Feng Xiao | e841bac | 2015-12-11 17:09:20 -0800 | [diff] [blame] | 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | /** |
| 32 | * @fileoverview This file contains helper code used by jspb.utils to |
| 33 | * handle 64-bit integer conversion to/from strings. |
| 34 | * |
| 35 | * @author cfallin@google.com (Chris Fallin) |
| 36 | * |
| 37 | * TODO(haberman): move this to javascript/closure/math? |
| 38 | */ |
| 39 | |
| 40 | goog.provide('jspb.arith.Int64'); |
| 41 | goog.provide('jspb.arith.UInt64'); |
| 42 | |
| 43 | /** |
| 44 | * UInt64 implements some 64-bit arithmetic routines necessary for properly |
| 45 | * handling 64-bit integer fields. It implements lossless integer arithmetic on |
| 46 | * top of JavaScript's number type, which has only 53 bits of precision, by |
| 47 | * representing 64-bit integers as two 32-bit halves. |
| 48 | * |
| 49 | * @param {number} lo The low 32 bits. |
| 50 | * @param {number} hi The high 32 bits. |
| 51 | * @constructor |
| 52 | */ |
| 53 | jspb.arith.UInt64 = function(lo, hi) { |
| 54 | /** |
| 55 | * The low 32 bits. |
| 56 | * @public {number} |
| 57 | */ |
| 58 | this.lo = lo; |
| 59 | /** |
| 60 | * The high 32 bits. |
| 61 | * @public {number} |
| 62 | */ |
| 63 | this.hi = hi; |
| 64 | }; |
| 65 | |
| 66 | |
| 67 | /** |
| 68 | * Compare two 64-bit numbers. Returns -1 if the first is |
| 69 | * less, +1 if the first is greater, or 0 if both are equal. |
| 70 | * @param {!jspb.arith.UInt64} other |
| 71 | * @return {number} |
| 72 | */ |
| 73 | jspb.arith.UInt64.prototype.cmp = function(other) { |
| 74 | if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) { |
| 75 | return -1; |
| 76 | } else if (this.hi == other.hi && this.lo == other.lo) { |
| 77 | return 0; |
| 78 | } else { |
| 79 | return 1; |
| 80 | } |
| 81 | }; |
| 82 | |
| 83 | |
| 84 | /** |
| 85 | * Right-shift this number by one bit. |
| 86 | * @return {!jspb.arith.UInt64} |
| 87 | */ |
| 88 | jspb.arith.UInt64.prototype.rightShift = function() { |
| 89 | var hi = this.hi >>> 1; |
| 90 | var lo = (this.lo >>> 1) | ((this.hi & 1) << 31); |
| 91 | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
| 92 | }; |
| 93 | |
| 94 | |
| 95 | /** |
| 96 | * Left-shift this number by one bit. |
| 97 | * @return {!jspb.arith.UInt64} |
| 98 | */ |
| 99 | jspb.arith.UInt64.prototype.leftShift = function() { |
| 100 | var lo = this.lo << 1; |
| 101 | var hi = (this.hi << 1) | (this.lo >>> 31); |
| 102 | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
| 103 | }; |
| 104 | |
| 105 | |
| 106 | /** |
| 107 | * Test the MSB. |
| 108 | * @return {boolean} |
| 109 | */ |
| 110 | jspb.arith.UInt64.prototype.msb = function() { |
| 111 | return !!(this.hi & 0x80000000); |
| 112 | }; |
| 113 | |
| 114 | |
| 115 | /** |
| 116 | * Test the LSB. |
| 117 | * @return {boolean} |
| 118 | */ |
| 119 | jspb.arith.UInt64.prototype.lsb = function() { |
| 120 | return !!(this.lo & 1); |
| 121 | }; |
| 122 | |
| 123 | |
| 124 | /** |
| 125 | * Test whether this number is zero. |
| 126 | * @return {boolean} |
| 127 | */ |
| 128 | jspb.arith.UInt64.prototype.zero = function() { |
| 129 | return this.lo == 0 && this.hi == 0; |
| 130 | }; |
| 131 | |
| 132 | |
| 133 | /** |
| 134 | * Add two 64-bit numbers to produce a 64-bit number. |
| 135 | * @param {!jspb.arith.UInt64} other |
| 136 | * @return {!jspb.arith.UInt64} |
| 137 | */ |
| 138 | jspb.arith.UInt64.prototype.add = function(other) { |
| 139 | var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; |
| 140 | var hi = |
| 141 | (((this.hi + other.hi) & 0xffffffff) >>> 0) + |
| 142 | (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); |
| 143 | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
| 144 | }; |
| 145 | |
| 146 | |
| 147 | /** |
| 148 | * Subtract two 64-bit numbers to produce a 64-bit number. |
| 149 | * @param {!jspb.arith.UInt64} other |
| 150 | * @return {!jspb.arith.UInt64} |
| 151 | */ |
| 152 | jspb.arith.UInt64.prototype.sub = function(other) { |
| 153 | var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; |
| 154 | var hi = |
| 155 | (((this.hi - other.hi) & 0xffffffff) >>> 0) - |
| 156 | (((this.lo - other.lo) < 0) ? 1 : 0); |
| 157 | return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
| 158 | }; |
| 159 | |
| 160 | |
| 161 | /** |
| 162 | * Multiply two 32-bit numbers to produce a 64-bit number. |
| 163 | * @param {number} a The first integer: must be in [0, 2^32-1). |
| 164 | * @param {number} b The second integer: must be in [0, 2^32-1). |
| 165 | * @return {!jspb.arith.UInt64} |
| 166 | */ |
| 167 | jspb.arith.UInt64.mul32x32 = function(a, b) { |
| 168 | // Directly multiplying two 32-bit numbers may produce up to 64 bits of |
| 169 | // precision, thus losing precision because of the 53-bit mantissa of |
| 170 | // JavaScript numbers. So we multiply with 16-bit digits (radix 65536) |
| 171 | // instead. |
| 172 | var aLow = (a & 0xffff); |
| 173 | var aHigh = (a >>> 16); |
| 174 | var bLow = (b & 0xffff); |
| 175 | var bHigh = (b >>> 16); |
| 176 | var productLow = |
| 177 | // 32-bit result, result bits 0-31, take all 32 bits |
| 178 | (aLow * bLow) + |
| 179 | // 32-bit result, result bits 16-47, take bottom 16 as our top 16 |
| 180 | ((aLow * bHigh) & 0xffff) * 0x10000 + |
| 181 | // 32-bit result, result bits 16-47, take bottom 16 as our top 16 |
| 182 | ((aHigh * bLow) & 0xffff) * 0x10000; |
| 183 | var productHigh = |
| 184 | // 32-bit result, result bits 32-63, take all 32 bits |
| 185 | (aHigh * bHigh) + |
| 186 | // 32-bit result, result bits 16-47, take top 16 as our bottom 16 |
| 187 | ((aLow * bHigh) >>> 16) + |
| 188 | // 32-bit result, result bits 16-47, take top 16 as our bottom 16 |
| 189 | ((aHigh * bLow) >>> 16); |
| 190 | |
| 191 | // Carry. Note that we actually have up to *two* carries due to addition of |
| 192 | // three terms. |
| 193 | while (productLow >= 0x100000000) { |
| 194 | productLow -= 0x100000000; |
| 195 | productHigh += 1; |
| 196 | } |
| 197 | |
| 198 | return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0); |
| 199 | }; |
| 200 | |
| 201 | |
| 202 | /** |
| 203 | * Multiply this number by a 32-bit number, producing a 96-bit number, then |
| 204 | * truncate the top 32 bits. |
| 205 | * @param {number} a The multiplier. |
| 206 | * @return {!jspb.arith.UInt64} |
| 207 | */ |
| 208 | jspb.arith.UInt64.prototype.mul = function(a) { |
| 209 | // Produce two parts: at bits 0-63, and 32-95. |
| 210 | var lo = jspb.arith.UInt64.mul32x32(this.lo, a); |
| 211 | var hi = jspb.arith.UInt64.mul32x32(this.hi, a); |
| 212 | // Left-shift hi by 32 bits, truncating its top bits. The parts will then be |
| 213 | // aligned for addition. |
| 214 | hi.hi = hi.lo; |
| 215 | hi.lo = 0; |
| 216 | return lo.add(hi); |
| 217 | }; |
| 218 | |
| 219 | |
| 220 | /** |
| 221 | * Divide a 64-bit number by a 32-bit number to produce a |
| 222 | * 64-bit quotient and a 32-bit remainder. |
| 223 | * @param {number} _divisor |
Adam Cozzette | 92a7e77 | 2017-12-01 10:05:10 -0800 | [diff] [blame] | 224 | * @return {Array<jspb.arith.UInt64>} array of [quotient, remainder], |
Feng Xiao | e841bac | 2015-12-11 17:09:20 -0800 | [diff] [blame] | 225 | * unless divisor is 0, in which case an empty array is returned. |
| 226 | */ |
| 227 | jspb.arith.UInt64.prototype.div = function(_divisor) { |
| 228 | if (_divisor == 0) { |
| 229 | return []; |
| 230 | } |
| 231 | |
| 232 | // We perform long division using a radix-2 algorithm, for simplicity (i.e., |
| 233 | // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care |
| 234 | // to get the variable shifts right. |
| 235 | var quotient = new jspb.arith.UInt64(0, 0); |
| 236 | var remainder = new jspb.arith.UInt64(this.lo, this.hi); |
| 237 | var divisor = new jspb.arith.UInt64(_divisor, 0); |
| 238 | var unit = new jspb.arith.UInt64(1, 0); |
| 239 | |
| 240 | // Left-shift the divisor and unit until the high bit of divisor is set. |
| 241 | while (!divisor.msb()) { |
| 242 | divisor = divisor.leftShift(); |
| 243 | unit = unit.leftShift(); |
| 244 | } |
| 245 | |
| 246 | // Perform long division one bit at a time. |
| 247 | while (!unit.zero()) { |
| 248 | // If divisor < remainder, add unit to quotient and subtract divisor from |
| 249 | // remainder. |
| 250 | if (divisor.cmp(remainder) <= 0) { |
| 251 | quotient = quotient.add(unit); |
| 252 | remainder = remainder.sub(divisor); |
| 253 | } |
| 254 | // Right-shift the divisor and unit. |
| 255 | divisor = divisor.rightShift(); |
| 256 | unit = unit.rightShift(); |
| 257 | } |
| 258 | |
| 259 | return [quotient, remainder]; |
| 260 | }; |
| 261 | |
| 262 | |
| 263 | /** |
| 264 | * Convert a 64-bit number to a string. |
| 265 | * @return {string} |
| 266 | * @override |
| 267 | */ |
| 268 | jspb.arith.UInt64.prototype.toString = function() { |
| 269 | var result = ''; |
| 270 | var num = this; |
| 271 | while (!num.zero()) { |
| 272 | var divResult = num.div(10); |
| 273 | var quotient = divResult[0], remainder = divResult[1]; |
| 274 | result = remainder.lo + result; |
| 275 | num = quotient; |
| 276 | } |
| 277 | if (result == '') { |
| 278 | result = '0'; |
| 279 | } |
| 280 | return result; |
| 281 | }; |
| 282 | |
| 283 | |
| 284 | /** |
| 285 | * Parse a string into a 64-bit number. Returns `null` on a parse error. |
| 286 | * @param {string} s |
| 287 | * @return {?jspb.arith.UInt64} |
| 288 | */ |
| 289 | jspb.arith.UInt64.fromString = function(s) { |
| 290 | var result = new jspb.arith.UInt64(0, 0); |
| 291 | // optimization: reuse this instance for each digit. |
| 292 | var digit64 = new jspb.arith.UInt64(0, 0); |
| 293 | for (var i = 0; i < s.length; i++) { |
| 294 | if (s[i] < '0' || s[i] > '9') { |
| 295 | return null; |
| 296 | } |
| 297 | var digit = parseInt(s[i], 10); |
| 298 | digit64.lo = digit; |
| 299 | result = result.mul(10).add(digit64); |
| 300 | } |
| 301 | return result; |
| 302 | }; |
| 303 | |
| 304 | |
| 305 | /** |
| 306 | * Make a copy of the uint64. |
| 307 | * @return {!jspb.arith.UInt64} |
| 308 | */ |
| 309 | jspb.arith.UInt64.prototype.clone = function() { |
| 310 | return new jspb.arith.UInt64(this.lo, this.hi); |
| 311 | }; |
| 312 | |
| 313 | |
| 314 | /** |
| 315 | * Int64 is like UInt64, but modifies string conversions to interpret the stored |
| 316 | * 64-bit value as a twos-complement-signed integer. It does *not* support the |
| 317 | * full range of operations that UInt64 does: only add, subtract, and string |
| 318 | * conversions. |
| 319 | * |
| 320 | * N.B. that multiply and divide routines are *NOT* supported. They will throw |
| 321 | * exceptions. (They are not necessary to implement string conversions, which |
| 322 | * are the only operations we really need in jspb.) |
| 323 | * |
| 324 | * @param {number} lo The low 32 bits. |
| 325 | * @param {number} hi The high 32 bits. |
| 326 | * @constructor |
| 327 | */ |
| 328 | jspb.arith.Int64 = function(lo, hi) { |
| 329 | /** |
| 330 | * The low 32 bits. |
| 331 | * @public {number} |
| 332 | */ |
| 333 | this.lo = lo; |
| 334 | /** |
| 335 | * The high 32 bits. |
| 336 | * @public {number} |
| 337 | */ |
| 338 | this.hi = hi; |
| 339 | }; |
| 340 | |
| 341 | |
| 342 | /** |
| 343 | * Add two 64-bit numbers to produce a 64-bit number. |
| 344 | * @param {!jspb.arith.Int64} other |
| 345 | * @return {!jspb.arith.Int64} |
| 346 | */ |
| 347 | jspb.arith.Int64.prototype.add = function(other) { |
| 348 | var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; |
| 349 | var hi = |
| 350 | (((this.hi + other.hi) & 0xffffffff) >>> 0) + |
| 351 | (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); |
| 352 | return new jspb.arith.Int64(lo >>> 0, hi >>> 0); |
| 353 | }; |
| 354 | |
| 355 | |
| 356 | /** |
| 357 | * Subtract two 64-bit numbers to produce a 64-bit number. |
| 358 | * @param {!jspb.arith.Int64} other |
| 359 | * @return {!jspb.arith.Int64} |
| 360 | */ |
| 361 | jspb.arith.Int64.prototype.sub = function(other) { |
| 362 | var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; |
| 363 | var hi = |
| 364 | (((this.hi - other.hi) & 0xffffffff) >>> 0) - |
| 365 | (((this.lo - other.lo) < 0) ? 1 : 0); |
| 366 | return new jspb.arith.Int64(lo >>> 0, hi >>> 0); |
| 367 | }; |
| 368 | |
| 369 | |
| 370 | /** |
| 371 | * Make a copy of the int64. |
| 372 | * @return {!jspb.arith.Int64} |
| 373 | */ |
| 374 | jspb.arith.Int64.prototype.clone = function() { |
| 375 | return new jspb.arith.Int64(this.lo, this.hi); |
| 376 | }; |
| 377 | |
| 378 | |
| 379 | /** |
| 380 | * Convert a 64-bit number to a string. |
| 381 | * @return {string} |
| 382 | * @override |
| 383 | */ |
| 384 | jspb.arith.Int64.prototype.toString = function() { |
| 385 | // If the number is negative, find its twos-complement inverse. |
| 386 | var sign = (this.hi & 0x80000000) != 0; |
| 387 | var num = new jspb.arith.UInt64(this.lo, this.hi); |
| 388 | if (sign) { |
| 389 | num = new jspb.arith.UInt64(0, 0).sub(num); |
| 390 | } |
| 391 | return (sign ? '-' : '') + num.toString(); |
| 392 | }; |
| 393 | |
| 394 | |
| 395 | /** |
| 396 | * Parse a string into a 64-bit number. Returns `null` on a parse error. |
| 397 | * @param {string} s |
| 398 | * @return {?jspb.arith.Int64} |
| 399 | */ |
| 400 | jspb.arith.Int64.fromString = function(s) { |
| 401 | var hasNegative = (s.length > 0 && s[0] == '-'); |
| 402 | if (hasNegative) { |
| 403 | s = s.substring(1); |
| 404 | } |
| 405 | var num = jspb.arith.UInt64.fromString(s); |
| 406 | if (num === null) { |
| 407 | return null; |
| 408 | } |
| 409 | if (hasNegative) { |
| 410 | num = new jspb.arith.UInt64(0, 0).sub(num); |
| 411 | } |
| 412 | return new jspb.arith.Int64(num.lo, num.hi); |
| 413 | }; |