| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| // This file defines the map container and its helpers to support protobuf maps. |
| // |
| // The Map and MapIterator types are provided by this header file. |
| // Please avoid using other types defined here, unless they are public |
| // types within Map or MapIterator, such as Map::value_type. |
| |
| #ifndef GOOGLE_PROTOBUF_MAP_H__ |
| #define GOOGLE_PROTOBUF_MAP_H__ |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <functional> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> // To support Visual Studio 2008 |
| #include <new> // IWYU pragma: keep for ::operator new. |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/optimization.h" |
| #include "absl/memory/memory.h" |
| #include "google/protobuf/message_lite.h" |
| |
| #include "absl/base/attributes.h" |
| #include "absl/container/btree_map.h" |
| #include "absl/hash/hash.h" |
| #include "absl/log/absl_check.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/string_view.h" |
| #include "google/protobuf/arena.h" |
| #include "google/protobuf/generated_enum_util.h" |
| #include "google/protobuf/internal_visibility.h" |
| #include "google/protobuf/port.h" |
| #include "google/protobuf/wire_format_lite.h" |
| |
| |
| #ifdef SWIG |
| #error "You cannot SWIG proto headers" |
| #endif |
| |
| // Must be included last. |
| #include "google/protobuf/port_def.inc" |
| |
| namespace google { |
| namespace protobuf { |
| |
| template <typename Key, typename T> |
| class Map; |
| |
| class MapIterator; |
| |
| template <typename Enum> |
| struct is_proto_enum; |
| |
| namespace rust { |
| struct PtrAndLen; |
| } // namespace rust |
| |
| namespace internal { |
| namespace v2 { |
| class TableDriven; |
| }; |
| |
| template <typename Key, typename T> |
| class MapFieldLite; |
| |
| template <typename Derived, typename Key, typename T, |
| WireFormatLite::FieldType key_wire_type, |
| WireFormatLite::FieldType value_wire_type> |
| class MapField; |
| |
| struct MapTestPeer; |
| struct MapBenchmarkPeer; |
| |
| template <typename Key, typename T> |
| class TypeDefinedMapFieldBase; |
| |
| class DynamicMapField; |
| |
| class GeneratedMessageReflection; |
| |
| namespace v2 { |
| class TableDriven; |
| } // namespace v2 |
| |
| // The largest valid serialization for a message is INT_MAX, so we can't have |
| // more than 32-bits worth of elements. |
| using map_index_t = uint32_t; |
| |
| // Internal type traits that can be used to define custom key/value types. These |
| // are only be specialized by protobuf internals, and never by users. |
| template <typename T, typename VoidT = void> |
| struct is_internal_map_key_type : std::false_type {}; |
| |
| template <typename T, typename VoidT = void> |
| struct is_internal_map_value_type : std::false_type {}; |
| |
| // re-implement std::allocator to use arena allocator for memory allocation. |
| // Used for Map implementation. Users should not use this class |
| // directly. |
| template <typename U> |
| class MapAllocator { |
| public: |
| using value_type = U; |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| |
| constexpr MapAllocator() : arena_(nullptr) {} |
| explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {} |
| template <typename X> |
| MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) |
| : arena_(allocator.arena()) {} |
| |
| // MapAllocator does not support alignments beyond 8. Technically we should |
| // support up to std::max_align_t, but this fails with ubsan and tcmalloc |
| // debug allocation logic which assume 8 as default alignment. |
| static_assert(alignof(value_type) <= 8, ""); |
| |
| pointer allocate(size_type n, const void* /* hint */ = nullptr) { |
| // If arena is not given, malloc needs to be called which doesn't |
| // construct element object. |
| if (arena_ == nullptr) { |
| return static_cast<pointer>(::operator new(n * sizeof(value_type))); |
| } else { |
| return reinterpret_cast<pointer>( |
| Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type))); |
| } |
| } |
| |
| void deallocate(pointer p, size_type n) { |
| if (arena_ == nullptr) { |
| internal::SizedDelete(p, n * sizeof(value_type)); |
| } |
| } |
| |
| #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \ |
| !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) |
| template <class NodeType, class... Args> |
| void construct(NodeType* p, Args&&... args) { |
| // Clang 3.6 doesn't compile static casting to void* directly. (Issue |
| // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall |
| // not cast away constness". So first the maybe const pointer is casted to |
| // const void* and after the const void* is const casted. |
| new (const_cast<void*>(static_cast<const void*>(p))) |
| NodeType(std::forward<Args>(args)...); |
| } |
| |
| template <class NodeType> |
| void destroy(NodeType* p) { |
| p->~NodeType(); |
| } |
| #else |
| void construct(pointer p, const_reference t) { new (p) value_type(t); } |
| |
| void destroy(pointer p) { p->~value_type(); } |
| #endif |
| |
| template <typename X> |
| struct rebind { |
| using other = MapAllocator<X>; |
| }; |
| |
| template <typename X> |
| bool operator==(const MapAllocator<X>& other) const { |
| return arena_ == other.arena_; |
| } |
| |
| template <typename X> |
| bool operator!=(const MapAllocator<X>& other) const { |
| return arena_ != other.arena_; |
| } |
| |
| // To support Visual Studio 2008 |
| size_type max_size() const { |
| // parentheses around (std::...:max) prevents macro warning of max() |
| return (std::numeric_limits<size_type>::max)(); |
| } |
| |
| // To support gcc-4.4, which does not properly |
| // support templated friend classes |
| Arena* arena() const { return arena_; } |
| |
| private: |
| using DestructorSkippable_ = void; |
| Arena* arena_; |
| }; |
| |
| // To save on binary size and simplify generic uses of the map types we collapse |
| // signed/unsigned versions of the same sized integer to the unsigned version. |
| template <typename T, typename = void> |
| struct KeyForBaseImpl { |
| using type = T; |
| }; |
| template <typename T> |
| struct KeyForBaseImpl<T, std::enable_if_t<std::is_integral<T>::value && |
| std::is_signed<T>::value>> { |
| using type = std::make_unsigned_t<T>; |
| }; |
| template <typename T> |
| using KeyForBase = typename KeyForBaseImpl<T>::type; |
| |
| // Default case: Not transparent. |
| // We use std::hash<key_type>/std::less<key_type> and all the lookup functions |
| // only accept `key_type`. |
| template <typename key_type> |
| struct TransparentSupport { |
| static_assert(std::is_scalar<key_type>::value, |
| "Should only be used for ints."); |
| |
| // We hash all the scalars as uint64_t so that we can implement the same hash |
| // function for VariantKey. This way we can have MapKey provide the same hash |
| // as the underlying value would have. |
| using hash = absl::Hash<uint64_t>; |
| |
| static bool Equals(key_type a, key_type b) { return a == b; } |
| |
| template <typename K> |
| using key_arg = key_type; |
| |
| using ViewType = key_type; |
| |
| static key_type ToView(key_type v) { return v; } |
| }; |
| |
| // We add transparent support for std::string keys. We use |
| // absl::Hash<absl::string_view> as it supports the input types we care about. |
| // The lookup functions accept arbitrary `K`. This will include any key type |
| // that is convertible to absl::string_view. |
| template <> |
| struct TransparentSupport<std::string> { |
| template <typename T> |
| static absl::string_view ImplicitConvert(T&& str) { |
| if constexpr (std::is_convertible<T, absl::string_view>::value) { |
| absl::string_view res = str; |
| return res; |
| } else if constexpr (std::is_convertible<T, const std::string&>::value) { |
| const std::string& ref = str; |
| return ref; |
| } else { |
| return {str.data(), str.size()}; |
| } |
| } |
| |
| struct hash : public absl::Hash<absl::string_view> { |
| using is_transparent = void; |
| |
| template <typename T> |
| size_t operator()(T&& str) const { |
| return absl::Hash<absl::string_view>::operator()( |
| ImplicitConvert(std::forward<T>(str))); |
| } |
| }; |
| |
| template <typename T, typename U> |
| static bool Equals(T&& t, U&& u) { |
| return ImplicitConvert(std::forward<T>(t)) == |
| ImplicitConvert(std::forward<U>(u)); |
| } |
| |
| template <typename K> |
| using key_arg = K; |
| |
| using ViewType = absl::string_view; |
| template <typename T> |
| static ViewType ToView(const T& v) { |
| return ImplicitConvert(v); |
| } |
| }; |
| |
| enum class MapNodeSizeInfoT : uint32_t; |
| inline uint16_t SizeFromInfo(MapNodeSizeInfoT node_size_info) { |
| return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 16); |
| } |
| inline constexpr uint16_t ValueOffsetFromInfo(MapNodeSizeInfoT node_size_info) { |
| return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 0); |
| } |
| constexpr MapNodeSizeInfoT MakeNodeInfo(uint16_t size, uint16_t value_offset) { |
| return static_cast<MapNodeSizeInfoT>((static_cast<uint32_t>(size) << 16) | |
| value_offset); |
| } |
| |
| struct NodeBase { |
| // Align the node to allow KeyNode to predict the location of the key. |
| // This way sizeof(NodeBase) contains any possible padding it was going to |
| // have between NodeBase and the key. |
| alignas(kMaxMessageAlignment) NodeBase* next; |
| |
| void* GetVoidKey() { return this + 1; } |
| const void* GetVoidKey() const { return this + 1; } |
| |
| void* GetVoidValue(MapNodeSizeInfoT size_info) { |
| return reinterpret_cast<char*>(this) + ValueOffsetFromInfo(size_info); |
| } |
| }; |
| |
| inline NodeBase* EraseFromLinkedList(NodeBase* item, NodeBase* head) { |
| if (head == item) { |
| return head->next; |
| } else { |
| head->next = EraseFromLinkedList(item, head->next); |
| return head; |
| } |
| } |
| |
| constexpr size_t MapTreeLengthThreshold() { return 8; } |
| inline bool TableEntryIsTooLong(NodeBase* node) { |
| const size_t kMaxLength = MapTreeLengthThreshold(); |
| size_t count = 0; |
| do { |
| ++count; |
| node = node->next; |
| } while (node != nullptr); |
| // Invariant: no linked list ever is more than kMaxLength in length. |
| ABSL_DCHECK_LE(count, kMaxLength); |
| return count >= kMaxLength; |
| } |
| |
| // Similar to the public MapKey, but specialized for the internal |
| // implementation. |
| struct VariantKey { |
| // We make this value 16 bytes to make it cheaper to pass in the ABI. |
| // Can't overload string_view this way, so we unpack the fields. |
| // data==nullptr means this is a number and `integral` is the value. |
| // data!=nullptr means this is a string and `integral` is the size. |
| const char* data; |
| uint64_t integral; |
| |
| explicit VariantKey(uint64_t v) : data(nullptr), integral(v) {} |
| explicit VariantKey(absl::string_view v) |
| : data(v.data()), integral(v.size()) { |
| // We use `data` to discriminate between the types, so make sure it is never |
| // null here. |
| if (data == nullptr) data = ""; |
| } |
| |
| friend bool operator<(const VariantKey& left, const VariantKey& right) { |
| ABSL_DCHECK_EQ(left.data == nullptr, right.data == nullptr); |
| if (left.integral != right.integral) { |
| // If they are numbers with different value, or strings with different |
| // size, check the number only. |
| return left.integral < right.integral; |
| } |
| if (left.data == nullptr) { |
| // If they are numbers they have the same value, so return. |
| return false; |
| } |
| // They are strings of the same size, so check the bytes. |
| return memcmp(left.data, right.data, left.integral) < 0; |
| } |
| }; |
| |
| // This is to be specialized by MapKey. |
| template <typename T> |
| struct RealKeyToVariantKey { |
| VariantKey operator()(T value) const { return VariantKey(value); } |
| }; |
| |
| template <typename T, typename = void> |
| struct RealKeyToVariantKeyAlternative; |
| |
| template <typename T> |
| struct RealKeyToVariantKeyAlternative< |
| T, typename std::enable_if<std::is_integral<T>::value>::type> { |
| uint64_t operator()(uint64_t value) const { return value; } |
| }; |
| |
| template <> |
| struct RealKeyToVariantKey<std::string> { |
| template <typename T> |
| VariantKey operator()(const T& value) const { |
| return VariantKey(TransparentSupport<std::string>::ImplicitConvert(value)); |
| } |
| }; |
| |
| template <> |
| struct RealKeyToVariantKeyAlternative<std::string> { |
| absl::string_view operator()(absl::string_view value) const { return value; } |
| }; |
| |
| // We use a single kind of tree for all maps. This reduces code duplication. |
| using TreeForMap = |
| absl::btree_map<VariantKey, NodeBase*, std::less<VariantKey>, |
| MapAllocator<std::pair<const VariantKey, NodeBase*>>>; |
| |
| // Type safe tagged pointer. |
| // We convert to/from nodes and trees using the operations below. |
| // They ensure that the tags are used correctly. |
| // There are three states: |
| // - x == 0: the entry is empty |
| // - x != 0 && (x&1) == 0: the entry is a node list |
| // - x != 0 && (x&1) == 1: the entry is a tree |
| enum class TableEntryPtr : uintptr_t; |
| |
| inline bool TableEntryIsEmpty(TableEntryPtr entry) { |
| return entry == TableEntryPtr{}; |
| } |
| inline bool TableEntryIsTree(TableEntryPtr entry) { |
| return (static_cast<uintptr_t>(entry) & 1) == 1; |
| } |
| inline bool TableEntryIsList(TableEntryPtr entry) { |
| return !TableEntryIsTree(entry); |
| } |
| inline bool TableEntryIsNonEmptyList(TableEntryPtr entry) { |
| return !TableEntryIsEmpty(entry) && TableEntryIsList(entry); |
| } |
| inline NodeBase* TableEntryToNode(TableEntryPtr entry) { |
| ABSL_DCHECK(TableEntryIsList(entry)); |
| return reinterpret_cast<NodeBase*>(static_cast<uintptr_t>(entry)); |
| } |
| inline TableEntryPtr NodeToTableEntry(NodeBase* node) { |
| ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0); |
| return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node)); |
| } |
| inline TreeForMap* TableEntryToTree(TableEntryPtr entry) { |
| ABSL_DCHECK(TableEntryIsTree(entry)); |
| return reinterpret_cast<TreeForMap*>(static_cast<uintptr_t>(entry) - 1); |
| } |
| inline TableEntryPtr TreeToTableEntry(TreeForMap* node) { |
| ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0); |
| return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node) | 1); |
| } |
| |
| // This captures all numeric types. |
| inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } |
| inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { |
| return StringSpaceUsedExcludingSelfLong(str); |
| } |
| template <typename T, |
| typename = decltype(std::declval<const T&>().SpaceUsedLong())> |
| size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { |
| return message.SpaceUsedLong() - sizeof(T); |
| } |
| |
| constexpr size_t kGlobalEmptyTableSize = 1; |
| PROTOBUF_EXPORT extern const TableEntryPtr |
| kGlobalEmptyTable[kGlobalEmptyTableSize]; |
| |
| template <typename Map, |
| typename = typename std::enable_if< |
| !std::is_scalar<typename Map::key_type>::value || |
| !std::is_scalar<typename Map::mapped_type>::value>::type> |
| size_t SpaceUsedInValues(const Map* map) { |
| size_t size = 0; |
| for (const auto& v : *map) { |
| size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + |
| internal::MapValueSpaceUsedExcludingSelfLong(v.second); |
| } |
| return size; |
| } |
| |
| inline size_t SpaceUsedInValues(const void*) { return 0; } |
| |
| class UntypedMapBase; |
| |
| class UntypedMapIterator { |
| public: |
| // Invariants: |
| // node_ is always correct. This is handy because the most common |
| // operations are operator* and operator-> and they only use node_. |
| // When node_ is set to a non-null value, all the other non-const fields |
| // are updated to be correct also, but those fields can become stale |
| // if the underlying map is modified. When those fields are needed they |
| // are rechecked, and updated if necessary. |
| |
| // We do not provide any constructors for this type. We need it to be a |
| // trivial type to ensure that we can safely share it with Rust. |
| |
| // Advance through buckets, looking for the first that isn't empty. |
| // If nothing non-empty is found then leave node_ == nullptr. |
| void SearchFrom(map_index_t start_bucket); |
| |
| // The definition of operator== is handled by the derived type. If we were |
| // to do it in this class it would allow comparing iterators of different |
| // map types. |
| bool Equals(const UntypedMapIterator& other) const { |
| return node_ == other.node_; |
| } |
| |
| // The definition of operator++ is handled in the derived type. We would not |
| // be able to return the right type from here. |
| void PlusPlus() { |
| if (node_->next == nullptr) { |
| SearchFrom(bucket_index_ + 1); |
| } else { |
| node_ = node_->next; |
| } |
| } |
| |
| // Conversion to and from a typed iterator child class is used by FFI. |
| template <class Iter> |
| static UntypedMapIterator FromTyped(Iter it) { |
| static_assert( |
| #if defined(__cpp_lib_is_layout_compatible) && \ |
| __cpp_lib_is_layout_compatible >= 201907L |
| std::is_layout_compatible_v<Iter, UntypedMapIterator>, |
| #else |
| sizeof(it) == sizeof(UntypedMapIterator), |
| #endif |
| "Map iterator must not have extra state that the base class" |
| "does not define."); |
| return static_cast<UntypedMapIterator>(it); |
| } |
| |
| template <class Iter> |
| Iter ToTyped() const { |
| return Iter(*this); |
| } |
| NodeBase* node_; |
| const UntypedMapBase* m_; |
| map_index_t bucket_index_; |
| }; |
| |
| // These properties are depended upon by Rust FFI. |
| static_assert(std::is_trivial<UntypedMapIterator>::value, |
| "UntypedMapIterator must be a trivial type."); |
| static_assert(std::is_trivially_copyable<UntypedMapIterator>::value, |
| "UntypedMapIterator must be trivially copyable."); |
| static_assert(std::is_trivially_destructible<UntypedMapIterator>::value, |
| "UntypedMapIterator must be trivially destructible."); |
| static_assert(std::is_standard_layout<UntypedMapIterator>::value, |
| "UntypedMapIterator must be standard layout."); |
| static_assert(offsetof(UntypedMapIterator, node_) == 0, |
| "node_ must be the first field of UntypedMapIterator."); |
| static_assert(sizeof(UntypedMapIterator) == |
| sizeof(void*) * 2 + |
| std::max(sizeof(uint32_t), alignof(void*)), |
| "UntypedMapIterator does not have the expected size for FFI"); |
| static_assert( |
| alignof(UntypedMapIterator) == std::max(alignof(void*), alignof(uint32_t)), |
| "UntypedMapIterator does not have the expected alignment for FFI"); |
| |
| // Base class for all Map instantiations. |
| // This class holds all the data and provides the basic functionality shared |
| // among all instantiations. |
| // Having an untyped base class helps generic consumers (like the table-driven |
| // parser) by having non-template code that can handle all instantiations. |
| class PROTOBUF_EXPORT UntypedMapBase { |
| using Allocator = internal::MapAllocator<void*>; |
| using Tree = internal::TreeForMap; |
| |
| public: |
| using size_type = size_t; |
| |
| explicit constexpr UntypedMapBase(Arena* arena) |
| : num_elements_(0), |
| num_buckets_(internal::kGlobalEmptyTableSize), |
| index_of_first_non_null_(internal::kGlobalEmptyTableSize), |
| table_(const_cast<TableEntryPtr*>(internal::kGlobalEmptyTable)), |
| alloc_(arena) {} |
| |
| UntypedMapBase(const UntypedMapBase&) = delete; |
| UntypedMapBase& operator=(const UntypedMapBase&) = delete; |
| |
| protected: |
| // 16 bytes is the minimum useful size for the array cache in the arena. |
| enum : map_index_t { kMinTableSize = 16 / sizeof(void*) }; |
| |
| public: |
| Arena* arena() const { return this->alloc_.arena(); } |
| |
| void InternalSwap(UntypedMapBase* other) { |
| std::swap(num_elements_, other->num_elements_); |
| std::swap(num_buckets_, other->num_buckets_); |
| std::swap(index_of_first_non_null_, other->index_of_first_non_null_); |
| std::swap(table_, other->table_); |
| std::swap(alloc_, other->alloc_); |
| } |
| |
| static size_type max_size() { |
| return std::numeric_limits<map_index_t>::max(); |
| } |
| size_type size() const { return num_elements_; } |
| bool empty() const { return size() == 0; } |
| UntypedMapIterator begin() const; |
| |
| // We make this a static function to reduce the cost in MapField. |
| // All the end iterators are singletons anyway. |
| static UntypedMapIterator EndIterator() { return {nullptr, nullptr, 0}; } |
| |
| protected: |
| friend class TcParser; |
| friend struct MapTestPeer; |
| friend struct MapBenchmarkPeer; |
| friend class UntypedMapIterator; |
| friend class RustMapHelper; |
| friend class v2::TableDriven; |
| |
| struct NodeAndBucket { |
| NodeBase* node; |
| map_index_t bucket; |
| }; |
| |
| // Returns whether we should insert after the head of the list. For |
| // non-optimized builds, we randomly decide whether to insert right at the |
| // head of the list or just after the head. This helps add a little bit of |
| // non-determinism to the map ordering. |
| bool ShouldInsertAfterHead(void* node) { |
| #ifdef NDEBUG |
| (void)node; |
| return false; |
| #else |
| // Doing modulo with a prime mixes the bits more. |
| return absl::HashOf(node, table_) % 13 > 6; |
| #endif |
| } |
| |
| // Helper for InsertUnique. Handles the case where bucket b is a |
| // not-too-long linked list. |
| void InsertUniqueInList(map_index_t b, NodeBase* node) { |
| if (!TableEntryIsEmpty(b) && ShouldInsertAfterHead(node)) { |
| auto* first = TableEntryToNode(table_[b]); |
| node->next = first->next; |
| first->next = node; |
| } else { |
| node->next = TableEntryToNode(table_[b]); |
| table_[b] = NodeToTableEntry(node); |
| } |
| } |
| |
| bool TableEntryIsEmpty(map_index_t b) const { |
| return internal::TableEntryIsEmpty(table_[b]); |
| } |
| bool TableEntryIsNonEmptyList(map_index_t b) const { |
| return internal::TableEntryIsNonEmptyList(table_[b]); |
| } |
| bool TableEntryIsTree(map_index_t b) const { |
| return internal::TableEntryIsTree(table_[b]); |
| } |
| bool TableEntryIsList(map_index_t b) const { |
| return internal::TableEntryIsList(table_[b]); |
| } |
| |
| // Return whether table_[b] is a linked list that seems awfully long. |
| // Requires table_[b] to point to a non-empty linked list. |
| bool TableEntryIsTooLong(map_index_t b) { |
| return internal::TableEntryIsTooLong(TableEntryToNode(table_[b])); |
| } |
| |
| // Return a power of two no less than max(kMinTableSize, n). |
| // Assumes either n < kMinTableSize or n is a power of two. |
| map_index_t TableSize(map_index_t n) { |
| return n < kMinTableSize ? kMinTableSize : n; |
| } |
| |
| template <typename T> |
| using AllocFor = absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
| |
| // Alignment of the nodes is the same as alignment of NodeBase. |
| NodeBase* AllocNode(MapNodeSizeInfoT size_info) { |
| return AllocNode(SizeFromInfo(size_info)); |
| } |
| |
| NodeBase* AllocNode(size_t node_size) { |
| PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0); |
| return AllocFor<NodeBase>(alloc_).allocate(node_size / sizeof(NodeBase)); |
| } |
| |
| void DeallocNode(NodeBase* node, MapNodeSizeInfoT size_info) { |
| DeallocNode(node, SizeFromInfo(size_info)); |
| } |
| |
| void DeallocNode(NodeBase* node, size_t node_size) { |
| PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0); |
| AllocFor<NodeBase>(alloc_).deallocate(node, node_size / sizeof(NodeBase)); |
| } |
| |
| void DeleteTable(TableEntryPtr* table, map_index_t n) { |
| if (auto* a = arena()) { |
| a->ReturnArrayMemory(table, n * sizeof(TableEntryPtr)); |
| } else { |
| internal::SizedDelete(table, n * sizeof(TableEntryPtr)); |
| } |
| } |
| |
| NodeBase* DestroyTree(Tree* tree); |
| using GetKey = VariantKey (*)(NodeBase*); |
| void InsertUniqueInTree(map_index_t b, GetKey get_key, NodeBase* node); |
| void TransferTree(Tree* tree, GetKey get_key); |
| TableEntryPtr ConvertToTree(NodeBase* node, GetKey get_key); |
| void EraseFromTree(map_index_t b, typename Tree::iterator tree_it); |
| |
| map_index_t VariantBucketNumber(VariantKey key) const { |
| return key.data == nullptr |
| ? VariantBucketNumber(key.integral) |
| : VariantBucketNumber(absl::string_view( |
| key.data, static_cast<size_t>(key.integral))); |
| } |
| |
| map_index_t VariantBucketNumber(absl::string_view key) const { |
| return static_cast<map_index_t>(absl::HashOf(key, table_) & |
| (num_buckets_ - 1)); |
| } |
| |
| map_index_t VariantBucketNumber(uint64_t key) const { |
| return static_cast<map_index_t>(absl::HashOf(key, table_) & |
| (num_buckets_ - 1)); |
| } |
| |
| TableEntryPtr* CreateEmptyTable(map_index_t n) { |
| ABSL_DCHECK_GE(n, kMinTableSize); |
| ABSL_DCHECK_EQ(n & (n - 1), 0u); |
| TableEntryPtr* result = AllocFor<TableEntryPtr>(alloc_).allocate(n); |
| memset(result, 0, n * sizeof(result[0])); |
| return result; |
| } |
| |
| enum { |
| kKeyIsString = 1 << 0, |
| kValueIsString = 1 << 1, |
| kValueIsProto = 1 << 2, |
| kUseDestructFunc = 1 << 3, |
| }; |
| template <typename Key, typename Value> |
| static constexpr uint8_t MakeDestroyBits() { |
| uint8_t result = 0; |
| if (!std::is_trivially_destructible<Key>::value) { |
| if (std::is_same<Key, std::string>::value) { |
| result |= kKeyIsString; |
| } else { |
| return kUseDestructFunc; |
| } |
| } |
| if (!std::is_trivially_destructible<Value>::value) { |
| if (std::is_same<Value, std::string>::value) { |
| result |= kValueIsString; |
| } else if (std::is_base_of<MessageLite, Value>::value) { |
| result |= kValueIsProto; |
| } else { |
| return kUseDestructFunc; |
| } |
| } |
| return result; |
| } |
| |
| struct ClearInput { |
| MapNodeSizeInfoT size_info; |
| uint8_t destroy_bits; |
| bool reset_table; |
| void (*destroy_node)(NodeBase*); |
| }; |
| |
| template <typename Node> |
| static void DestroyNode(NodeBase* node) { |
| static_cast<Node*>(node)->~Node(); |
| } |
| |
| template <typename Node> |
| static constexpr ClearInput MakeClearInput(bool reset) { |
| constexpr auto bits = |
| MakeDestroyBits<typename Node::key_type, typename Node::mapped_type>(); |
| return ClearInput{Node::size_info(), bits, reset, |
| bits & kUseDestructFunc ? DestroyNode<Node> : nullptr}; |
| } |
| |
| void ClearTable(ClearInput input); |
| |
| NodeAndBucket FindFromTree(map_index_t b, VariantKey key, |
| Tree::iterator* it) const; |
| |
| // Space used for the table, trees, and nodes. |
| // Does not include the indirect space used. Eg the data of a std::string. |
| size_t SpaceUsedInTable(size_t sizeof_node) const; |
| |
| map_index_t num_elements_; |
| map_index_t num_buckets_; |
| map_index_t index_of_first_non_null_; |
| TableEntryPtr* table_; // an array with num_buckets_ entries |
| Allocator alloc_; |
| }; |
| |
| inline UntypedMapIterator UntypedMapBase::begin() const { |
| map_index_t bucket_index; |
| NodeBase* node; |
| if (index_of_first_non_null_ == num_buckets_) { |
| bucket_index = 0; |
| node = nullptr; |
| } else { |
| bucket_index = index_of_first_non_null_; |
| TableEntryPtr entry = table_[bucket_index]; |
| node = ABSL_PREDICT_TRUE(internal::TableEntryIsList(entry)) |
| ? TableEntryToNode(entry) |
| : TableEntryToTree(entry)->begin()->second; |
| PROTOBUF_ASSUME(node != nullptr); |
| } |
| return UntypedMapIterator{node, this, bucket_index}; |
| } |
| |
| inline void UntypedMapIterator::SearchFrom(map_index_t start_bucket) { |
| ABSL_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || |
| !m_->TableEntryIsEmpty(m_->index_of_first_non_null_)); |
| for (map_index_t i = start_bucket; i < m_->num_buckets_; ++i) { |
| TableEntryPtr entry = m_->table_[i]; |
| if (entry == TableEntryPtr{}) continue; |
| bucket_index_ = i; |
| if (ABSL_PREDICT_TRUE(TableEntryIsList(entry))) { |
| node_ = TableEntryToNode(entry); |
| } else { |
| TreeForMap* tree = TableEntryToTree(entry); |
| ABSL_DCHECK(!tree->empty()); |
| node_ = tree->begin()->second; |
| } |
| return; |
| } |
| node_ = nullptr; |
| bucket_index_ = 0; |
| } |
| |
| // Base class used by TcParser to extract the map object from a map field. |
| // We keep it here to avoid a dependency into map_field.h from the main TcParser |
| // code, since that would bring in Message too. |
| class MapFieldBaseForParse { |
| public: |
| const UntypedMapBase& GetMap() const { |
| return vtable_->get_map(*this, false); |
| } |
| UntypedMapBase* MutableMap() { |
| return &const_cast<UntypedMapBase&>(vtable_->get_map(*this, true)); |
| } |
| |
| protected: |
| struct VTable { |
| const UntypedMapBase& (*get_map)(const MapFieldBaseForParse&, |
| bool is_mutable); |
| }; |
| explicit constexpr MapFieldBaseForParse(const VTable* vtable) |
| : vtable_(vtable) {} |
| ~MapFieldBaseForParse() = default; |
| |
| const VTable* vtable_; |
| }; |
| |
| // The value might be of different signedness, so use memcpy to extract it. |
| template <typename T, std::enable_if_t<std::is_integral<T>::value, int> = 0> |
| T ReadKey(const void* ptr) { |
| T out; |
| memcpy(&out, ptr, sizeof(T)); |
| return out; |
| } |
| |
| template <typename T, std::enable_if_t<!std::is_integral<T>::value, int> = 0> |
| const T& ReadKey(const void* ptr) { |
| return *reinterpret_cast<const T*>(ptr); |
| } |
| |
| template <typename Key> |
| struct KeyNode : NodeBase { |
| static constexpr size_t kOffset = sizeof(NodeBase); |
| decltype(auto) key() const { return ReadKey<Key>(GetVoidKey()); } |
| }; |
| |
| // KeyMapBase is a chaining hash map with the additional feature that some |
| // buckets can be converted to use an ordered container. This ensures O(lg n) |
| // bounds on find, insert, and erase, while avoiding the overheads of ordered |
| // containers most of the time. |
| // |
| // The implementation doesn't need the full generality of unordered_map, |
| // and it doesn't have it. More bells and whistles can be added as needed. |
| // Some implementation details: |
| // 1. The number of buckets is a power of two. |
| // 2. As is typical for hash_map and such, the Keys and Values are always |
| // stored in linked list nodes. Pointers to elements are never invalidated |
| // until the element is deleted. |
| // 3. The trees' payload type is pointer to linked-list node. Tree-converting |
| // a bucket doesn't copy Key-Value pairs. |
| // 4. Once we've tree-converted a bucket, it is never converted back unless the |
| // bucket is completely emptied out. Note that the items a tree contains may |
| // wind up assigned to trees or lists upon a rehash. |
| // 5. Mutations to a map do not invalidate the map's iterators, pointers to |
| // elements, or references to elements. |
| // 6. Except for erase(iterator), any non-const method can reorder iterators. |
| // 7. Uses VariantKey when using the Tree representation, which holds all |
| // possible key types as a variant value. |
| |
| template <typename Key> |
| class KeyMapBase : public UntypedMapBase { |
| static_assert(!std::is_signed<Key>::value || !std::is_integral<Key>::value, |
| ""); |
| |
| using TS = TransparentSupport<Key>; |
| |
| public: |
| using hasher = typename TS::hash; |
| |
| using UntypedMapBase::UntypedMapBase; |
| |
| protected: |
| using KeyNode = internal::KeyNode<Key>; |
| |
| // Trees. The payload type is a copy of Key, so that we can query the tree |
| // with Keys that are not in any particular data structure. |
| // The value is a void* pointing to Node. We use void* instead of Node* to |
| // avoid code bloat. That way there is only one instantiation of the tree |
| // class per key type. |
| using Tree = internal::TreeForMap; |
| using TreeIterator = typename Tree::iterator; |
| |
| public: |
| hasher hash_function() const { return {}; } |
| |
| protected: |
| friend class TcParser; |
| friend struct MapTestPeer; |
| friend struct MapBenchmarkPeer; |
| friend class RustMapHelper; |
| friend class v2::TableDriven; |
| |
| PROTOBUF_NOINLINE void erase_no_destroy(map_index_t b, KeyNode* node) { |
| TreeIterator tree_it; |
| const bool is_list = revalidate_if_necessary(b, node, &tree_it); |
| if (is_list) { |
| ABSL_DCHECK(TableEntryIsNonEmptyList(b)); |
| auto* head = TableEntryToNode(table_[b]); |
| head = EraseFromLinkedList(node, head); |
| table_[b] = NodeToTableEntry(head); |
| } else { |
| EraseFromTree(b, tree_it); |
| } |
| --num_elements_; |
| if (ABSL_PREDICT_FALSE(b == index_of_first_non_null_)) { |
| while (index_of_first_non_null_ < num_buckets_ && |
| TableEntryIsEmpty(index_of_first_non_null_)) { |
| ++index_of_first_non_null_; |
| } |
| } |
| } |
| |
| NodeAndBucket FindHelper(typename TS::ViewType k, |
| TreeIterator* it = nullptr) const { |
| map_index_t b = BucketNumber(k); |
| if (TableEntryIsNonEmptyList(b)) { |
| auto* node = internal::TableEntryToNode(table_[b]); |
| do { |
| if (TS::Equals(static_cast<KeyNode*>(node)->key(), k)) { |
| return {node, b}; |
| } else { |
| node = node->next; |
| } |
| } while (node != nullptr); |
| } else if (TableEntryIsTree(b)) { |
| return FindFromTree(b, internal::RealKeyToVariantKey<Key>{}(k), it); |
| } |
| return {nullptr, b}; |
| } |
| |
| // Insert the given node. |
| // If the key is a duplicate, it inserts the new node and returns the old one. |
| // Gives ownership to the caller. |
| // If the key is unique, it returns `nullptr`. |
| KeyNode* InsertOrReplaceNode(KeyNode* node) { |
| KeyNode* to_erase = nullptr; |
| auto p = this->FindHelper(node->key()); |
| map_index_t b = p.bucket; |
| if (p.node != nullptr) { |
| erase_no_destroy(p.bucket, static_cast<KeyNode*>(p.node)); |
| to_erase = static_cast<KeyNode*>(p.node); |
| } else if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { |
| b = BucketNumber(node->key()); // bucket_number |
| } |
| InsertUnique(b, node); |
| ++num_elements_; |
| return to_erase; |
| } |
| |
| // Insert the given Node in bucket b. If that would make bucket b too big, |
| // and bucket b is not a tree, create a tree for buckets b. |
| // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct |
| // bucket. num_elements_ is not modified. |
| void InsertUnique(map_index_t b, KeyNode* node) { |
| ABSL_DCHECK(index_of_first_non_null_ == num_buckets_ || |
| !TableEntryIsEmpty(index_of_first_non_null_)); |
| // In practice, the code that led to this point may have already |
| // determined whether we are inserting into an empty list, a short list, |
| // or whatever. But it's probably cheap enough to recompute that here; |
| // it's likely that we're inserting into an empty or short list. |
| ABSL_DCHECK(FindHelper(TS::ToView(node->key())).node == nullptr); |
| if (TableEntryIsEmpty(b)) { |
| InsertUniqueInList(b, node); |
| index_of_first_non_null_ = (std::min)(index_of_first_non_null_, b); |
| } else if (TableEntryIsNonEmptyList(b) && !TableEntryIsTooLong(b)) { |
| InsertUniqueInList(b, node); |
| } else { |
| InsertUniqueInTree(b, NodeToVariantKey, node); |
| } |
| } |
| |
| static VariantKey NodeToVariantKey(NodeBase* node) { |
| return internal::RealKeyToVariantKey<Key>{}( |
| static_cast<KeyNode*>(node)->key()); |
| } |
| |
| // Have it a separate function for testing. |
| static size_type CalculateHiCutoff(size_type num_buckets) { |
| // We want the high cutoff to follow this rules: |
| // - When num_buckets_ == kGlobalEmptyTableSize, then make it 0 to force an |
| // allocation. |
| // - When num_buckets_ < 8, then make it num_buckets_ to avoid |
| // a reallocation. A large load factor is not that important on small |
| // tables and saves memory. |
| // - Otherwise, make it 75% of num_buckets_. |
| return num_buckets - num_buckets / 16 * 4 - num_buckets % 2; |
| } |
| |
| // Returns whether it did resize. Currently this is only used when |
| // num_elements_ increases, though it could be used in other situations. |
| // It checks for load too low as well as load too high: because any number |
| // of erases can occur between inserts, the load could be as low as 0 here. |
| // Resizing to a lower size is not always helpful, but failing to do so can |
| // destroy the expected big-O bounds for some operations. By having the |
| // policy that sometimes we resize down as well as up, clients can easily |
| // keep O(size()) = O(number of buckets) if they want that. |
| bool ResizeIfLoadIsOutOfRange(size_type new_size) { |
| const size_type hi_cutoff = CalculateHiCutoff(num_buckets_); |
| const size_type lo_cutoff = hi_cutoff / 4; |
| // We don't care how many elements are in trees. If a lot are, |
| // we may resize even though there are many empty buckets. In |
| // practice, this seems fine. |
| if (ABSL_PREDICT_FALSE(new_size > hi_cutoff)) { |
| if (num_buckets_ <= max_size() / 2) { |
| Resize(num_buckets_ * 2); |
| return true; |
| } |
| } else if (ABSL_PREDICT_FALSE(new_size <= lo_cutoff && |
| num_buckets_ > kMinTableSize)) { |
| size_type lg2_of_size_reduction_factor = 1; |
| // It's possible we want to shrink a lot here... size() could even be 0. |
| // So, estimate how much to shrink by making sure we don't shrink so |
| // much that we would need to grow the table after a few inserts. |
| const size_type hypothetical_size = new_size * 5 / 4 + 1; |
| while ((hypothetical_size << lg2_of_size_reduction_factor) < hi_cutoff) { |
| ++lg2_of_size_reduction_factor; |
| } |
| size_type new_num_buckets = std::max<size_type>( |
| kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); |
| if (new_num_buckets != num_buckets_) { |
| Resize(new_num_buckets); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Resize to the given number of buckets. |
| void Resize(map_index_t new_num_buckets) { |
| if (num_buckets_ == kGlobalEmptyTableSize) { |
| // This is the global empty array. |
| // Just overwrite with a new one. No need to transfer or free anything. |
| num_buckets_ = index_of_first_non_null_ = kMinTableSize; |
| table_ = CreateEmptyTable(num_buckets_); |
| return; |
| } |
| |
| ABSL_DCHECK_GE(new_num_buckets, kMinTableSize); |
| const auto old_table = table_; |
| const map_index_t old_table_size = num_buckets_; |
| num_buckets_ = new_num_buckets; |
| table_ = CreateEmptyTable(num_buckets_); |
| const map_index_t start = index_of_first_non_null_; |
| index_of_first_non_null_ = num_buckets_; |
| for (map_index_t i = start; i < old_table_size; ++i) { |
| if (internal::TableEntryIsNonEmptyList(old_table[i])) { |
| TransferList(static_cast<KeyNode*>(TableEntryToNode(old_table[i]))); |
| } else if (internal::TableEntryIsTree(old_table[i])) { |
| this->TransferTree(TableEntryToTree(old_table[i]), NodeToVariantKey); |
| } |
| } |
| DeleteTable(old_table, old_table_size); |
| } |
| |
| // Transfer all nodes in the list `node` into `this`. |
| void TransferList(KeyNode* node) { |
| do { |
| auto* next = static_cast<KeyNode*>(node->next); |
| InsertUnique(BucketNumber(TS::ToView(node->key())), node); |
| node = next; |
| } while (node != nullptr); |
| } |
| |
| map_index_t BucketNumber(typename TS::ViewType k) const { |
| ABSL_DCHECK_EQ( |
| VariantBucketNumber(RealKeyToVariantKeyAlternative<Key>{}(k)), |
| VariantBucketNumber(RealKeyToVariantKey<Key>{}(k))); |
| return VariantBucketNumber(RealKeyToVariantKeyAlternative<Key>{}(k)); |
| } |
| |
| // Assumes node_ and m_ are correct and non-null, but other fields may be |
| // stale. Fix them as needed. Then return true iff node_ points to a |
| // Node in a list. If false is returned then *it is modified to be |
| // a valid iterator for node_. |
| bool revalidate_if_necessary(map_index_t& bucket_index, KeyNode* node, |
| TreeIterator* it) const { |
| // Force bucket_index to be in range. |
| bucket_index &= (num_buckets_ - 1); |
| // Common case: the bucket we think is relevant points to `node`. |
| if (table_[bucket_index] == NodeToTableEntry(node)) return true; |
| // Less common: the bucket is a linked list with node_ somewhere in it, |
| // but not at the head. |
| if (TableEntryIsNonEmptyList(bucket_index)) { |
| auto* l = TableEntryToNode(table_[bucket_index]); |
| while ((l = l->next) != nullptr) { |
| if (l == node) { |
| return true; |
| } |
| } |
| } |
| // Well, bucket_index_ still might be correct, but probably |
| // not. Revalidate just to be sure. This case is rare enough that we |
| // don't worry about potential optimizations, such as having a custom |
| // find-like method that compares Node* instead of the key. |
| auto res = FindHelper(TS::ToView(node->key()), it); |
| bucket_index = res.bucket; |
| return TableEntryIsList(bucket_index); |
| } |
| }; |
| |
| template <typename T, typename K> |
| bool InitializeMapKey(T*, K&&, Arena*) { |
| return false; |
| } |
| |
| |
| // The purpose of this class is to give the Rust implementation visibility into |
| // some of the internals of C++ proto maps. We need access to these internals |
| // to be able to implement Rust map operations without duplicating the same |
| // functionality for every message type. |
| class RustMapHelper { |
| public: |
| using NodeAndBucket = UntypedMapBase::NodeAndBucket; |
| using ClearInput = UntypedMapBase::ClearInput; |
| |
| static void GetSizeAndAlignment(const google::protobuf::MessageLite* m, uint16_t* size, |
| uint8_t* alignment) { |
| const auto* class_data = m->GetClassData(); |
| *size = static_cast<uint16_t>(class_data->allocation_size()); |
| *alignment = class_data->alignment(); |
| } |
| |
| static constexpr MapNodeSizeInfoT MakeSizeInfo(uint16_t size, |
| uint16_t value_offset) { |
| return MakeNodeInfo(size, value_offset); |
| } |
| |
| template <typename Key, typename Value> |
| static constexpr MapNodeSizeInfoT SizeInfo() { |
| return Map<Key, Value>::Node::size_info(); |
| } |
| |
| enum { |
| kKeyIsString = UntypedMapBase::kKeyIsString, |
| kValueIsString = UntypedMapBase::kValueIsString, |
| kValueIsProto = UntypedMapBase::kValueIsProto, |
| }; |
| |
| static NodeBase* AllocNode(UntypedMapBase* m, MapNodeSizeInfoT size_info) { |
| return m->AllocNode(size_info); |
| } |
| |
| static void DeallocNode(UntypedMapBase* m, NodeBase* node, |
| MapNodeSizeInfoT size_info) { |
| return m->DeallocNode(node, size_info); |
| } |
| |
| template <typename Map, typename Key> |
| static NodeAndBucket FindHelper(Map* m, Key key) { |
| return m->FindHelper(key); |
| } |
| |
| template <typename Map> |
| static typename Map::KeyNode* InsertOrReplaceNode(Map* m, NodeBase* node) { |
| return m->InsertOrReplaceNode(static_cast<typename Map::KeyNode*>(node)); |
| } |
| |
| template <typename Map> |
| static void EraseNoDestroy(Map* m, map_index_t bucket, NodeBase* node) { |
| m->erase_no_destroy(bucket, static_cast<typename Map::KeyNode*>(node)); |
| } |
| |
| static google::protobuf::MessageLite* PlacementNew(const MessageLite* prototype, |
| void* mem) { |
| return prototype->GetClassData()->PlacementNew(mem, /* arena = */ nullptr); |
| } |
| |
| static void DestroyMessage(MessageLite* m) { m->DestroyInstance(); } |
| |
| static void ClearTable(UntypedMapBase* m, ClearInput input) { |
| m->ClearTable(input); |
| } |
| |
| static bool IsGlobalEmptyTable(const UntypedMapBase* m) { |
| return m->num_buckets_ == kGlobalEmptyTableSize; |
| } |
| }; |
| |
| } // namespace internal |
| |
| // This is the class for Map's internal value_type. |
| template <typename Key, typename T> |
| using MapPair = std::pair<const Key, T>; |
| |
| // Map is an associative container type used to store protobuf map |
| // fields. Each Map instance may or may not use a different hash function, a |
| // different iteration order, and so on. E.g., please don't examine |
| // implementation details to decide if the following would work: |
| // Map<int, int> m0, m1; |
| // m0[0] = m1[0] = m0[1] = m1[1] = 0; |
| // assert(m0.begin()->first == m1.begin()->first); // Bug! |
| // |
| // Map's interface is similar to std::unordered_map, except that Map is not |
| // designed to play well with exceptions. |
| template <typename Key, typename T> |
| class Map : private internal::KeyMapBase<internal::KeyForBase<Key>> { |
| using Base = typename Map::KeyMapBase; |
| |
| using TS = internal::TransparentSupport<Key>; |
| |
| public: |
| using key_type = Key; |
| using mapped_type = T; |
| using init_type = std::pair<Key, T>; |
| using value_type = MapPair<Key, T>; |
| |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| |
| using size_type = size_t; |
| using hasher = typename TS::hash; |
| |
| constexpr Map() : Base(nullptr) { StaticValidityCheck(); } |
| Map(const Map& other) : Map(nullptr, other) {} |
| |
| // Internal Arena constructors: do not use! |
| // TODO: remove non internal ctors |
| explicit Map(Arena* arena) : Base(arena) { StaticValidityCheck(); } |
| Map(internal::InternalVisibility, Arena* arena) : Map(arena) {} |
| Map(internal::InternalVisibility, Arena* arena, const Map& other) |
| : Map(arena, other) {} |
| |
| Map(Map&& other) noexcept : Map() { |
| if (other.arena() != nullptr) { |
| *this = other; |
| } else { |
| swap(other); |
| } |
| } |
| |
| Map& operator=(Map&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| if (this != &other) { |
| if (arena() != other.arena()) { |
| *this = other; |
| } else { |
| swap(other); |
| } |
| } |
| return *this; |
| } |
| |
| template <class InputIt> |
| Map(const InputIt& first, const InputIt& last) : Map() { |
| insert(first, last); |
| } |
| |
| ~Map() { |
| // Fail-safe in case we miss calling this in a constructor. Note: this one |
| // won't trigger for leaked maps that never get destructed. |
| StaticValidityCheck(); |
| |
| if (this->num_buckets_ != internal::kGlobalEmptyTableSize) { |
| this->ClearTable(this->template MakeClearInput<Node>(false)); |
| } |
| } |
| |
| private: |
| Map(Arena* arena, const Map& other) : Base(arena) { |
| StaticValidityCheck(); |
| insert(other.begin(), other.end()); |
| } |
| static_assert(!std::is_const<mapped_type>::value && |
| !std::is_const<key_type>::value, |
| "We do not support const types."); |
| static_assert(!std::is_volatile<mapped_type>::value && |
| !std::is_volatile<key_type>::value, |
| "We do not support volatile types."); |
| static_assert(!std::is_pointer<mapped_type>::value && |
| !std::is_pointer<key_type>::value, |
| "We do not support pointer types."); |
| static_assert(!std::is_reference<mapped_type>::value && |
| !std::is_reference<key_type>::value, |
| "We do not support reference types."); |
| static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() { |
| static_assert(alignof(internal::NodeBase) >= alignof(mapped_type), |
| "Alignment of mapped type is too high."); |
| static_assert( |
| absl::disjunction<internal::is_supported_integral_type<key_type>, |
| internal::is_supported_string_type<key_type>, |
| internal::is_internal_map_key_type<key_type>>::value, |
| "We only support integer, string, or designated internal key " |
| "types."); |
| static_assert(absl::disjunction< |
| internal::is_supported_scalar_type<mapped_type>, |
| is_proto_enum<mapped_type>, |
| internal::is_supported_message_type<mapped_type>, |
| internal::is_internal_map_value_type<mapped_type>>::value, |
| "We only support scalar, Message, and designated internal " |
| "mapped types."); |
| // The Rust implementation that wraps C++ protos relies on the ability to |
| // create an UntypedMapBase and cast a pointer of it to google::protobuf::Map*. |
| static_assert( |
| sizeof(Map) == sizeof(internal::UntypedMapBase), |
| "Map must not have any data members beyond what is in UntypedMapBase."); |
| } |
| |
| template <typename P> |
| struct SameAsElementReference |
| : std::is_same<typename std::remove_cv< |
| typename std::remove_reference<reference>::type>::type, |
| typename std::remove_cv< |
| typename std::remove_reference<P>::type>::type> {}; |
| |
| template <class P> |
| using RequiresInsertable = |
| typename std::enable_if<std::is_convertible<P, init_type>::value || |
| SameAsElementReference<P>::value, |
| int>::type; |
| template <class P> |
| using RequiresNotInit = |
| typename std::enable_if<!std::is_same<P, init_type>::value, int>::type; |
| |
| template <typename LookupKey> |
| using key_arg = typename TS::template key_arg<LookupKey>; |
| |
| public: |
| // Iterators |
| class const_iterator : private internal::UntypedMapIterator { |
| using BaseIt = internal::UntypedMapIterator; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename Map::value_type; |
| using difference_type = ptrdiff_t; |
| using pointer = const value_type*; |
| using reference = const value_type&; |
| |
| const_iterator() : BaseIt{nullptr, nullptr, 0} {} |
| const_iterator(const const_iterator&) = default; |
| const_iterator& operator=(const const_iterator&) = default; |
| explicit const_iterator(BaseIt it) : BaseIt(it) {} |
| |
| reference operator*() const { return static_cast<Node*>(this->node_)->kv; } |
| pointer operator->() const { return &(operator*()); } |
| |
| const_iterator& operator++() { |
| this->PlusPlus(); |
| return *this; |
| } |
| const_iterator operator++(int) { |
| auto copy = *this; |
| this->PlusPlus(); |
| return copy; |
| } |
| |
| friend bool operator==(const const_iterator& a, const const_iterator& b) { |
| return a.Equals(b); |
| } |
| friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
| return !a.Equals(b); |
| } |
| |
| private: |
| using BaseIt::BaseIt; |
| friend class Map; |
| friend class internal::UntypedMapIterator; |
| friend class internal::TypeDefinedMapFieldBase<Key, T>; |
| }; |
| |
| class iterator : private internal::UntypedMapIterator { |
| using BaseIt = internal::UntypedMapIterator; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename Map::value_type; |
| using difference_type = ptrdiff_t; |
| using pointer = value_type*; |
| using reference = value_type&; |
| |
| iterator() : BaseIt{nullptr, nullptr, 0} {} |
| iterator(const iterator&) = default; |
| iterator& operator=(const iterator&) = default; |
| explicit iterator(BaseIt it) : BaseIt(it) {} |
| |
| reference operator*() const { return static_cast<Node*>(this->node_)->kv; } |
| pointer operator->() const { return &(operator*()); } |
| |
| iterator& operator++() { |
| this->PlusPlus(); |
| return *this; |
| } |
| iterator operator++(int) { |
| auto copy = *this; |
| this->PlusPlus(); |
| return copy; |
| } |
| |
| // Allow implicit conversion to const_iterator. |
| operator const_iterator() const { // NOLINT(runtime/explicit) |
| return const_iterator(static_cast<const BaseIt&>(*this)); |
| } |
| |
| friend bool operator==(const iterator& a, const iterator& b) { |
| return a.Equals(b); |
| } |
| friend bool operator!=(const iterator& a, const iterator& b) { |
| return !a.Equals(b); |
| } |
| |
| private: |
| using BaseIt::BaseIt; |
| friend class Map; |
| }; |
| |
| iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return iterator(Base::begin()); |
| } |
| iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(); } |
| const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_iterator(Base::begin()); |
| } |
| const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_iterator(); |
| } |
| const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return begin(); |
| } |
| const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } |
| |
| using Base::empty; |
| using Base::size; |
| |
| // Element access |
| template <typename K = key_type> |
| T& operator[](const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return try_emplace(key).first->second; |
| } |
| template < |
| typename K = key_type, |
| // Disable for integral types to reduce code bloat. |
| typename = typename std::enable_if<!std::is_integral<K>::value>::type> |
| T& operator[](key_arg<K>&& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return try_emplace(std::forward<K>(key)).first->second; |
| } |
| |
| template <typename K = key_type> |
| const T& at(const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| const_iterator it = find(key); |
| ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
| return it->second; |
| } |
| |
| template <typename K = key_type> |
| T& at(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| iterator it = find(key); |
| ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
| return it->second; |
| } |
| |
| // Lookup |
| template <typename K = key_type> |
| size_type count(const key_arg<K>& key) const { |
| return find(key) == end() ? 0 : 1; |
| } |
| |
| template <typename K = key_type> |
| const_iterator find(const key_arg<K>& key) const |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_cast<Map*>(this)->find(key); |
| } |
| template <typename K = key_type> |
| iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| auto res = this->FindHelper(TS::ToView(key)); |
| return iterator(internal::UntypedMapIterator{static_cast<Node*>(res.node), |
| this, res.bucket}); |
| } |
| |
| template <typename K = key_type> |
| bool contains(const key_arg<K>& key) const { |
| return find(key) != end(); |
| } |
| |
| template <typename K = key_type> |
| std::pair<const_iterator, const_iterator> equal_range( |
| const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| const_iterator it = find(key); |
| if (it == end()) { |
| return std::pair<const_iterator, const_iterator>(it, it); |
| } else { |
| const_iterator begin = it++; |
| return std::pair<const_iterator, const_iterator>(begin, it); |
| } |
| } |
| |
| template <typename K = key_type> |
| std::pair<iterator, iterator> equal_range(const key_arg<K>& key) |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| iterator it = find(key); |
| if (it == end()) { |
| return std::pair<iterator, iterator>(it, it); |
| } else { |
| iterator begin = it++; |
| return std::pair<iterator, iterator>(begin, it); |
| } |
| } |
| |
| // insert |
| template <typename K, typename... Args> |
| std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| // Case 1: `mapped_type` is arena constructible. A temporary object is |
| // created and then (if `Args` are not empty) assigned to a mapped value |
| // that was created with the arena. |
| if constexpr (Arena::is_arena_constructable<mapped_type>::value) { |
| if constexpr (sizeof...(Args) == 0) { |
| // case 1.1: "default" constructed (e.g. from arena only). |
| return TryEmplaceInternal(std::forward<K>(k)); |
| } else { |
| // case 1.2: "default" constructed + copy/move assignment |
| auto p = TryEmplaceInternal(std::forward<K>(k)); |
| if (p.second) { |
| if constexpr (std::is_same<void(typename std::decay<Args>::type...), |
| void(mapped_type)>::value) { |
| // Avoid the temporary when the input is the right type. |
| p.first->second = (std::forward<Args>(args), ...); |
| } else { |
| p.first->second = mapped_type(std::forward<Args>(args)...); |
| } |
| } |
| return p; |
| } |
| } else { |
| // Case 2: `mapped_type` is not arena constructible. Using in-place |
| // construction. |
| return TryEmplaceInternal(std::forward<K>(k), |
| std::forward<Args>(args)...); |
| } |
| } |
| std::pair<iterator, bool> insert(init_type&& value) |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return try_emplace(std::move(value.first), std::move(value.second)); |
| } |
| template <typename P, RequiresInsertable<P> = 0> |
| std::pair<iterator, bool> insert(P&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return try_emplace(std::forward<P>(value).first, |
| std::forward<P>(value).second); |
| } |
| template <typename... Args> |
| std::pair<iterator, bool> emplace(Args&&... args) |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| // We try to construct `init_type` from `Args` with a fall back to |
| // `value_type`. The latter is less desired as it unconditionally makes a |
| // copy of `value_type::first`. |
| if constexpr (std::is_constructible<init_type, Args...>::value) { |
| return insert(init_type(std::forward<Args>(args)...)); |
| } else { |
| return insert(value_type(std::forward<Args>(args)...)); |
| } |
| } |
| template <class InputIt> |
| void insert(InputIt first, InputIt last) { |
| for (; first != last; ++first) { |
| auto&& pair = *first; |
| try_emplace(pair.first, pair.second); |
| } |
| } |
| void insert(std::initializer_list<init_type> values) { |
| insert(values.begin(), values.end()); |
| } |
| template <typename P, RequiresNotInit<P> = 0, |
| RequiresInsertable<const P&> = 0> |
| void insert(std::initializer_list<P> values) { |
| insert(values.begin(), values.end()); |
| } |
| |
| // Erase and clear |
| template <typename K = key_type> |
| size_type erase(const key_arg<K>& key) { |
| iterator it = find(key); |
| if (it == end()) { |
| return 0; |
| } else { |
| erase(it); |
| return 1; |
| } |
| } |
| |
| iterator erase(iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| auto next = std::next(pos); |
| ABSL_DCHECK_EQ(pos.m_, static_cast<Base*>(this)); |
| auto* node = static_cast<Node*>(pos.node_); |
| this->erase_no_destroy(pos.bucket_index_, node); |
| DestroyNode(node); |
| return next; |
| } |
| |
| void erase(iterator first, iterator last) { |
| while (first != last) { |
| first = erase(first); |
| } |
| } |
| |
| void clear() { |
| if (this->num_buckets_ == internal::kGlobalEmptyTableSize) return; |
| this->ClearTable(this->template MakeClearInput<Node>(true)); |
| } |
| |
| // Assign |
| Map& operator=(const Map& other) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| if (this != &other) { |
| clear(); |
| insert(other.begin(), other.end()); |
| } |
| return *this; |
| } |
| |
| void swap(Map& other) { |
| if (arena() == other.arena()) { |
| InternalSwap(&other); |
| } else { |
| // TODO: optimize this. The temporary copy can be allocated |
| // in the same arena as the other message, and the "other = copy" can |
| // be replaced with the fast-path swap above. |
| Map copy = *this; |
| *this = other; |
| other = copy; |
| } |
| } |
| |
| void InternalSwap(Map* other) { |
| internal::UntypedMapBase::InternalSwap(other); |
| } |
| |
| hasher hash_function() const { return {}; } |
| |
| size_t SpaceUsedExcludingSelfLong() const { |
| if (empty()) return 0; |
| return SpaceUsedInternal() + internal::SpaceUsedInValues(this); |
| } |
| |
| static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) { |
| return PROTOBUF_FIELD_OFFSET(Map, alloc_); |
| } |
| |
| private: |
| // Linked-list nodes, as one would expect for a chaining hash table. |
| struct Node : Base::KeyNode { |
| using key_type = Key; |
| using mapped_type = T; |
| static constexpr internal::MapNodeSizeInfoT size_info() { |
| return internal::MakeNodeInfo(sizeof(Node), |
| PROTOBUF_FIELD_OFFSET(Node, kv.second)); |
| } |
| value_type kv; |
| }; |
| |
| using Tree = internal::TreeForMap; |
| using TreeIterator = typename Tree::iterator; |
| using TableEntryPtr = internal::TableEntryPtr; |
| |
| static Node* NodeFromTreeIterator(TreeIterator it) { |
| static_assert( |
| PROTOBUF_FIELD_OFFSET(Node, kv.first) == Base::KeyNode::kOffset, ""); |
| static_assert(alignof(Node) == alignof(internal::NodeBase), ""); |
| return static_cast<Node*>(it->second); |
| } |
| |
| void DestroyNode(Node* node) { |
| if (this->alloc_.arena() == nullptr) { |
| node->kv.first.~key_type(); |
| node->kv.second.~mapped_type(); |
| this->DeallocNode(node, sizeof(Node)); |
| } |
| } |
| |
| size_t SpaceUsedInternal() const { |
| return this->SpaceUsedInTable(sizeof(Node)); |
| } |
| |
| template <typename K, typename... Args> |
| std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) { |
| auto p = this->FindHelper(TS::ToView(k)); |
| internal::map_index_t b = p.bucket; |
| // Case 1: key was already present. |
| if (p.node != nullptr) |
| return std::make_pair(iterator(internal::UntypedMapIterator{ |
| static_cast<Node*>(p.node), this, p.bucket}), |
| false); |
| // Case 2: insert. |
| if (this->ResizeIfLoadIsOutOfRange(this->num_elements_ + 1)) { |
| b = this->BucketNumber(TS::ToView(k)); |
| } |
| // If K is not key_type, make the conversion to key_type explicit. |
| using TypeToInit = typename std::conditional< |
| std::is_same<typename std::decay<K>::type, key_type>::value, K&&, |
| key_type>::type; |
| Node* node = static_cast<Node*>(this->AllocNode(sizeof(Node))); |
| |
| // Even when arena is nullptr, CreateInArenaStorage is still used to |
| // ensure the arena of submessage will be consistent. Otherwise, |
| // submessage may have its own arena when message-owned arena is enabled. |
| // Note: This only works if `Key` is not arena constructible. |
| if (!internal::InitializeMapKey(const_cast<Key*>(&node->kv.first), |
| std::forward<K>(k), this->alloc_.arena())) { |
| Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first), |
| this->alloc_.arena(), |
| static_cast<TypeToInit>(std::forward<K>(k))); |
| } |
| // Note: if `T` is arena constructible, `Args` needs to be empty. |
| Arena::CreateInArenaStorage(&node->kv.second, this->alloc_.arena(), |
| std::forward<Args>(args)...); |
| |
| this->InsertUnique(b, node); |
| ++this->num_elements_; |
| return std::make_pair(iterator(internal::UntypedMapIterator{node, this, b}), |
| true); |
| } |
| |
| using Base::arena; |
| |
| friend class Arena; |
| template <typename, typename> |
| friend class internal::TypeDefinedMapFieldBase; |
| using InternalArenaConstructable_ = void; |
| using DestructorSkippable_ = void; |
| template <typename K, typename V> |
| friend class internal::MapFieldLite; |
| friend class internal::TcParser; |
| friend struct internal::MapTestPeer; |
| friend struct internal::MapBenchmarkPeer; |
| friend class internal::RustMapHelper; |
| friend class internal::v2::TableDriven; |
| }; |
| |
| namespace internal { |
| template <typename... T> |
| PROTOBUF_NOINLINE void MapMergeFrom(Map<T...>& dest, const Map<T...>& src) { |
| for (const auto& elem : src) { |
| dest[elem.first] = elem.second; |
| } |
| } |
| } // namespace internal |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #include "google/protobuf/port_undef.inc" |
| |
| #endif // GOOGLE_PROTOBUF_MAP_H__ |