_MiniTableExtension* e, const struct upb_MiniTable* m) { |
| e->UPB_PRIVATE(sub).UPB_PRIVATE(submsg) = m; |
| } |
| |
| UPB_INLINE upb_FieldRep UPB_PRIVATE(_upb_MiniTableExtension_GetRep)( |
| const struct upb_MiniTableExtension* e) { |
| return UPB_PRIVATE(_upb_MiniTableField_GetRep)(&e->UPB_PRIVATE(field)); |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_EXTENSION_H_ */ |
| |
| // Must be last. |
| |
| typedef struct upb_MiniTableExtension upb_MiniTableExtension; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_API_INLINE upb_CType |
| upb_MiniTableExtension_CType(const upb_MiniTableExtension* e); |
| |
| UPB_API_INLINE uint32_t |
| upb_MiniTableExtension_Number(const upb_MiniTableExtension* e); |
| |
| UPB_API_INLINE const upb_MiniTable* upb_MiniTableExtension_GetSubMessage( |
| const upb_MiniTableExtension* e); |
| |
| UPB_API_INLINE void upb_MiniTableExtension_SetSubMessage( |
| upb_MiniTableExtension* e, const upb_MiniTable* m); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_EXTENSION_H_ */ |
| |
| // Must be last. |
| |
| // The internal representation of an extension is self-describing: it contains |
| // enough information that we can serialize it to binary format without needing |
| // to look it up in a upb_ExtensionRegistry. |
| // |
| // This representation allocates 16 bytes to data on 64-bit platforms. |
| // This is rather wasteful for scalars (in the extreme case of bool, |
| // it wastes 15 bytes). We accept this because we expect messages to be |
| // the most common extension type. |
| typedef struct { |
| const upb_MiniTableExtension* ext; |
| upb_MessageValue data; |
| } upb_Extension; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Adds the given extension data to the given message. |
| // |ext| is copied into the message instance. |
| // This logically replaces any previously-added extension with this number. |
| upb_Extension* UPB_PRIVATE(_upb_Message_GetOrCreateExtension)( |
| struct upb_Message* msg, const upb_MiniTableExtension* ext, |
| upb_Arena* arena); |
| |
| // Returns an array of extensions for this message. |
| // Note: the array is ordered in reverse relative to the order of creation. |
| const upb_Extension* UPB_PRIVATE(_upb_Message_Getexts)( |
| const struct upb_Message* msg, size_t* count); |
| |
| // Returns an extension for a message with a given mini table, |
| // or NULL if no extension exists with this mini table. |
| const upb_Extension* UPB_PRIVATE(_upb_Message_Getext)( |
| const struct upb_Message* msg, const upb_MiniTableExtension* ext); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MESSAGE_INTERNAL_EXTENSION_H_ */ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_MAP_H_ |
| #define UPB_MESSAGE_INTERNAL_MAP_H_ |
| |
| #include <stddef.h> |
| #include <string.h> |
| |
| |
| #ifndef UPB_HASH_STR_TABLE_H_ |
| #define UPB_HASH_STR_TABLE_H_ |
| |
| |
| /* |
| * upb_table |
| * |
| * This header is INTERNAL-ONLY! Its interfaces are not public or stable! |
| * This file defines very fast int->upb_value (inttable) and string->upb_value |
| * (strtable) hash tables. |
| * |
| * The table uses chained scatter with Brent's variation (inspired by the Lua |
| * implementation of hash tables). The hash function for strings is Austin |
| * Appleby's "MurmurHash." |
| * |
| * The inttable uses uintptr_t as its key, which guarantees it can be used to |
| * store pointers or integers of at least 32 bits (upb isn't really useful on |
| * systems where sizeof(void*) < 4). |
| * |
| * The table must be homogeneous (all values of the same type). In debug |
| * mode, we check this on insert and lookup. |
| */ |
| |
| #ifndef UPB_HASH_COMMON_H_ |
| #define UPB_HASH_COMMON_H_ |
| |
| #include <string.h> |
| |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* upb_value ******************************************************************/ |
| |
| typedef struct { |
| uint64_t val; |
| } upb_value; |
| |
| UPB_INLINE void _upb_value_setval(upb_value* v, uint64_t val) { v->val = val; } |
| |
| /* For each value ctype, define the following set of functions: |
| * |
| * // Get/set an int32 from a upb_value. |
| * int32_t upb_value_getint32(upb_value val); |
| * void upb_value_setint32(upb_value *val, int32_t cval); |
| * |
| * // Construct a new upb_value from an int32. |
| * upb_value upb_value_int32(int32_t val); */ |
| #define FUNCS(name, membername, type_t, converter) \ |
| UPB_INLINE void upb_value_set##name(upb_value* val, type_t cval) { \ |
| val->val = (converter)cval; \ |
| } \ |
| UPB_INLINE upb_value upb_value_##name(type_t val) { \ |
| upb_value ret; \ |
| upb_value_set##name(&ret, val); \ |
| return ret; \ |
| } \ |
| UPB_INLINE type_t upb_value_get##name(upb_value val) { \ |
| return (type_t)(converter)val.val; \ |
| } |
| |
| FUNCS(int32, int32, int32_t, int32_t) |
| FUNCS(int64, int64, int64_t, int64_t) |
| FUNCS(uint32, uint32, uint32_t, uint32_t) |
| FUNCS(uint64, uint64, uint64_t, uint64_t) |
| FUNCS(bool, _bool, bool, bool) |
| FUNCS(cstr, cstr, char*, uintptr_t) |
| FUNCS(uintptr, uptr, uintptr_t, uintptr_t) |
| FUNCS(ptr, ptr, void*, uintptr_t) |
| FUNCS(constptr, constptr, const void*, uintptr_t) |
| |
| #undef FUNCS |
| |
| UPB_INLINE void upb_value_setfloat(upb_value* val, float cval) { |
| memcpy(&val->val, &cval, sizeof(cval)); |
| } |
| |
| UPB_INLINE void upb_value_setdouble(upb_value* val, double cval) { |
| memcpy(&val->val, &cval, sizeof(cval)); |
| } |
| |
| UPB_INLINE upb_value upb_value_float(float cval) { |
| upb_value ret; |
| upb_value_setfloat(&ret, cval); |
| return ret; |
| } |
| |
| UPB_INLINE upb_value upb_value_double(double cval) { |
| upb_value ret; |
| upb_value_setdouble(&ret, cval); |
| return ret; |
| } |
| |
| /* upb_tabkey *****************************************************************/ |
| |
| /* Either: |
| * 1. an actual integer key, or |
| * 2. a pointer to a string prefixed by its uint32_t length, owned by us. |
| * |
| * ...depending on whether this is a string table or an int table. We would |
| * make this a union of those two types, but C89 doesn't support statically |
| * initializing a non-first union member. */ |
| typedef uintptr_t upb_tabkey; |
| |
| UPB_INLINE char* upb_tabstr(upb_tabkey key, uint32_t* len) { |
| char* mem = (char*)key; |
| if (len) memcpy(len, mem, sizeof(*len)); |
| return mem + sizeof(*len); |
| } |
| |
| UPB_INLINE upb_StringView upb_tabstrview(upb_tabkey key) { |
| upb_StringView ret; |
| uint32_t len; |
| ret.data = upb_tabstr(key, &len); |
| ret.size = len; |
| return ret; |
| } |
| |
| /* upb_tabval *****************************************************************/ |
| |
| typedef struct upb_tabval { |
| uint64_t val; |
| } upb_tabval; |
| |
| #define UPB_TABVALUE_EMPTY_INIT \ |
| { -1 } |
| |
| /* upb_table ******************************************************************/ |
| |
| typedef struct _upb_tabent { |
| upb_tabkey key; |
| upb_tabval val; |
| |
| /* Internal chaining. This is const so we can create static initializers for |
| * tables. We cast away const sometimes, but *only* when the containing |
| * upb_table is known to be non-const. This requires a bit of care, but |
| * the subtlety is confined to table.c. */ |
| const struct _upb_tabent* next; |
| } upb_tabent; |
| |
| typedef struct { |
| size_t count; /* Number of entries in the hash part. */ |
| uint32_t mask; /* Mask to turn hash value -> bucket. */ |
| uint32_t max_count; /* Max count before we hit our load limit. */ |
| uint8_t size_lg2; /* Size of the hashtable part is 2^size_lg2 entries. */ |
| upb_tabent* entries; |
| } upb_table; |
| |
| UPB_INLINE size_t upb_table_size(const upb_table* t) { |
| return t->size_lg2 ? 1 << t->size_lg2 : 0; |
| } |
| |
| // Internal-only functions, in .h file only out of necessity. |
| |
| UPB_INLINE bool upb_tabent_isempty(const upb_tabent* e) { return e->key == 0; } |
| |
| uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_HASH_COMMON_H_ */ |
| |
| // Must be last. |
| |
| typedef struct { |
| upb_table t; |
| } upb_strtable; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Initialize a table. If memory allocation failed, false is returned and |
| // the table is uninitialized. |
| bool upb_strtable_init(upb_strtable* table, size_t expected_size, upb_Arena* a); |
| |
| // Returns the number of values in the table. |
| UPB_INLINE size_t upb_strtable_count(const upb_strtable* t) { |
| return t->t.count; |
| } |
| |
| void upb_strtable_clear(upb_strtable* t); |
| |
| // Inserts the given key into the hashtable with the given value. |
| // The key must not already exist in the hash table. The key is not required |
| // to be NULL-terminated, and the table will make an internal copy of the key. |
| // |
| // If a table resize was required but memory allocation failed, false is |
| // returned and the table is unchanged. */ |
| bool upb_strtable_insert(upb_strtable* t, const char* key, size_t len, |
| upb_value val, upb_Arena* a); |
| |
| // Looks up key in this table, returning "true" if the key was found. |
| // If v is non-NULL, copies the value for this key into *v. |
| bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len, |
| upb_value* v); |
| |
| // For NULL-terminated strings. |
| UPB_INLINE bool upb_strtable_lookup(const upb_strtable* t, const char* key, |
| upb_value* v) { |
| return upb_strtable_lookup2(t, key, strlen(key), v); |
| } |
| |
| // Removes an item from the table. Returns true if the remove was successful, |
| // and stores the removed item in *val if non-NULL. |
| bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len, |
| upb_value* val); |
| |
| UPB_INLINE bool upb_strtable_remove(upb_strtable* t, const char* key, |
| upb_value* v) { |
| return upb_strtable_remove2(t, key, strlen(key), v); |
| } |
| |
| // Exposed for testing only. |
| bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a); |
| |
| /* Iteration over strtable: |
| * |
| * intptr_t iter = UPB_STRTABLE_BEGIN; |
| * upb_StringView key; |
| * upb_value val; |
| * while (upb_strtable_next2(t, &key, &val, &iter)) { |
| * // ... |
| * } |
| */ |
| |
| #define UPB_STRTABLE_BEGIN -1 |
| |
| bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key, |
| upb_value* val, intptr_t* iter); |
| void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter); |
| void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v); |
| |
| /* DEPRECATED iterators, slated for removal. |
| * |
| * Iterators for string tables. We are subject to some kind of unusual |
| * design constraints: |
| * |
| * For high-level languages: |
| * - we must be able to guarantee that we don't crash or corrupt memory even if |
| * the program accesses an invalidated iterator. |
| * |
| * For C++11 range-based for: |
| * - iterators must be copyable |
| * - iterators must be comparable |
| * - it must be possible to construct an "end" value. |
| * |
| * Iteration order is undefined. |
| * |
| * Modifying the table invalidates iterators. upb_{str,int}table_done() is |
| * guaranteed to work even on an invalidated iterator, as long as the table it |
| * is iterating over has not been freed. Calling next() or accessing data from |
| * an invalidated iterator yields unspecified elements from the table, but it is |
| * guaranteed not to crash and to return real table elements (except when done() |
| * is true). */ |
| /* upb_strtable_iter **********************************************************/ |
| |
| /* upb_strtable_iter i; |
| * upb_strtable_begin(&i, t); |
| * for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
| * const char *key = upb_strtable_iter_key(&i); |
| * const upb_value val = upb_strtable_iter_value(&i); |
| * // ... |
| * } |
| */ |
| |
| typedef struct { |
| const upb_strtable* t; |
| size_t index; |
| } upb_strtable_iter; |
| |
| UPB_INLINE const upb_tabent* str_tabent(const upb_strtable_iter* i) { |
| return &i->t->t.entries[i->index]; |
| } |
| |
| void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t); |
| void upb_strtable_next(upb_strtable_iter* i); |
| bool upb_strtable_done(const upb_strtable_iter* i); |
| upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i); |
| upb_value upb_strtable_iter_value(const upb_strtable_iter* i); |
| void upb_strtable_iter_setdone(upb_strtable_iter* i); |
| bool upb_strtable_iter_isequal(const upb_strtable_iter* i1, |
| const upb_strtable_iter* i2); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_HASH_STR_TABLE_H_ */ |
| |
| // Must be last. |
| |
| typedef enum { |
| kUpb_MapInsertStatus_Inserted = 0, |
| kUpb_MapInsertStatus_Replaced = 1, |
| kUpb_MapInsertStatus_OutOfMemory = 2, |
| } upb_MapInsertStatus; |
| |
| // EVERYTHING BELOW THIS LINE IS INTERNAL - DO NOT USE ///////////////////////// |
| |
| struct upb_Map { |
| // Size of key and val, based on the map type. |
| // Strings are represented as '0' because they must be handled specially. |
| char key_size; |
| char val_size; |
| bool UPB_PRIVATE(is_frozen); |
| |
| upb_strtable table; |
| }; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Map_ShallowFreeze)(struct upb_Map* map) { |
| map->UPB_PRIVATE(is_frozen) = true; |
| } |
| |
| UPB_API_INLINE bool upb_Map_IsFrozen(const struct upb_Map* map) { |
| return map->UPB_PRIVATE(is_frozen); |
| } |
| |
| // Converting between internal table representation and user values. |
| // |
| // _upb_map_tokey() and _upb_map_fromkey() are inverses. |
| // _upb_map_tovalue() and _upb_map_fromvalue() are inverses. |
| // |
| // These functions account for the fact that strings are treated differently |
| // from other types when stored in a map. |
| |
| UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) { |
| if (size == UPB_MAPTYPE_STRING) { |
| return *(upb_StringView*)key; |
| } else { |
| return upb_StringView_FromDataAndSize((const char*)key, size); |
| } |
| } |
| |
| UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) { |
| if (size == UPB_MAPTYPE_STRING) { |
| memcpy(out, &key, sizeof(key)); |
| } else { |
| memcpy(out, key.data, size); |
| } |
| } |
| |
| UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size, |
| upb_value* msgval, upb_Arena* a) { |
| if (size == UPB_MAPTYPE_STRING) { |
| upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp)); |
| if (!strp) return false; |
| *strp = *(upb_StringView*)val; |
| *msgval = upb_value_ptr(strp); |
| } else { |
| memcpy(msgval, val, size); |
| } |
| return true; |
| } |
| |
| UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) { |
| if (size == UPB_MAPTYPE_STRING) { |
| const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val); |
| memcpy(out, strp, sizeof(upb_StringView)); |
| } else { |
| memcpy(out, &val, size); |
| } |
| } |
| |
| UPB_INLINE void* _upb_map_next(const struct upb_Map* map, size_t* iter) { |
| upb_strtable_iter it; |
| it.t = &map->table; |
| it.index = *iter; |
| upb_strtable_next(&it); |
| *iter = it.index; |
| if (upb_strtable_done(&it)) return NULL; |
| return (void*)str_tabent(&it); |
| } |
| |
| UPB_INLINE void _upb_Map_Clear(struct upb_Map* map) { |
| UPB_ASSERT(!upb_Map_IsFrozen(map)); |
| |
| upb_strtable_clear(&map->table); |
| } |
| |
| UPB_INLINE bool _upb_Map_Delete(struct upb_Map* map, const void* key, |
| size_t key_size, upb_value* val) { |
| UPB_ASSERT(!upb_Map_IsFrozen(map)); |
| |
| upb_StringView k = _upb_map_tokey(key, key_size); |
| return upb_strtable_remove2(&map->table, k.data, k.size, val); |
| } |
| |
| UPB_INLINE bool _upb_Map_Get(const struct upb_Map* map, const void* key, |
| size_t key_size, void* val, size_t val_size) { |
| upb_value tabval; |
| upb_StringView k = _upb_map_tokey(key, key_size); |
| bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval); |
| if (ret && val) { |
| _upb_map_fromvalue(tabval, val, val_size); |
| } |
| return ret; |
| } |
| |
| UPB_INLINE upb_MapInsertStatus _upb_Map_Insert(struct upb_Map* map, |
| const void* key, size_t key_size, |
| void* val, size_t val_size, |
| upb_Arena* a) { |
| UPB_ASSERT(!upb_Map_IsFrozen(map)); |
| |
| upb_StringView strkey = _upb_map_tokey(key, key_size); |
| upb_value tabval = {0}; |
| if (!_upb_map_tovalue(val, val_size, &tabval, a)) { |
| return kUpb_MapInsertStatus_OutOfMemory; |
| } |
| |
| // TODO: add overwrite operation to minimize number of lookups. |
| bool removed = |
| upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL); |
| if (!upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a)) { |
| return kUpb_MapInsertStatus_OutOfMemory; |
| } |
| return removed ? kUpb_MapInsertStatus_Replaced |
| : kUpb_MapInsertStatus_Inserted; |
| } |
| |
| UPB_INLINE size_t _upb_Map_Size(const struct upb_Map* map) { |
| return map->table.t.count; |
| } |
| |
| // Strings/bytes are special-cased in maps. |
| extern char _upb_Map_CTypeSizeTable[12]; |
| |
| UPB_INLINE size_t _upb_Map_CTypeSize(upb_CType ctype) { |
| return _upb_Map_CTypeSizeTable[ctype]; |
| } |
| |
| // Creates a new map on the given arena with this key/value type. |
| struct upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MESSAGE_INTERNAL_MAP_H_ */ |
| |
| /* |
| ** Our memory representation for parsing tables and messages themselves. |
| ** Functions in this file are used by generated code and possibly reflection. |
| ** |
| ** The definitions in this file are internal to upb. |
| **/ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_MESSAGE_H_ |
| #define UPB_MESSAGE_INTERNAL_MESSAGE_H_ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| extern const float kUpb_FltInfinity; |
| extern const double kUpb_Infinity; |
| extern const double kUpb_NaN; |
| |
| // Internal members of a upb_Message that track unknown fields and/or |
| // extensions. We can change this without breaking binary compatibility. |
| |
| typedef struct upb_Message_Internal { |
| // Total size of this structure, including the data that follows. |
| // Must be aligned to 8, which is alignof(upb_Extension) |
| uint32_t size; |
| |
| /* Offsets relative to the beginning of this structure. |
| * |
| * Unknown data grows forward from the beginning to unknown_end. |
| * Extension data grows backward from size to ext_begin. |
| * When the two meet, we're out of data and have to realloc. |
| * |
| * If we imagine that the final member of this struct is: |
| * char data[size - overhead]; // overhead = sizeof(upb_Message_Internal) |
| * |
| * Then we have: |
| * unknown data: data[0 .. (unknown_end - overhead)] |
| * extensions data: data[(ext_begin - overhead) .. (size - overhead)] */ |
| uint32_t unknown_end; |
| uint32_t ext_begin; |
| // Data follows, as if there were an array: |
| // char data[size - sizeof(upb_Message_Internal)]; |
| } upb_Message_Internal; |
| |
| #ifdef UPB_TRACING_ENABLED |
| UPB_API void upb_Message_LogNewMessage(const upb_MiniTable* m, |
| const upb_Arena* arena); |
| UPB_API void upb_Message_SetNewMessageTraceHandler( |
| void (*handler)(const upb_MiniTable*, const upb_Arena*)); |
| #endif // UPB_TRACING_ENABLED |
| |
| // Inline version upb_Message_New(), for internal use. |
| UPB_INLINE struct upb_Message* _upb_Message_New(const upb_MiniTable* m, |
| upb_Arena* a) { |
| #ifdef UPB_TRACING_ENABLED |
| upb_Message_LogNewMessage(m, a); |
| #endif // UPB_TRACING_ENABLED |
| |
| const int size = m->UPB_PRIVATE(size); |
| struct upb_Message* msg = (struct upb_Message*)upb_Arena_Malloc(a, size); |
| if (UPB_UNLIKELY(!msg)) return NULL; |
| memset(msg, 0, size); |
| return msg; |
| } |
| |
| // Discards the unknown fields for this message only. |
| void _upb_Message_DiscardUnknown_shallow(struct upb_Message* msg); |
| |
| // Adds unknown data (serialized protobuf data) to the given message. |
| // The data is copied into the message instance. |
| bool UPB_PRIVATE(_upb_Message_AddUnknown)(struct upb_Message* msg, |
| const char* data, size_t len, |
| upb_Arena* arena); |
| |
| bool UPB_PRIVATE(_upb_Message_Realloc)(struct upb_Message* msg, size_t need, |
| upb_Arena* arena); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MESSAGE_INTERNAL_MESSAGE_H_ */ |
| |
| #ifndef UPB_MINI_TABLE_INTERNAL_TAGGED_PTR_H_ |
| #define UPB_MINI_TABLE_INTERNAL_TAGGED_PTR_H_ |
| |
| #include <stdint.h> |
| |
| |
| // Must be last. |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // Internal-only because empty messages cannot be created by the user. |
| UPB_INLINE uintptr_t |
| UPB_PRIVATE(_upb_TaggedMessagePtr_Pack)(struct upb_Message* ptr, bool empty) { |
| UPB_ASSERT(((uintptr_t)ptr & 1) == 0); |
| return (uintptr_t)ptr | (empty ? 1 : 0); |
| } |
| |
| UPB_API_INLINE bool upb_TaggedMessagePtr_IsEmpty(uintptr_t ptr) { |
| return ptr & 1; |
| } |
| |
| UPB_INLINE struct upb_Message* UPB_PRIVATE(_upb_TaggedMessagePtr_GetMessage)( |
| uintptr_t ptr) { |
| return (struct upb_Message*)(ptr & ~(uintptr_t)1); |
| } |
| |
| UPB_API_INLINE struct upb_Message* upb_TaggedMessagePtr_GetNonEmptyMessage( |
| uintptr_t ptr) { |
| UPB_ASSERT(!upb_TaggedMessagePtr_IsEmpty(ptr)); |
| return UPB_PRIVATE(_upb_TaggedMessagePtr_GetMessage)(ptr); |
| } |
| |
| UPB_INLINE struct upb_Message* UPB_PRIVATE( |
| _upb_TaggedMessagePtr_GetEmptyMessage)(uintptr_t ptr) { |
| UPB_ASSERT(upb_TaggedMessagePtr_IsEmpty(ptr)); |
| return UPB_PRIVATE(_upb_TaggedMessagePtr_GetMessage)(ptr); |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| |
| #endif /* UPB_MINI_TABLE_INTERNAL_TAGGED_PTR_H_ */ |
| |
| #ifndef UPB_MESSAGE_INTERNAL_TYPES_H_ |
| #define UPB_MESSAGE_INTERNAL_TYPES_H_ |
| |
| #include <stdint.h> |
| |
| // Must be last. |
| |
| #define UPB_OPAQUE(x) x##_opaque |
| |
| struct upb_Message { |
| union { |
| uintptr_t UPB_OPAQUE(internal); // tagged pointer, low bit == frozen |
| double d; // Forces same size for 32-bit/64-bit builds |
| }; |
| }; |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Message_ShallowFreeze)( |
| struct upb_Message* msg) { |
| msg->UPB_OPAQUE(internal) |= 1ULL; |
| } |
| |
| UPB_API_INLINE bool upb_Message_IsFrozen(const struct upb_Message* msg) { |
| return (msg->UPB_OPAQUE(internal) & 1ULL) != 0; |
| } |
| |
| UPB_INLINE struct upb_Message_Internal* UPB_PRIVATE(_upb_Message_GetInternal)( |
| const struct upb_Message* msg) { |
| const uintptr_t tmp = msg->UPB_OPAQUE(internal) & ~1ULL; |
| return (struct upb_Message_Internal*)tmp; |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Message_SetInternal)( |
| struct upb_Message* msg, struct upb_Message_Internal* internal) { |
| UPB_ASSERT(!upb_Message_IsFrozen(msg)); |
| msg->UPB_OPAQUE(internal) = (uintptr_t)internal; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| #undef UPB_OPAQUE |
| |
| |
| #endif /* UPB_MESSAGE_INTERNAL_TYPES_H_ */ |
| |
| // Must be last. |
| |
| #if defined(__GNUC__) && !defined(__clang__) |
| // GCC raises incorrect warnings in these functions. It thinks that we are |
| // overrunning buffers, but we carefully write the functions in this file to |
| // guarantee that this is impossible. GCC gets this wrong due it its failure |
| // to perform constant propagation as we expect: |
| // - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108217 |
| // - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108226 |
| // |
| // Unfortunately this also indicates that GCC is not optimizing away the |
| // switch() in cases where it should be, compromising the performance. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| #pragma GCC diagnostic ignored "-Wstringop-overflow" |
| #if __GNUC__ >= 11 |
| #pragma GCC diagnostic ignored "-Wstringop-overread" |
| #endif |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // LINT.IfChange(presence_logic) |
| |
| // Hasbit access /////////////////////////////////////////////////////////////// |
| |
| UPB_INLINE bool UPB_PRIVATE(_upb_Message_GetHasbit)( |
| const struct upb_Message* msg, const upb_MiniTableField* f) { |
| const size_t offset = UPB_PRIVATE(_upb_MiniTableField_HasbitOffset)(f); |
| const char mask = UPB_PRIVATE(_upb_MiniTableField_HasbitMask)(f); |
| |
| return (*UPB_PTR_AT(msg, offset, const char) & mask) != 0; |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Message_SetHasbit)( |
| const struct upb_Message* msg, const upb_MiniTableField* f) { |
| const size_t offset = UPB_PRIVATE(_upb_MiniTableField_HasbitOffset)(f); |
| const char mask = UPB_PRIVATE(_upb_MiniTableField_HasbitMask)(f); |
| |
| (*UPB_PTR_AT(msg, offset, char)) |= mask; |
| } |
| |
| UPB_INLINE void UPB_PRIVATE(_upb_Message_ClearHasbit)( |
| const struct upb_Message* msg, const upb_MiniTableField* f) { |
| const size_t offset = UPB_PRIVATE(_upb_MiniTableField_HasbitOffset)(f); |
| const char mask = UPB_PRIVATE(_upb_MiniTableField_HasbitMask)(f); |
| |
| |