| # SAX |
| |
| The term "SAX" originated from [Simple API for XML](http://en.wikipedia.org/wiki/Simple_API_for_XML). We borrowed this term for JSON parsing and generation. |
| |
| In RapidJSON, `Reader` (typedef of `GenericReader<...>`) is the SAX-style parser for JSON, and `Writer` (typedef of `GenericWriter<...>`) is the SAX-style generator for JSON. |
| |
| [TOC] |
| |
| # Reader {#Reader} |
| |
| `Reader` parses a JSON from a stream. While it reads characters from the stream, it analyzes the characters according to the syntax of JSON, and publishes events to a handler. |
| |
| For example, here is a JSON. |
| |
| ~~~~~~~~~~js |
| { |
| "hello": "world", |
| "t": true , |
| "f": false, |
| "n": null, |
| "i": 123, |
| "pi": 3.1416, |
| "a": [1, 2, 3, 4] |
| } |
| ~~~~~~~~~~ |
| |
| When a `Reader` parses this JSON, it publishes the following events to the handler sequentially: |
| |
| ~~~~~~~~~~ |
| StartObject() |
| Key("hello", 5, true) |
| String("world", 5, true) |
| Key("t", 1, true) |
| Bool(true) |
| Key("f", 1, true) |
| Bool(false) |
| Key("n", 1, true) |
| Null() |
| Key("i") |
| UInt(123) |
| Key("pi") |
| Double(3.1416) |
| Key("a") |
| StartArray() |
| Uint(1) |
| Uint(2) |
| Uint(3) |
| Uint(4) |
| EndArray(4) |
| EndObject(7) |
| ~~~~~~~~~~ |
| |
| These events can be easily matched with the JSON, but some event parameters need further explanation. Let's see the `simplereader` example which produces exactly the same output as above: |
| |
| ~~~~~~~~~~cpp |
| #include "rapidjson/reader.h" |
| #include <iostream> |
| |
| using namespace rapidjson; |
| using namespace std; |
| |
| struct MyHandler : public BaseReaderHandler<UTF8<>, MyHandler> { |
| bool Null() { cout << "Null()" << endl; return true; } |
| bool Bool(bool b) { cout << "Bool(" << boolalpha << b << ")" << endl; return true; } |
| bool Int(int i) { cout << "Int(" << i << ")" << endl; return true; } |
| bool Uint(unsigned u) { cout << "Uint(" << u << ")" << endl; return true; } |
| bool Int64(int64_t i) { cout << "Int64(" << i << ")" << endl; return true; } |
| bool Uint64(uint64_t u) { cout << "Uint64(" << u << ")" << endl; return true; } |
| bool Double(double d) { cout << "Double(" << d << ")" << endl; return true; } |
| bool String(const char* str, SizeType length, bool copy) { |
| cout << "String(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; |
| return true; |
| } |
| bool StartObject() { cout << "StartObject()" << endl; return true; } |
| bool Key(const char* str, SizeType length, bool copy) { |
| cout << "Key(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; |
| return true; |
| } |
| bool EndObject(SizeType memberCount) { cout << "EndObject(" << memberCount << ")" << endl; return true; } |
| bool StartArray() { cout << "StartArray()" << endl; return true; } |
| bool EndArray(SizeType elementCount) { cout << "EndArray(" << elementCount << ")" << endl; return true; } |
| }; |
| |
| void main() { |
| const char json[] = " { \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3, 4] } "; |
| |
| MyHandler handler; |
| Reader reader; |
| StringStream ss(json); |
| reader.Parse(ss, handler); |
| } |
| ~~~~~~~~~~ |
| |
| Note that RapidJSON uses templates to statically bind the `Reader` type and the handler type, instead of using classes with virtual functions. This paradigm can improve performance by inlining functions. |
| |
| ## Handler {#Handler} |
| |
| As shown in the previous example, the user needs to implement a handler which consumes the events (via function calls) from the `Reader`. The handler must contain the following member functions. |
| |
| ~~~~~~~~~~cpp |
| class Handler { |
| bool Null(); |
| bool Bool(bool b); |
| bool Int(int i); |
| bool Uint(unsigned i); |
| bool Int64(int64_t i); |
| bool Uint64(uint64_t i); |
| bool Double(double d); |
| bool RawNumber(const Ch* str, SizeType length, bool copy); |
| bool String(const Ch* str, SizeType length, bool copy); |
| bool StartObject(); |
| bool Key(const Ch* str, SizeType length, bool copy); |
| bool EndObject(SizeType memberCount); |
| bool StartArray(); |
| bool EndArray(SizeType elementCount); |
| }; |
| ~~~~~~~~~~ |
| |
| `Null()` is called when the `Reader` encounters a JSON null value. |
| |
| `Bool(bool)` is called when the `Reader` encounters a JSON true or false value. |
| |
| When the `Reader` encounters a JSON number, it chooses a suitable C++ type mapping. And then it calls *one* function out of `Int(int)`, `Uint(unsigned)`, `Int64(int64_t)`, `Uint64(uint64_t)` and `Double(double)`. If `kParseNumbersAsStrings` is enabled, `Reader` will always calls `RawNumber()` instead. |
| |
| `String(const char* str, SizeType length, bool copy)` is called when the `Reader` encounters a string. The first parameter is pointer to the string. The second parameter is the length of the string (excluding the null terminator). Note that RapidJSON supports null character `\0` inside a string. If such situation happens, `strlen(str) < length`. The last `copy` indicates whether the handler needs to make a copy of the string. For normal parsing, `copy = true`. Only when *insitu* parsing is used, `copy = false`. And be aware that the character type depends on the target encoding, which will be explained later. |
| |
| When the `Reader` encounters the beginning of an object, it calls `StartObject()`. An object in JSON is a set of name-value pairs. If the object contains members it first calls `Key()` for the name of member, and then calls functions depending on the type of the value. These calls of name-value pairs repeat until calling `EndObject(SizeType memberCount)`. Note that the `memberCount` parameter is just an aid for the handler; users who do not need this parameter may ignore it. |
| |
| Arrays are similar to objects, but simpler. At the beginning of an array, the `Reader` calls `BeginArray()`. If there is elements, it calls functions according to the types of element. Similarly, in the last call `EndArray(SizeType elementCount)`, the parameter `elementCount` is just an aid for the handler. |
| |
| Every handler function returns a `bool`. Normally it should return `true`. If the handler encounters an error, it can return `false` to notify the event publisher to stop further processing. |
| |
| For example, when we parse a JSON with `Reader` and the handler detects that the JSON does not conform to the required schema, the handler can return `false` and let the `Reader` stop further parsing. This will place the `Reader` in an error state, with error code `kParseErrorTermination`. |
| |
| ## GenericReader {#GenericReader} |
| |
| As mentioned before, `Reader` is a typedef of a template class `GenericReader`: |
| |
| ~~~~~~~~~~cpp |
| namespace rapidjson { |
| |
| template <typename SourceEncoding, typename TargetEncoding, typename Allocator = MemoryPoolAllocator<> > |
| class GenericReader { |
| // ... |
| }; |
| |
| typedef GenericReader<UTF8<>, UTF8<> > Reader; |
| |
| } // namespace rapidjson |
| ~~~~~~~~~~ |
| |
| The `Reader` uses UTF-8 as both source and target encoding. The source encoding means the encoding in the JSON stream. The target encoding means the encoding of the `str` parameter in `String()` calls. For example, to parse a UTF-8 stream and output UTF-16 string events, you can define a reader by: |
| |
| ~~~~~~~~~~cpp |
| GenericReader<UTF8<>, UTF16<> > reader; |
| ~~~~~~~~~~ |
| |
| Note that, the default character type of `UTF16` is `wchar_t`. So this `reader` needs to call `String(const wchar_t*, SizeType, bool)` of the handler. |
| |
| The third template parameter `Allocator` is the allocator type for internal data structure (actually a stack). |
| |
| ## Parsing {#SaxParsing} |
| |
| The main function of `Reader` is used to parse JSON. |
| |
| ~~~~~~~~~~cpp |
| template <unsigned parseFlags, typename InputStream, typename Handler> |
| bool Parse(InputStream& is, Handler& handler); |
| |
| // with parseFlags = kDefaultParseFlags |
| template <typename InputStream, typename Handler> |
| bool Parse(InputStream& is, Handler& handler); |
| ~~~~~~~~~~ |
| |
| If an error occurs during parsing, it will return `false`. User can also call `bool HasParseError()`, `ParseErrorCode GetParseErrorCode()` and `size_t GetErrorOffset()` to obtain the error states. In fact, `Document` uses these `Reader` functions to obtain parse errors. Please refer to [DOM](doc/dom.md) for details about parse errors. |
| |
| ## Token-by-Token Parsing {#TokenByTokenParsing} |
| |
| Some users may wish to parse a JSON input stream a single token at a time, instead of immediately parsing an entire document without stopping. To parse JSON this way, instead of calling `Parse`, you can use the `IterativeParse` set of functions: |
| |
| ~~~~~~~~~~cpp |
| void IterativeParseInit(); |
| |
| template <unsigned parseFlags, typename InputStream, typename Handler> |
| bool IterativeParseNext(InputStream& is, Handler& handler); |
| |
| bool IterativeParseComplete(); |
| ~~~~~~~~~~ |
| |
| Here is an example of iteratively parsing JSON, token by token: |
| |
| ~~~~~~~~~~cpp |
| reader.IterativeParseInit(); |
| while (!reader.IterativeParseComplete()) { |
| reader.IterativeParseNext<kParseDefaultFlags>(is, handler); |
| // Your handler has been called once. |
| } |
| ~~~~~~~~~~ |
| |
| # Writer {#Writer} |
| |
| `Reader` converts (parses) JSON into events. `Writer` does exactly the opposite. It converts events into JSON. |
| |
| `Writer` is very easy to use. If your application only need to converts some data into JSON, it may be a good choice to use `Writer` directly, instead of building a `Document` and then stringifying it with a `Writer`. |
| |
| In `simplewriter` example, we do exactly the reverse of `simplereader`. |
| |
| ~~~~~~~~~~cpp |
| #include "rapidjson/writer.h" |
| #include "rapidjson/stringbuffer.h" |
| #include <iostream> |
| |
| using namespace rapidjson; |
| using namespace std; |
| |
| void main() { |
| StringBuffer s; |
| Writer<StringBuffer> writer(s); |
| |
| writer.StartObject(); |
| writer.Key("hello"); |
| writer.String("world"); |
| writer.Key("t"); |
| writer.Bool(true); |
| writer.Key("f"); |
| writer.Bool(false); |
| writer.Key("n"); |
| writer.Null(); |
| writer.Key("i"); |
| writer.Uint(123); |
| writer.Key("pi"); |
| writer.Double(3.1416); |
| writer.Key("a"); |
| writer.StartArray(); |
| for (unsigned i = 0; i < 4; i++) |
| writer.Uint(i); |
| writer.EndArray(); |
| writer.EndObject(); |
| |
| cout << s.GetString() << endl; |
| } |
| ~~~~~~~~~~ |
| |
| ~~~~~~~~~~ |
| {"hello":"world","t":true,"f":false,"n":null,"i":123,"pi":3.1416,"a":[0,1,2,3]} |
| ~~~~~~~~~~ |
| |
| There are two `String()` and `Key()` overloads. One is the same as defined in handler concept with 3 parameters. It can handle string with null characters. Another one is the simpler version used in the above example. |
| |
| Note that, the example code does not pass any parameters in `EndArray()` and `EndObject()`. An `SizeType` can be passed but it will be simply ignored by `Writer`. |
| |
| You may doubt that, why not just using `sprintf()` or `std::stringstream` to build a JSON? |
| |
| There are various reasons: |
| 1. `Writer` must output a well-formed JSON. If there is incorrect event sequence (e.g. `Int()` just after `StartObject()`), it generates assertion fail in debug mode. |
| 2. `Writer::String()` can handle string escaping (e.g. converting code point `U+000A` to `\n`) and Unicode transcoding. |
| 3. `Writer` handles number output consistently. |
| 4. `Writer` implements the event handler concept. It can be used to handle events from `Reader`, `Document` or other event publisher. |
| 5. `Writer` can be optimized for different platforms. |
| |
| Anyway, using `Writer` API is even simpler than generating a JSON by ad hoc methods. |
| |
| ## Template {#WriterTemplate} |
| |
| `Writer` has a minor design difference to `Reader`. `Writer` is a template class, not a typedef. There is no `GenericWriter`. The following is the declaration. |
| |
| ~~~~~~~~~~cpp |
| namespace rapidjson { |
| |
| template<typename OutputStream, typename SourceEncoding = UTF8<>, typename TargetEncoding = UTF8<>, typename Allocator = CrtAllocator<>, unsigned writeFlags = kWriteDefaultFlags> |
| class Writer { |
| public: |
| Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) |
| // ... |
| }; |
| |
| } // namespace rapidjson |
| ~~~~~~~~~~ |
| |
| The `OutputStream` template parameter is the type of output stream. It cannot be deduced and must be specified by user. |
| |
| The `SourceEncoding` template parameter specifies the encoding to be used in `String(const Ch*, ...)`. |
| |
| The `TargetEncoding` template parameter specifies the encoding in the output stream. |
| |
| The `Allocator` is the type of allocator, which is used for allocating internal data structure (a stack). |
| |
| The `writeFlags` are combination of the following bit-flags: |
| |
| Parse flags | Meaning |
| ------------------------------|----------------------------------- |
| `kWriteNoFlags` | No flag is set. |
| `kWriteDefaultFlags` | Default write flags. It is equal to macro `RAPIDJSON_WRITE_DEFAULT_FLAGS`, which is defined as `kWriteNoFlags`. |
| `kWriteValidateEncodingFlag` | Validate encoding of JSON strings. |
| `kWriteNanAndInfFlag` | Allow writing of `Infinity`, `-Infinity` and `NaN`. |
| |
| Besides, the constructor of `Writer` has a `levelDepth` parameter. This parameter affects the initial memory allocated for storing information per hierarchy level. |
| |
| ## PrettyWriter {#PrettyWriter} |
| |
| While the output of `Writer` is the most condensed JSON without white-spaces, suitable for network transfer or storage, it is not easily readable by human. |
| |
| Therefore, RapidJSON provides a `PrettyWriter`, which adds indentation and line feeds in the output. |
| |
| The usage of `PrettyWriter` is exactly the same as `Writer`, expect that `PrettyWriter` provides a `SetIndent(Ch indentChar, unsigned indentCharCount)` function. The default is 4 spaces. |
| |
| ## Completeness and Reset {#CompletenessReset} |
| |
| A `Writer` can only output a single JSON, which can be any JSON type at the root. Once the singular event for root (e.g. `String()`), or the last matching `EndObject()` or `EndArray()` event, is handled, the output JSON is well-formed and complete. User can detect this state by calling `Writer::IsComplete()`. |
| |
| When a JSON is complete, the `Writer` cannot accept any new events. Otherwise the output will be invalid (i.e. having more than one root). To reuse the `Writer` object, user can call `Writer::Reset(OutputStream& os)` to reset all internal states of the `Writer` with a new output stream. |
| |
| # Techniques {#SaxTechniques} |
| |
| ## Parsing JSON to Custom Data Structure {#CustomDataStructure} |
| |
| `Document`'s parsing capability is completely based on `Reader`. Actually `Document` is a handler which receives events from a reader to build a DOM during parsing. |
| |
| User may uses `Reader` to build other data structures directly. This eliminates building of DOM, thus reducing memory and improving performance. |
| |
| In the following `messagereader` example, `ParseMessages()` parses a JSON which should be an object with key-string pairs. |
| |
| ~~~~~~~~~~cpp |
| #include "rapidjson/reader.h" |
| #include "rapidjson/error/en.h" |
| #include <iostream> |
| #include <string> |
| #include <map> |
| |
| using namespace std; |
| using namespace rapidjson; |
| |
| typedef map<string, string> MessageMap; |
| |
| struct MessageHandler |
| : public BaseReaderHandler<UTF8<>, MessageHandler> { |
| MessageHandler() : state_(kExpectObjectStart) { |
| } |
| |
| bool StartObject() { |
| switch (state_) { |
| case kExpectObjectStart: |
| state_ = kExpectNameOrObjectEnd; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool String(const char* str, SizeType length, bool) { |
| switch (state_) { |
| case kExpectNameOrObjectEnd: |
| name_ = string(str, length); |
| state_ = kExpectValue; |
| return true; |
| case kExpectValue: |
| messages_.insert(MessageMap::value_type(name_, string(str, length))); |
| state_ = kExpectNameOrObjectEnd; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool EndObject(SizeType) { return state_ == kExpectNameOrObjectEnd; } |
| |
| bool Default() { return false; } // All other events are invalid. |
| |
| MessageMap messages_; |
| enum State { |
| kExpectObjectStart, |
| kExpectNameOrObjectEnd, |
| kExpectValue, |
| }state_; |
| std::string name_; |
| }; |
| |
| void ParseMessages(const char* json, MessageMap& messages) { |
| Reader reader; |
| MessageHandler handler; |
| StringStream ss(json); |
| if (reader.Parse(ss, handler)) |
| messages.swap(handler.messages_); // Only change it if success. |
| else { |
| ParseErrorCode e = reader.GetParseErrorCode(); |
| size_t o = reader.GetErrorOffset(); |
| cout << "Error: " << GetParseError_En(e) << endl;; |
| cout << " at offset " << o << " near '" << string(json).substr(o, 10) << "...'" << endl; |
| } |
| } |
| |
| int main() { |
| MessageMap messages; |
| |
| const char* json1 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\" }"; |
| cout << json1 << endl; |
| ParseMessages(json1, messages); |
| |
| for (MessageMap::const_iterator itr = messages.begin(); itr != messages.end(); ++itr) |
| cout << itr->first << ": " << itr->second << endl; |
| |
| cout << endl << "Parse a JSON with invalid schema." << endl; |
| const char* json2 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\", \"foo\" : {} }"; |
| cout << json2 << endl; |
| ParseMessages(json2, messages); |
| |
| return 0; |
| } |
| ~~~~~~~~~~ |
| |
| ~~~~~~~~~~ |
| { "greeting" : "Hello!", "farewell" : "bye-bye!" } |
| farewell: bye-bye! |
| greeting: Hello! |
| |
| Parse a JSON with invalid schema. |
| { "greeting" : "Hello!", "farewell" : "bye-bye!", "foo" : {} } |
| Error: Terminate parsing due to Handler error. |
| at offset 59 near '} }...' |
| ~~~~~~~~~~ |
| |
| The first JSON (`json1`) was successfully parsed into `MessageMap`. Since `MessageMap` is a `std::map`, the printing order are sorted by the key. This order is different from the JSON's order. |
| |
| In the second JSON (`json2`), `foo`'s value is an empty object. As it is an object, `MessageHandler::StartObject()` will be called. However, at that moment `state_ = kExpectValue`, so that function returns `false` and cause the parsing process be terminated. The error code is `kParseErrorTermination`. |
| |
| ## Filtering of JSON {#Filtering} |
| |
| As mentioned earlier, `Writer` can handle the events published by `Reader`. `condense` example simply set a `Writer` as handler of a `Reader`, so it can remove all white-spaces in JSON. `pretty` example uses the same relationship, but replacing `Writer` by `PrettyWriter`. So `pretty` can be used to reformat a JSON with indentation and line feed. |
| |
| Actually, we can add intermediate layer(s) to filter the contents of JSON via these SAX-style API. For example, `capitalize` example capitalize all strings in a JSON. |
| |
| ~~~~~~~~~~cpp |
| #include "rapidjson/reader.h" |
| #include "rapidjson/writer.h" |
| #include "rapidjson/filereadstream.h" |
| #include "rapidjson/filewritestream.h" |
| #include "rapidjson/error/en.h" |
| #include <vector> |
| #include <cctype> |
| |
| using namespace rapidjson; |
| |
| template<typename OutputHandler> |
| struct CapitalizeFilter { |
| CapitalizeFilter(OutputHandler& out) : out_(out), buffer_() { |
| } |
| |
| bool Null() { return out_.Null(); } |
| bool Bool(bool b) { return out_.Bool(b); } |
| bool Int(int i) { return out_.Int(i); } |
| bool Uint(unsigned u) { return out_.Uint(u); } |
| bool Int64(int64_t i) { return out_.Int64(i); } |
| bool Uint64(uint64_t u) { return out_.Uint64(u); } |
| bool Double(double d) { return out_.Double(d); } |
| bool RawNumber(const char* str, SizeType length, bool copy) { return out_.RawNumber(str, length, copy); } |
| bool String(const char* str, SizeType length, bool) { |
| buffer_.clear(); |
| for (SizeType i = 0; i < length; i++) |
| buffer_.push_back(std::toupper(str[i])); |
| return out_.String(&buffer_.front(), length, true); // true = output handler need to copy the string |
| } |
| bool StartObject() { return out_.StartObject(); } |
| bool Key(const char* str, SizeType length, bool copy) { return String(str, length, copy); } |
| bool EndObject(SizeType memberCount) { return out_.EndObject(memberCount); } |
| bool StartArray() { return out_.StartArray(); } |
| bool EndArray(SizeType elementCount) { return out_.EndArray(elementCount); } |
| |
| OutputHandler& out_; |
| std::vector<char> buffer_; |
| }; |
| |
| int main(int, char*[]) { |
| // Prepare JSON reader and input stream. |
| Reader reader; |
| char readBuffer[65536]; |
| FileReadStream is(stdin, readBuffer, sizeof(readBuffer)); |
| |
| // Prepare JSON writer and output stream. |
| char writeBuffer[65536]; |
| FileWriteStream os(stdout, writeBuffer, sizeof(writeBuffer)); |
| Writer<FileWriteStream> writer(os); |
| |
| // JSON reader parse from the input stream and let writer generate the output. |
| CapitalizeFilter<Writer<FileWriteStream> > filter(writer); |
| if (!reader.Parse(is, filter)) { |
| fprintf(stderr, "\nError(%u): %s\n", (unsigned)reader.GetErrorOffset(), GetParseError_En(reader.GetParseErrorCode())); |
| return 1; |
| } |
| |
| return 0; |
| } |
| ~~~~~~~~~~ |
| |
| Note that, it is incorrect to simply capitalize the JSON as a string. For example: |
| ~~~~~~~~~~ |
| ["Hello\nWorld"] |
| ~~~~~~~~~~ |
| |
| Simply capitalizing the whole JSON would contain incorrect escape character: |
| ~~~~~~~~~~ |
| ["HELLO\NWORLD"] |
| ~~~~~~~~~~ |
| |
| The correct result by `capitalize`: |
| ~~~~~~~~~~ |
| ["HELLO\nWORLD"] |
| ~~~~~~~~~~ |
| |
| More complicated filters can be developed. However, since SAX-style API can only provide information about a single event at a time, user may need to book-keeping the contextual information (e.g. the path from root value, storage of other related values). Some processing may be easier to be implemented in DOM than SAX. |