| // This file renders vertex buffers, converts raw meshes |
| // to GL meshes, and manages threads that do the raw-mesh |
| // building (found in cave_mesher.c) |
| |
| |
| #include "stb_voxel_render.h" |
| |
| #define STB_GLEXT_DECLARE "glext_list.h" |
| #include "stb_gl.h" |
| #include "stb_image.h" |
| #include "stb_glprog.h" |
| |
| #include "caveview.h" |
| #include "cave_parse.h" |
| #include "stb.h" |
| #include "sdl.h" |
| #include "sdl_thread.h" |
| #include <math.h> |
| #include <assert.h> |
| |
| //#define STBVOX_CONFIG_TEX1_EDGE_CLAMP |
| |
| |
| // currently no dynamic way to set mesh cache size or view distance |
| //#define SHORTVIEW |
| |
| |
| stbvox_mesh_maker g_mesh_maker; |
| |
| GLuint main_prog; |
| GLint uniform_locations[64]; |
| |
| //#define MAX_QUADS_PER_DRAW (65536 / 4) // assuming 16-bit indices, 4 verts per quad |
| //#define FIXED_INDEX_BUFFER_SIZE (MAX_QUADS_PER_DRAW * 6 * 2) // 16*1024 * 12 == ~192KB |
| |
| // while uploading texture data, this holds our each texture |
| #define TEX_SIZE 64 |
| uint32 texture[TEX_SIZE][TEX_SIZE]; |
| |
| GLuint voxel_tex[2]; |
| |
| // chunk state |
| enum |
| { |
| STATE_invalid, |
| STATE_needed, |
| STATE_requested, |
| STATE_abandoned, |
| STATE_valid, |
| }; |
| |
| // mesh is 32x32x255 ... this is hardcoded in that |
| // a mesh covers 2x2 minecraft chunks, no #defines for it |
| typedef struct |
| { |
| int state; |
| int chunk_x, chunk_y; |
| int num_quads; |
| float priority; |
| int vbuf_size, fbuf_size; |
| |
| float transform[3][3]; |
| float bounds[2][3]; |
| |
| GLuint vbuf;// vbuf_tex; |
| GLuint fbuf, fbuf_tex; |
| |
| } chunk_mesh; |
| |
| void scale_texture(unsigned char *src, int x, int y, int w, int h) |
| { |
| int i,j,k; |
| assert(w == 256 && h == 256); |
| for (j=0; j < TEX_SIZE; ++j) { |
| for (i=0; i < TEX_SIZE; ++i) { |
| uint32 val=0; |
| for (k=0; k < 4; ++k) { |
| val >>= 8; |
| val += src[ 4*(x+(i>>2)) + 4*w*(y+(j>>2)) + k]<<24; |
| } |
| texture[j][i] = val; |
| } |
| } |
| } |
| |
| void build_base_texture(int n) |
| { |
| int x,y; |
| uint32 color = stb_rand() | 0x808080; |
| for (y=0; y<TEX_SIZE; ++y) |
| for (x=0; x<TEX_SIZE; ++x) { |
| texture[y][x] = (color + (stb_rand()&0x1f1f1f))|0xff000000; |
| } |
| } |
| |
| void build_overlay_texture(int n) |
| { |
| int x,y; |
| uint32 color = stb_rand(); |
| if (color & 16) |
| color = 0xff000000; |
| else |
| color = 0xffffffff; |
| for (y=0; y<TEX_SIZE; ++y) |
| for (x=0; x<TEX_SIZE; ++x) { |
| texture[y][x] = 0; |
| } |
| |
| for (y=0; y < TEX_SIZE/8; ++y) { |
| for (x=0; x < TEX_SIZE; ++x) { |
| texture[y][x] = color; |
| texture[TEX_SIZE-1-y][x] = color; |
| texture[x][y] = color; |
| texture[x][TEX_SIZE-1-y] = color; |
| } |
| } |
| } |
| |
| // view radius of about 1024 = 2048 columns / 32 columns-per-mesh = 2^11 / 2^5 = 64x64 |
| // so we need bigger than 64x64 so we can precache, which means we have to be |
| // non-power-of-two, or we have to be pretty huge |
| #define CACHED_MESH_NUM_X 128 |
| #define CACHED_MESH_NUM_Y 128 |
| |
| |
| chunk_mesh cached_chunk_mesh[CACHED_MESH_NUM_Y][CACHED_MESH_NUM_X]; |
| |
| void free_chunk(int slot_x, int slot_y) |
| { |
| chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x]; |
| if (cm->state == STATE_valid) { |
| glDeleteTextures(1, &cm->fbuf_tex); |
| glDeleteBuffersARB(1, &cm->vbuf); |
| glDeleteBuffersARB(1, &cm->fbuf); |
| cached_chunk_mesh[slot_y][slot_x].state = STATE_invalid; |
| } |
| } |
| |
| void upload_mesh(chunk_mesh *cm, uint8 *build_buffer, uint8 *face_buffer) |
| { |
| glGenBuffersARB(1, &cm->vbuf); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, cm->vbuf); |
| glBufferDataARB(GL_ARRAY_BUFFER_ARB, cm->num_quads*4*sizeof(uint32), build_buffer, GL_STATIC_DRAW_ARB); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); |
| |
| glGenBuffersARB(1, &cm->fbuf); |
| glBindBufferARB(GL_TEXTURE_BUFFER_ARB, cm->fbuf); |
| glBufferDataARB(GL_TEXTURE_BUFFER_ARB, cm->num_quads*sizeof(uint32), face_buffer , GL_STATIC_DRAW_ARB); |
| glBindBufferARB(GL_TEXTURE_BUFFER_ARB, 0); |
| |
| glGenTextures(1, &cm->fbuf_tex); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, cm->fbuf_tex); |
| glTexBufferARB(GL_TEXTURE_BUFFER_ARB, GL_RGBA8UI, cm->fbuf); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, 0); |
| } |
| |
| static void upload_mesh_data(raw_mesh *rm) |
| { |
| int cx = rm->cx; |
| int cy = rm->cy; |
| int slot_x = (cx >> 1) & (CACHED_MESH_NUM_X-1); |
| int slot_y = (cy >> 1) & (CACHED_MESH_NUM_Y-1); |
| chunk_mesh *cm; |
| |
| free_chunk(slot_x, slot_y); |
| |
| cm = &cached_chunk_mesh[slot_y][slot_x]; |
| cm->num_quads = rm->num_quads; |
| |
| upload_mesh(cm, rm->build_buffer, rm->face_buffer); |
| cm->vbuf_size = rm->num_quads*4*sizeof(uint32); |
| cm->fbuf_size = rm->num_quads*sizeof(uint32); |
| cm->priority = 100000; |
| cm->chunk_x = cx; |
| cm->chunk_y = cy; |
| |
| memcpy(cm->bounds, rm->bounds, sizeof(cm->bounds)); |
| memcpy(cm->transform, rm->transform, sizeof(cm->transform)); |
| |
| // write barrier here |
| cm->state = STATE_valid; |
| } |
| |
| GLint uniform_loc[16]; |
| float table3[128][3]; |
| float table4[64][4]; |
| GLint tablei[2]; |
| |
| float step=0; |
| |
| #ifdef SHORTVIEW |
| int view_dist_in_chunks = 50; |
| #else |
| int view_dist_in_chunks = 80; |
| #endif |
| |
| void setup_uniforms(float pos[3]) |
| { |
| int i,j; |
| step += 1.0f/60.0f; |
| for (i=0; i < STBVOX_UNIFORM_count; ++i) { |
| stbvox_uniform_info raw, *ui=&raw; |
| stbvox_get_uniform_info(&raw, i); |
| uniform_loc[i] = -1; |
| |
| if (i == STBVOX_UNIFORM_texscale || i == STBVOX_UNIFORM_texgen || i == STBVOX_UNIFORM_color_table) |
| continue; |
| |
| if (ui) { |
| void *data = ui->default_value; |
| uniform_loc[i] = stbgl_find_uniform(main_prog, ui->name); |
| switch (i) { |
| case STBVOX_UNIFORM_face_data: |
| tablei[0] = 2; |
| data = tablei; |
| break; |
| |
| case STBVOX_UNIFORM_tex_array: |
| glActiveTextureARB(GL_TEXTURE0_ARB); |
| glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[0]); |
| glActiveTextureARB(GL_TEXTURE1_ARB); |
| glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]); |
| glActiveTextureARB(GL_TEXTURE0_ARB); |
| tablei[0] = 0; |
| tablei[1] = 1; |
| data = tablei; |
| break; |
| |
| case STBVOX_UNIFORM_color_table: |
| data = ui->default_value; |
| ((float *)data)[63*4+3] = 2.0f; // emissive |
| break; |
| |
| case STBVOX_UNIFORM_camera_pos: |
| data = table3[0]; |
| table3[0][0] = pos[0]; |
| table3[0][1] = pos[1]; |
| table3[0][2] = pos[2]; |
| table3[0][3] = stb_max(0,(float)sin(step*2)*0.125f); |
| break; |
| |
| case STBVOX_UNIFORM_ambient: { |
| float bright = 1.0; |
| //float bright = 0.75; |
| float amb[3][3]; |
| |
| // ambient direction is sky-colored upwards |
| // "ambient" lighting is from above |
| table4[0][0] = 0.3f; |
| table4[0][1] = -0.5f; |
| table4[0][2] = 0.9f; |
| |
| amb[1][0] = 0.3f; amb[1][1] = 0.3f; amb[1][2] = 0.3f; // dark-grey |
| amb[2][0] = 1.0; amb[2][1] = 1.0; amb[2][2] = 1.0; // white |
| |
| // convert so (table[1]*dot+table[2]) gives |
| // above interpolation |
| // lerp((dot+1)/2, amb[1], amb[2]) |
| // amb[1] + (amb[2] - amb[1]) * (dot+1)/2 |
| // amb[1] + (amb[2] - amb[1]) * dot/2 + (amb[2]-amb[1])/2 |
| |
| for (j=0; j < 3; ++j) { |
| table4[1][j] = (amb[2][j] - amb[1][j])/2 * bright; |
| table4[2][j] = (amb[1][j] + amb[2][j])/2 * bright; |
| } |
| |
| // fog color |
| table4[3][0] = 0.6f, table4[3][1] = 0.7f, table4[3][2] = 0.9f; |
| table4[3][3] = 1.0f / (view_dist_in_chunks * 16); |
| table4[3][3] *= table4[3][3]; |
| |
| data = table4; |
| break; |
| } |
| } |
| |
| switch (ui->type) { |
| case STBVOX_UNIFORM_TYPE_sampler: stbglUniform1iv(uniform_loc[i], ui->array_length, data); break; |
| case STBVOX_UNIFORM_TYPE_vec2: stbglUniform2fv(uniform_loc[i], ui->array_length, data); break; |
| case STBVOX_UNIFORM_TYPE_vec3: stbglUniform3fv(uniform_loc[i], ui->array_length, data); break; |
| case STBVOX_UNIFORM_TYPE_vec4: stbglUniform4fv(uniform_loc[i], ui->array_length, data); break; |
| } |
| } |
| } |
| } |
| |
| GLuint unitex[64], unibuf[64]; |
| void make_texture_buffer_for_uniform(int uniform, int slot) |
| { |
| GLenum type; |
| stbvox_uniform_info raw, *ui=&raw; |
| GLint uloc; |
| |
| stbvox_get_uniform_info(ui, uniform); |
| uloc = stbgl_find_uniform(main_prog, ui->name); |
| |
| if (uniform == STBVOX_UNIFORM_color_table) |
| ((float *)ui->default_value)[63*4+3] = 2.0f; // emissive |
| |
| glGenBuffersARB(1, &unibuf[uniform]); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, unibuf[uniform]); |
| glBufferDataARB(GL_ARRAY_BUFFER_ARB, ui->array_length * ui->bytes_per_element, ui->default_value, GL_STATIC_DRAW_ARB); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); |
| |
| glGenTextures(1, &unitex[uniform]); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, unitex[uniform]); |
| switch (ui->type) { |
| case STBVOX_UNIFORM_TYPE_vec2: type = GL_RG32F; break; |
| case STBVOX_UNIFORM_TYPE_vec3: type = GL_RGB32F; break; |
| case STBVOX_UNIFORM_TYPE_vec4: type = GL_RGBA32F; break; |
| default: assert(0); |
| } |
| glTexBufferARB(GL_TEXTURE_BUFFER_ARB, type, unibuf[uniform]); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, 0); |
| |
| glActiveTextureARB(GL_TEXTURE0 + slot); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, unitex[uniform]); |
| glActiveTextureARB(GL_TEXTURE0); |
| |
| stbglUseProgram(main_prog); |
| stbglUniform1i(uloc, slot); |
| } |
| |
| #define MAX_MESH_WORKERS 8 |
| #define MAX_CHUNK_LOAD_WORKERS 2 |
| |
| int num_mesh_workers; |
| int num_chunk_load_workers; |
| |
| typedef struct |
| { |
| int state; |
| int request_cx; |
| int request_cy; |
| int padding[13]; |
| |
| SDL_sem * request_received; |
| |
| SDL_sem * chunk_server_done_processing; |
| int chunk_action; |
| int chunk_request_x; |
| int chunk_request_y; |
| fast_chunk *chunks[4][4]; |
| |
| int padding2[16]; |
| raw_mesh rm; |
| int padding3[16]; |
| |
| uint8 *build_buffer; |
| uint8 *face_buffer ; |
| } mesh_worker; |
| |
| enum |
| { |
| WSTATE_idle, |
| WSTATE_requested, |
| WSTATE_running, |
| WSTATE_mesh_ready, |
| }; |
| |
| mesh_worker mesh_data[MAX_MESH_WORKERS]; |
| int num_meshes_started; // stats |
| |
| int request_chunk(int chunk_x, int chunk_y); |
| void update_meshes_from_render_thread(void); |
| |
| unsigned char tex2_data[64][4]; |
| |
| void init_tex2_gradient(void) |
| { |
| int i; |
| for (i=0; i < 16; ++i) { |
| tex2_data[i+ 0][0] = 64 + 12*i; |
| tex2_data[i+ 0][1] = 32; |
| tex2_data[i+ 0][2] = 64; |
| |
| tex2_data[i+16][0] = 255; |
| tex2_data[i+16][1] = 32 + 8*i; |
| tex2_data[i+16][2] = 64; |
| |
| tex2_data[i+32][0] = 255; |
| tex2_data[i+32][1] = 160; |
| tex2_data[i+32][2] = 64 + 12*i; |
| |
| tex2_data[i+48][0] = 255; |
| tex2_data[i+48][1] = 160 + 6*i; |
| tex2_data[i+48][2] = 255; |
| } |
| } |
| |
| void set_tex2_alpha(float fa) |
| { |
| int i; |
| int a = (int) stb_lerp(fa, 0, 255); |
| if (a < 0) a = 0; else if (a > 255) a = 255; |
| glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]); |
| for (i=0; i < 64; ++i) { |
| tex2_data[i][3] = a; |
| glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, 1,1,1, GL_RGBA, GL_UNSIGNED_BYTE, tex2_data[i]); |
| } |
| } |
| |
| void render_init(void) |
| { |
| int i; |
| char *binds[] = { "attr_vertex", "attr_face", NULL }; |
| char *vertex; |
| char *fragment; |
| int w=0,h=0; |
| |
| unsigned char *texdata = stbi_load("terrain.png", &w, &h, NULL, 4); |
| |
| stbvox_init_mesh_maker(&g_mesh_maker); |
| for (i=0; i < num_mesh_workers; ++i) { |
| stbvox_init_mesh_maker(&mesh_data[i].rm.mm); |
| } |
| |
| vertex = stbvox_get_vertex_shader(); |
| fragment = stbvox_get_fragment_shader(); |
| |
| { |
| char error_buffer[1024]; |
| char *main_vertex[] = { vertex, NULL }; |
| char *main_fragment[] = { fragment, NULL }; |
| main_prog = stbgl_create_program(main_vertex, main_fragment, binds, error_buffer, sizeof(error_buffer)); |
| if (main_prog == 0) { |
| ods("Compile error for main shader: %s\n", error_buffer); |
| assert(0); |
| exit(1); |
| } |
| } |
| //init_index_buffer(); |
| |
| make_texture_buffer_for_uniform(STBVOX_UNIFORM_texscale , 3); |
| make_texture_buffer_for_uniform(STBVOX_UNIFORM_texgen , 4); |
| make_texture_buffer_for_uniform(STBVOX_UNIFORM_color_table , 5); |
| |
| glGenTextures(2, voxel_tex); |
| |
| glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[0]); |
| glTexImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA, |
| TEX_SIZE,TEX_SIZE,256, |
| 0,GL_RGBA,GL_UNSIGNED_BYTE,NULL); |
| for (i=0; i < 256; ++i) { |
| if (texdata) |
| scale_texture(texdata, (i&15)*w/16, (h/16)*(i>>4), w,h); |
| else |
| build_base_texture(i); |
| glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, TEX_SIZE,TEX_SIZE,1, GL_RGBA, GL_UNSIGNED_BYTE, texture[0]); |
| } |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16); |
| #ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
| #endif |
| |
| glGenerateMipmapEXT(GL_TEXTURE_2D_ARRAY_EXT); |
| |
| glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]); |
| glTexImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA, |
| 1,1,64, |
| 0,GL_RGBA,GL_UNSIGNED_BYTE,NULL); |
| init_tex2_gradient(); |
| set_tex2_alpha(0.0); |
| #if 0 |
| for (i=0; i < 128; ++i) { |
| //build_overlay_texture(i); |
| glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, TEX_SIZE,TEX_SIZE,1, GL_RGBA, GL_UNSIGNED_BYTE, texture[0]); |
| } |
| #endif |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); |
| glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
| glGenerateMipmapEXT(GL_TEXTURE_2D_ARRAY_EXT); |
| } |
| |
| void world_init(void) |
| { |
| int a,b,x,y; |
| |
| Uint64 start_time, end_time; |
| #ifdef NDEBUG |
| int range = 32; |
| #else |
| int range = 12; |
| #endif |
| |
| start_time = SDL_GetPerformanceCounter(); |
| |
| // iterate in 8x8 clusters of qchunks at a time to get better converted-chunk-cache reuse |
| // than a purely row-by-row ordering is (single-threaded this is a bigger win than |
| // any of the above optimizations were, since it halves zlib/mc-conversion costs) |
| for (x=-range; x <= range; x += 16) |
| for (y=-range; y <= range; y += 16) |
| for (b=y; b < y+16 && b <= range; b += 2) |
| for (a=x; a < x+16 && a <= range; a += 2) |
| while (!request_chunk(a, b)) { // if request fails, all threads are busy |
| update_meshes_from_render_thread(); |
| SDL_Delay(1); |
| } |
| |
| // wait until all the workers are done, |
| // (this is only needed if we want to time |
| // when the build finishes, or when we want to reset the |
| // cache size; otherwise we could just go ahead and |
| // start rendering whatever we've got) |
| for(;;) { |
| int i; |
| update_meshes_from_render_thread(); |
| for (i=0; i < num_mesh_workers; ++i) |
| if (mesh_data[i].state != WSTATE_idle) |
| break; |
| if (i == num_mesh_workers) |
| break; |
| SDL_Delay(3); |
| } |
| |
| end_time = SDL_GetPerformanceCounter(); |
| ods("Build time: %7.2fs\n", (end_time - start_time) / (float) SDL_GetPerformanceFrequency()); |
| |
| // don't waste lots of storage on chunk caches once it's finished starting-up; |
| // this was only needed to be this large because we worked in large blocks |
| // to maximize sharing |
| reset_cache_size(32); |
| } |
| |
| extern SDL_mutex * chunk_cache_mutex; |
| |
| int mesh_worker_handler(void *data) |
| { |
| mesh_worker *mw = data; |
| mw->face_buffer = malloc(FACE_BUFFER_SIZE); |
| mw->build_buffer = malloc(BUILD_BUFFER_SIZE); |
| |
| // this loop only works because the compiler can't |
| // tell that the SDL_calls don't access mw->state; |
| // really we should barrier that stuff |
| for(;;) { |
| int i,j; |
| int cx,cy; |
| |
| // wait for a chunk request |
| SDL_SemWait(mw->request_received); |
| |
| // analyze the chunk request |
| assert(mw->state == WSTATE_requested); |
| cx = mw->request_cx; |
| cy = mw->request_cy; |
| |
| // this is inaccurate as it can block while another thread has the cache locked |
| mw->state = WSTATE_running; |
| |
| // get the chunks we need (this takes a lock and caches them) |
| for (j=0; j < 4; ++j) |
| for (i=0; i < 4; ++i) |
| mw->chunks[j][i] = get_converted_fastchunk(cx-1 + i, cy-1 + j); |
| |
| // build the mesh based on the chunks |
| mw->rm.build_buffer = mw->build_buffer; |
| mw->rm.face_buffer = mw->face_buffer; |
| build_chunk(cx, cy, mw->chunks, &mw->rm); |
| mw->state = WSTATE_mesh_ready; |
| // don't need to notify of this, because it gets polled |
| |
| // when done, free the chunks |
| |
| // for efficiency we just take the mutex once around the whole thing, |
| // though this spreads the mutex logic over two files |
| SDL_LockMutex(chunk_cache_mutex); |
| for (j=0; j < 4; ++j) |
| for (i=0; i < 4; ++i) { |
| deref_fastchunk(mw->chunks[j][i]); |
| mw->chunks[j][i] = NULL; |
| } |
| SDL_UnlockMutex(chunk_cache_mutex); |
| } |
| return 0; |
| } |
| |
| int request_chunk(int chunk_x, int chunk_y) |
| { |
| int i; |
| for (i=0; i < num_mesh_workers; ++i) { |
| mesh_worker *mw = &mesh_data[i]; |
| if (mw->state == WSTATE_idle) { |
| mw->request_cx = chunk_x; |
| mw->request_cy = chunk_y; |
| mw->state = WSTATE_requested; |
| SDL_SemPost(mw->request_received); |
| ++num_meshes_started; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| void prepare_threads(void) |
| { |
| int i; |
| int num_proc = SDL_GetCPUCount(); |
| |
| if (num_proc > 6) |
| num_mesh_workers = num_proc/2; |
| else if (num_proc > 4) |
| num_mesh_workers = 4; |
| else |
| num_mesh_workers = num_proc-1; |
| |
| // @TODO |
| // Thread usage is probably pretty terrible; need to make a |
| // separate queue of needed chunks, instead of just generating |
| // one request per thread per frame, and a separate queue of |
| // results. (E.g. If it takes 1.5 frames to build mesh, thread |
| // is idle for 0.5 frames.) To fake this for now, I've just |
| // doubled the number of threads to let those serve as a 'queue', |
| // but that's dumb. |
| |
| num_mesh_workers *= 2; // try to get better thread usage |
| |
| if (num_mesh_workers > MAX_MESH_WORKERS) |
| num_mesh_workers = MAX_MESH_WORKERS; |
| |
| for (i=0; i < num_mesh_workers; ++i) { |
| mesh_worker *data = &mesh_data[i]; |
| data->request_received = SDL_CreateSemaphore(0); |
| data->chunk_server_done_processing = SDL_CreateSemaphore(0); |
| SDL_CreateThread(mesh_worker_handler, "mesh worker", data); |
| } |
| } |
| |
| |
| // "better" buffer uploading |
| #if 0 |
| if (glBufferStorage) { |
| glDeleteBuffersARB(1, &vb->vbuf); |
| glGenBuffersARB(1, &vb->vbuf); |
| |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, vb->vbuf); |
| glBufferStorage(GL_ARRAY_BUFFER_ARB, sizeof(build_buffer), build_buffer, 0); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); |
| } else { |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, vb->vbuf); |
| glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(build_buffer), build_buffer, GL_STATIC_DRAW_ARB); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); |
| } |
| #endif |
| |
| |
| typedef struct |
| { |
| float x,y,z,w; |
| } plane; |
| |
| static plane frustum[6]; |
| |
| static void matd_mul(double out[4][4], double src1[4][4], double src2[4][4]) |
| { |
| int i,j,k; |
| for (j=0; j < 4; ++j) { |
| for (i=0; i < 4; ++i) { |
| double t=0; |
| for (k=0; k < 4; ++k) |
| t += src1[k][i] * src2[j][k]; |
| out[i][j] = t; |
| } |
| } |
| } |
| |
| // https://fgiesen.wordpress.com/2012/08/31/frustum-planes-from-the-projection-matrix/ |
| static void compute_frustum(void) |
| { |
| int i; |
| GLdouble mv[4][4],proj[4][4], mvproj[4][4]; |
| glGetDoublev(GL_MODELVIEW_MATRIX , mv[0]); |
| glGetDoublev(GL_PROJECTION_MATRIX, proj[0]); |
| matd_mul(mvproj, proj, mv); |
| for (i=0; i < 4; ++i) { |
| (&frustum[0].x)[i] = (float) (mvproj[3][i] + mvproj[0][i]); |
| (&frustum[1].x)[i] = (float) (mvproj[3][i] - mvproj[0][i]); |
| (&frustum[2].x)[i] = (float) (mvproj[3][i] + mvproj[1][i]); |
| (&frustum[3].x)[i] = (float) (mvproj[3][i] - mvproj[1][i]); |
| (&frustum[4].x)[i] = (float) (mvproj[3][i] + mvproj[2][i]); |
| (&frustum[5].x)[i] = (float) (mvproj[3][i] - mvproj[2][i]); |
| } |
| } |
| |
| static int test_plane(plane *p, float x0, float y0, float z0, float x1, float y1, float z1) |
| { |
| // return false if the box is entirely behind the plane |
| float d=0; |
| assert(x0 <= x1 && y0 <= y1 && z0 <= z1); |
| if (p->x > 0) d += x1*p->x; else d += x0*p->x; |
| if (p->y > 0) d += y1*p->y; else d += y0*p->y; |
| if (p->z > 0) d += z1*p->z; else d += z0*p->z; |
| return d + p->w >= 0; |
| } |
| |
| static int is_box_in_frustum(float *bmin, float *bmax) |
| { |
| int i; |
| for (i=0; i < 6; ++i) |
| if (!test_plane(&frustum[i], bmin[0], bmin[1], bmin[2], bmax[0], bmax[1], bmax[2])) |
| return 0; |
| return 1; |
| } |
| |
| float compute_priority(int cx, int cy, float x, float y) |
| { |
| float distx, disty, dist2; |
| distx = (cx*16+8) - x; |
| disty = (cy*16+8) - y; |
| dist2 = distx*distx + disty*disty; |
| return view_dist_in_chunks*view_dist_in_chunks * 16 * 16 - dist2; |
| } |
| |
| int chunk_locations, chunks_considered, chunks_in_frustum; |
| int quads_considered, quads_rendered; |
| int chunk_storage_rendered, chunk_storage_considered, chunk_storage_total; |
| int update_frustum = 1; |
| |
| #ifdef SHORTVIEW |
| int max_chunk_storage = 450 << 20; |
| int min_chunk_storage = 350 << 20; |
| #else |
| int max_chunk_storage = 900 << 20; |
| int min_chunk_storage = 800 << 20; |
| #endif |
| |
| float min_priority = -500; // this really wants to be in unit space, not squared space |
| |
| int num_meshes_uploaded; |
| |
| void update_meshes_from_render_thread(void) |
| { |
| int i; |
| for (i=0; i < num_mesh_workers; ++i) { |
| mesh_worker *mw = &mesh_data[i]; |
| if (mw->state == WSTATE_mesh_ready) { |
| upload_mesh_data(&mw->rm); |
| ++num_meshes_uploaded; |
| mw->state = WSTATE_idle; |
| } |
| } |
| } |
| |
| extern float tex2_alpha; |
| extern int global_hack; |
| int num_threads_active; |
| float chunk_server_activity; |
| |
| void render_caves(float campos[3]) |
| { |
| float x = campos[0], y = campos[1]; |
| int qchunk_x, qchunk_y; |
| int cam_x, cam_y; |
| int i,j, rad; |
| |
| compute_frustum(); |
| |
| chunk_locations = chunks_considered = chunks_in_frustum = 0; |
| quads_considered = quads_rendered = 0; |
| chunk_storage_total = chunk_storage_considered = chunk_storage_rendered = 0; |
| |
| cam_x = (int) floor(x+0.5); |
| cam_y = (int) floor(y+0.5); |
| |
| qchunk_x = (((int) floor(x)+16) >> 5) << 1; |
| qchunk_y = (((int) floor(y)+16) >> 5) << 1; |
| |
| glEnable(GL_ALPHA_TEST); |
| glAlphaFunc(GL_GREATER, 0.5); |
| |
| stbglUseProgram(main_prog); |
| setup_uniforms(campos); // set uniforms to default values inefficiently |
| glActiveTextureARB(GL_TEXTURE2_ARB); |
| stbglEnableVertexAttribArray(0); |
| |
| { |
| float lighting[2][3] = { { campos[0],campos[1],campos[2] }, { 0.75,0.75,0.65f } }; |
| float bright = 8; |
| lighting[1][0] *= bright; |
| lighting[1][1] *= bright; |
| lighting[1][2] *= bright; |
| stbglUniform3fv(stbgl_find_uniform(main_prog, "light_source"), 2, lighting[0]); |
| } |
| |
| if (global_hack) |
| set_tex2_alpha(tex2_alpha); |
| |
| num_meshes_uploaded = 0; |
| update_meshes_from_render_thread(); |
| |
| // traverse all in-range chunks and analyze them |
| for (j=-view_dist_in_chunks; j <= view_dist_in_chunks; j += 2) { |
| for (i=-view_dist_in_chunks; i <= view_dist_in_chunks; i += 2) { |
| float priority; |
| int cx = qchunk_x + i; |
| int cy = qchunk_y + j; |
| |
| priority = compute_priority(cx, cy, x, y); |
| if (priority >= min_priority) { |
| int slot_x = (cx>>1) & (CACHED_MESH_NUM_X-1); |
| int slot_y = (cy>>1) & (CACHED_MESH_NUM_Y-1); |
| chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x]; |
| ++chunk_locations; |
| if (cm->state == STATE_valid && priority >= 0) { |
| // check if chunk pos actually matches |
| if (cm->chunk_x != cx || cm->chunk_y != cy) { |
| // we have a stale chunk we need to recreate |
| free_chunk(slot_x, slot_y); // it probably will have already gotten freed, but just in case |
| } |
| } |
| if (cm->state == STATE_invalid) { |
| cm->chunk_x = cx; |
| cm->chunk_y = cy; |
| cm->state = STATE_needed; |
| } |
| cm->priority = priority; |
| } |
| } |
| } |
| |
| // draw front-to-back |
| for (rad = 0; rad <= view_dist_in_chunks; rad += 2) { |
| for (j=-rad; j <= rad; j += 2) { |
| // if j is +- rad, then iterate i through all values |
| // if j isn't +-rad, then i should be only -rad & rad |
| int step = 2; |
| if (abs(j) != rad) |
| step = 2*rad; |
| for (i=-rad; i <= rad; i += step) { |
| int cx = qchunk_x + i; |
| int cy = qchunk_y + j; |
| int slot_x = (cx>>1) & (CACHED_MESH_NUM_X-1); |
| int slot_y = (cy>>1) & (CACHED_MESH_NUM_Y-1); |
| chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x]; |
| if (cm->state == STATE_valid && cm->priority >= 0) { |
| ++chunks_considered; |
| quads_considered += cm->num_quads; |
| if (is_box_in_frustum(cm->bounds[0], cm->bounds[1])) { |
| ++chunks_in_frustum; |
| |
| // @TODO if in range |
| stbglUniform3fv(uniform_loc[STBVOX_UNIFORM_transform], 3, cm->transform[0]); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, cm->vbuf); |
| glVertexAttribIPointer(0, 1, GL_UNSIGNED_INT, 4, (void*) 0); |
| glBindTexture(GL_TEXTURE_BUFFER_ARB, cm->fbuf_tex); |
| glDrawArrays(GL_QUADS, 0, cm->num_quads*4); |
| quads_rendered += cm->num_quads; |
| |
| chunk_storage_rendered += cm->vbuf_size + cm->fbuf_size; |
| } |
| chunk_storage_considered += cm->vbuf_size + cm->fbuf_size; |
| } |
| } |
| } |
| } |
| |
| stbglDisableVertexAttribArray(0); |
| glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); |
| glActiveTextureARB(GL_TEXTURE0_ARB); |
| |
| stbglUseProgram(0); |
| num_meshes_started = 0; |
| |
| { |
| #define MAX_QUEUE 8 |
| float highest_priority[MAX_QUEUE]; |
| int highest_i[MAX_QUEUE], highest_j[MAX_QUEUE]; |
| float lowest_priority = view_dist_in_chunks * view_dist_in_chunks * 16 * 16.0f; |
| int lowest_i = -1, lowest_j = -1; |
| |
| for (i=0; i < MAX_QUEUE; ++i) { |
| highest_priority[i] = min_priority; |
| highest_i[i] = -1; |
| highest_j[i] = -1; |
| } |
| |
| for (j=0; j < CACHED_MESH_NUM_Y; ++j) { |
| for (i=0; i < CACHED_MESH_NUM_X; ++i) { |
| chunk_mesh *cm = &cached_chunk_mesh[j][i]; |
| if (cm->state == STATE_valid) { |
| cm->priority = compute_priority(cm->chunk_x, cm->chunk_y, x, y); |
| chunk_storage_total += cm->vbuf_size + cm->fbuf_size; |
| if (cm->priority < lowest_priority) { |
| lowest_priority = cm->priority; |
| lowest_i = i; |
| lowest_j = j; |
| } |
| } |
| if (cm->state == STATE_needed) { |
| cm->priority = compute_priority(cm->chunk_x, cm->chunk_y, x, y); |
| if (cm->priority < min_priority) |
| cm->state = STATE_invalid; |
| else if (cm->priority > highest_priority[0]) { |
| int k; |
| highest_priority[0] = cm->priority; |
| highest_i[0] = i; |
| highest_j[0] = j; |
| // bubble this up to right place |
| for (k=0; k < MAX_QUEUE-1; ++k) { |
| if (highest_priority[k] > highest_priority[k+1]) { |
| highest_priority[k] = highest_priority[k+1]; |
| highest_priority[k+1] = cm->priority; |
| highest_i[k] = highest_i[k+1]; |
| highest_i[k+1] = i; |
| highest_j[k] = highest_j[k+1]; |
| highest_j[k+1] = j; |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // I couldn't find any straightforward logic that avoids |
| // the hysteresis problem of continually creating & freeing |
| // a block on the margin, so I just don't free a block until |
| // it's out of range, but this doesn't actually correctly |
| // handle when the cache is too small for the given range |
| if (chunk_storage_total >= min_chunk_storage && lowest_i >= 0) { |
| if (cached_chunk_mesh[lowest_j][lowest_i].priority < -1200) // -1000? 0? |
| free_chunk(lowest_i, lowest_j); |
| } |
| |
| if (chunk_storage_total < max_chunk_storage && highest_i[0] >= 0) { |
| for (j=MAX_QUEUE-1; j >= 0; --j) { |
| if (highest_j[0] >= 0) { |
| chunk_mesh *cm = &cached_chunk_mesh[highest_j[j]][highest_i[j]]; |
| if (request_chunk(cm->chunk_x, cm->chunk_y)) { |
| cm->state = STATE_requested; |
| } else { |
| // if we couldn't queue this one, skip the remainder |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| update_meshes_from_render_thread(); |
| |
| num_threads_active = 0; |
| for (i=0; i < num_mesh_workers; ++i) { |
| num_threads_active += (mesh_data[i].state == WSTATE_running); |
| } |
| } |