minijson experiment.
diff --git a/loader_example.cc b/loader_example.cc
index 453aa97..ca3e86c 100644
--- a/loader_example.cc
+++ b/loader_example.cc
@@ -1,6 +1,7 @@
//
// TODO(syoyo): Print extensions and extras for each glTF object.
//
+#include <iostream>
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
diff --git a/minijson.h b/minijson.h
new file mode 100644
index 0000000..ff92a2e
--- /dev/null
+++ b/minijson.h
@@ -0,0 +1,3186 @@
+/*
+ * JSON parser: C++ oriented JSON parser.
+ */
+#ifndef minijson_h
+#define minijson_h
+
+#include <iostream>
+#include <map>
+#include <sstream>
+#include <string>
+#include <vector>
+
+//#define __MINIJSON_LIBERAL
+
+// We recommended to use simdjson from_chars.
+// Using strtod() is a fallback
+#if defined(MINIJSON_USE_STRTOD)
+// Use stdlib's strtod
+#include <cstring>
+#else
+
+namespace minijson {
+namespace simdjson {
+namespace internal {
+
+double from_chars(const char *first) noexcept;
+double from_chars(const char *first, const char *end) noexcept;
+
+char *to_chars(char *first, const char *last, double value);
+
+} // namespace internal
+} // namespace simdjson
+} // namespace minijson
+
+#endif
+
+namespace minijson {
+
+// Simple C++ implementation of Python's OrderedDict like dictonary
+// (preserves key insertion order)
+// Modified for JSON:
+// - No duplicated key allowed
+
+template <typename T>
+class ordered_dict {
+ public:
+ bool at(const size_t idx, T *dst) const {
+ if (idx >= _keys.size()) {
+ return false;
+ }
+
+ if (!_m.count(_keys[idx])) {
+ // This should not happen though.
+ return false;
+ }
+
+ (*dst) = _m.at(_keys[idx]);
+
+ return true;
+ }
+
+ bool count(const std::string &key) const { return _m.count(key); }
+
+ void insert(const std::string &key, const T &value) {
+ if (_m.count(key)) {
+ // overwrite existing value
+ } else {
+ _keys.push_back(key);
+ }
+
+ _m[key] = value;
+ }
+
+ void insert(const std::string &key, T &&value) {
+ if (_m.count(key)) {
+ // overwrite existing value
+ } else {
+ _keys.push_back(key);
+ }
+
+ _m[key] = std::move(value);
+ }
+
+ bool at(const std::string &key, T *dst) const {
+ if (!_m.count(key)) {
+ // This should not happen though.
+ return false;
+ }
+
+ (*dst) = _m.at(key);
+
+ return true;
+ }
+
+ const std::vector<std::string> &keys() const { return _keys; }
+
+ size_t size() const { return _m.size(); }
+
+ bool erase(const std::string &key) {
+ // simple linear search
+ for (size_t i = 0; i < _keys.size(); i++) {
+ if (_keys[i] == key) {
+ _keys.erase(_keys.begin() + i);
+ _m.erase(key);
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ private:
+ std::vector<std::string> _keys;
+ std::map<std::string, T> _m;
+};
+
+namespace detail {
+
+double from_chars(const char *p);
+const char *my_strchr(const char *p, int ch);
+
+} // namespace detail
+
+namespace detail {
+
+//
+// Usage:
+// - set_input()
+// - scan_string()
+// - success: use `token_buffer` string
+// - error: use `error_message`
+//
+struct string_parser {
+ // input string must be UTF-8
+ void set_input(const std::string &s) { _input = s; }
+
+ bool scan_string();
+
+ void reset() {
+ if (_input.size()) {
+ current = _input[0];
+ } else {
+ current = '\0';
+ }
+ curr_idx = 0;
+ token_buffer.clear();
+ }
+
+ // fetch next token.
+ unsigned char get() {
+ if ((curr_idx + 1) < _input.size()) {
+ curr_idx++;
+ current = _input[curr_idx];
+ return current;
+ }
+ current = '\0';
+ return current;
+ }
+
+ bool eof() {
+ if (_input.empty()) {
+ return true;
+ }
+
+ if (curr_idx >= _input.size()) {
+ return true;
+ }
+
+ return false;
+ }
+
+ void add(const unsigned char c) { token_buffer += c; }
+
+ void add(const int i) {
+ // use lower 8bit
+ token_buffer += static_cast<unsigned char>(i & 0xff);
+ }
+
+ int get_codepoint();
+
+ bool next_byte_in_range(const std::initializer_list<int> ranges);
+
+ std::string error_message;
+ std::string token_buffer; // output
+
+ unsigned char current{'\0'};
+ size_t curr_idx{0};
+ std::string _input;
+};
+
+} // namespace detail
+
+typedef enum {
+ unknown_type,
+ null_type,
+ boolean_type,
+ number_type,
+ string_type,
+ array_type,
+ object_type,
+} type;
+
+typedef enum {
+ no_error,
+ undefined_error,
+ invalid_token_error,
+ unknown_type_error,
+ memory_allocation_error,
+ corrupted_json_error,
+ duplicated_key_error,
+} error;
+
+class value;
+
+typedef bool boolean;
+typedef double number;
+typedef std::string string;
+typedef ordered_dict<value> object;
+typedef std::vector<value> array;
+typedef struct {
+} null_t;
+
+// null_t null;
+
+template <typename T>
+struct TypeTraits;
+
+template <>
+struct TypeTraits<null_t> {
+ static constexpr uint32_t type_id() { return 0; }
+};
+
+template <>
+struct TypeTraits<boolean> {
+ static constexpr uint32_t type_id() { return 1; }
+};
+
+template <>
+struct TypeTraits<number> {
+ static constexpr uint32_t type_id() { return 2; }
+};
+
+template <>
+struct TypeTraits<string> {
+ static constexpr uint32_t type_id() { return 3; }
+};
+
+template <>
+struct TypeTraits<object> {
+ static constexpr uint32_t type_id() { return 4; }
+};
+
+template <>
+struct TypeTraits<array> {
+ static constexpr uint32_t type_id() { return 5; }
+};
+
+class value {
+ private:
+ type t;
+ union {
+ null_t n;
+ boolean b;
+ number d;
+ std::string *s;
+ array *a;
+ object *o;
+ } u;
+
+ void _free_u() {
+ if (t == string_type) {
+ delete this->u.s;
+ this->u.s = nullptr;
+ }
+ if (t == array_type) {
+ delete this->u.a;
+ this->u.a = nullptr;
+ }
+ if (t == object_type) {
+ delete this->u.o;
+ this->u.o = nullptr;
+ }
+ }
+
+ public:
+ value() : t(unknown_type), u() {}
+ value(null_t n) : t(null_type), u() { u.n = n; }
+ value(boolean b) : t(boolean_type), u() { u.b = b; }
+ value(number d) : t(boolean_type), u() { u.d = d; }
+ value(const char *s) : t(string_type), u() { u.s = new std::string(s); }
+ value(const std::string &s) : t(string_type), u() {
+ u.s = new std::string(s);
+ }
+ value(const array &a) : t(array_type), u() { u.a = new array(a); }
+ value(const object &o) : t(object_type), u() { u.o = new object(o); }
+ value(const value &v) : t(v.t), u() {
+ if (t == array_type) {
+ u.a = new array();
+ *u.a = *v.u.a;
+ } else if (t == object_type) {
+ u.o = new object();
+ *u.o = *v.u.o;
+ } else if (t == string_type) {
+ u.s = new std::string();
+ *u.s = *v.u.s;
+ } else
+ u.d = v.u.d;
+ }
+ ~value() { _free_u(); }
+
+ template <typename T>
+ bool is() const {
+ if (TypeTraits<T>::type_id() == TypeTraits<null_t>::type_id() &&
+ t == null_type)
+ return true;
+ if (TypeTraits<T>::type_id() == TypeTraits<boolean>::type_id() &&
+ t == boolean_type)
+ return true;
+ if (TypeTraits<T>::type_id() == TypeTraits<number>::type_id() &&
+ t == number_type)
+ return true;
+ if (TypeTraits<T>::type_id() == TypeTraits<std::string>::type_id() &&
+ t == string_type)
+ return true;
+ if (TypeTraits<T>::type_id() == TypeTraits<array>::type_id() &&
+ t == array_type)
+ return true;
+ if (TypeTraits<T>::type_id() == TypeTraits<object>::type_id() &&
+ t == object_type)
+ return true;
+ return false;
+ }
+
+ template <typename T>
+ const T *as() const {
+ if ((t == array_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<array>::type_id())) {
+ return reinterpret_cast<const T *>(u.a);
+ }
+
+ if ((t == object_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<object>::type_id())) {
+ return reinterpret_cast<const T *>(u.o);
+ }
+
+ if ((t == string_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<std::string>::type_id())) {
+ return reinterpret_cast<const T *>(u.s);
+ }
+
+ if ((t == null_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<null_t>::type_id())) {
+ return reinterpret_cast<const T *>(&u.n);
+ }
+
+ if ((t == boolean_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<boolean>::type_id())) {
+ return reinterpret_cast<const T *>(&u.b);
+ }
+
+ if ((t == number_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<number>::type_id())) {
+ return reinterpret_cast<const T *>(&u.d);
+ }
+
+ return nullptr;
+ }
+
+ template <typename T>
+ T *as() {
+ if ((t == array_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<array>::type_id())) {
+ return reinterpret_cast<T *>(u.a);
+ }
+
+ if ((t == object_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<object>::type_id())) {
+ return reinterpret_cast<T *>(u.o);
+ }
+
+ if ((t == string_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<string>::type_id())) {
+ return reinterpret_cast<T *>(u.s);
+ }
+
+ if ((t == null_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<null_t>::type_id())) {
+ return reinterpret_cast<T *>(&u.n);
+ }
+
+ if ((t == boolean_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<boolean>::type_id())) {
+ return reinterpret_cast<T *>(&u.b);
+ }
+
+ if ((t == number_type) &&
+ (TypeTraits<T>::type_id() == TypeTraits<number>::type_id())) {
+ return reinterpret_cast<T *>(&u.d);
+ }
+
+ return nullptr;
+ }
+
+ null_t &operator=(null_t &n) {
+ t = null_type;
+ u.n = n;
+ return u.n;
+ }
+ boolean &operator=(boolean b) {
+ t = boolean_type;
+ u.b = b;
+ return u.b;
+ }
+ number &operator=(number d) {
+ t = number_type;
+ u.d = d;
+ return u.d;
+ }
+ const std::string &operator=(const char *s) {
+ _free_u();
+ t = string_type;
+ u.s = new std::string(s);
+ return *u.s;
+ }
+ const std::string &operator=(const std::string &s) {
+ _free_u();
+ t = string_type;
+ u.s = new std::string(s);
+ return *u.s;
+ }
+ const object &operator=(const object &o) {
+ _free_u();
+ t = object_type;
+ u.o = new object(o);
+ return *u.o;
+ }
+ const array &operator=(const array &a) {
+ _free_u();
+ t = array_type;
+ u.a = new array(a);
+ return *u.a;
+ }
+ const value &operator=(const value &v) {
+ _free_u();
+ t = v.t;
+ if (t == array_type) {
+ u.a = new array(*v.u.a);
+ } else if (t == object_type) {
+ u.o = new object(*v.u.o);
+ } else if (t == string_type) {
+ u.s = new std::string(*v.u.s);
+ } else
+ u.d = v.u.d;
+ return *this;
+ }
+
+ std::string type_name() const {
+ if (t == array_type) {
+ return "array";
+ }
+
+ if (t == object_type) {
+ return "object";
+ }
+
+ if (t == string_type) {
+ return "string";
+ }
+
+ if (t == null_type) {
+ return "null";
+ }
+
+ if (t == boolean_type) {
+ return "boolean";
+ }
+
+ if (t == number_type) {
+ return "number";
+ }
+
+ return "[[invalid]]";
+ }
+
+ std::string str(const char *p) const {
+ std::stringstream ss;
+ ss << '"';
+ while (*p) {
+ if (*p == '\n') {
+ ss << "\\n";
+ } else if (*p == '\r') {
+ ss << "\\r";
+ } else if (*p == '\t') {
+ ss << "\\t";
+ } else if (detail::my_strchr("\"", *p)) {
+ ss << "\\" << *p;
+ } else {
+ ss << *p;
+ }
+ p++;
+ }
+ ss << '"';
+ return ss.str();
+ }
+
+ std::string str() const {
+ std::stringstream ss;
+ if (t == unknown_type) {
+ ss << "undefined";
+ } else if (t == null_type) {
+ ss << "null";
+ } else if (t == boolean_type) {
+ ss << (u.b ? "true" : "false");
+ } else if (t == number_type) {
+ ss << double(u.d);
+ } else if (t == string_type) {
+ ss << str(u.s->c_str());
+ } else if (const array *pa = as<array>()) {
+ array::const_iterator i;
+ ss << "[";
+ // array a = get<array>();
+ for (i = pa->begin(); i != pa->end(); i++) {
+ if (i != pa->begin()) ss << ", ";
+ ss << i->str();
+ }
+ ss << "]";
+ } else if (auto po = as<object>()) {
+ // object::const_iterator i;
+ ss << "{";
+ // object o = get<object>();
+ for (size_t i = 0; i < po->size(); i++) {
+ if (i > 0) ss << ", ";
+ ss << "\"" << po->keys()[i] << "\"";
+
+ value v;
+ if (po->at(i, &v)) {
+ ss << ": " << v.str();
+ } else {
+ // TODO: report error
+ ss << ": null";
+ }
+ }
+ ss << "}";
+ }
+ return ss.str();
+ }
+};
+
+#define MINIJSON_SKIP(i) \
+ while (*i && detail::my_strchr("\r\n \t", *i)) { \
+ i++; \
+ }
+
+template <typename Iter>
+inline error parse_object(Iter &i, value &v) {
+ object o;
+ i++;
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+ if (*i != '\x7d') {
+ while (*i) {
+ value vk, vv;
+ error e = parse_string(i, vk);
+ if (e != no_error) return e;
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+ if (*i != ':') return invalid_token_error;
+ i++;
+ e = parse_any(i, vv);
+ if (e != no_error) return e;
+
+ auto ps = vk.as<std::string>();
+ if (!ps) {
+ return unknown_type_error;
+ }
+
+ if (o.count(*ps)) {
+ return duplicated_key_error;
+ }
+ o.insert(*ps, vv);
+
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+ if (*i == '\x7d') break;
+ if (*i != ',') return invalid_token_error;
+ i++;
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+#ifdef __MINIJSON_LIBERAL
+ if (*i == '\x7d') break;
+#endif
+ }
+ }
+ v = value(o);
+ i++;
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_array(Iter &i, value &v) {
+ array a;
+ i++;
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+ if (*i != ']') {
+ while (*i) {
+ value va;
+ error e = parse_any(i, va);
+ if (e != no_error) return e;
+ a.push_back(va);
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+ if (*i == ']') break;
+ if (*i != ',') return invalid_token_error;
+ i++;
+ MINIJSON_SKIP(i)
+ if (!(*i)) {
+ return corrupted_json_error;
+ }
+#ifdef __MINIJSON_LIBERAL
+ if (*i == '\x7d') break;
+#endif
+ }
+ }
+ v = value(a);
+ i++;
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_null(Iter &i, value &v) {
+ Iter p = i;
+ if (*i == 'n' && *(i + 1) == 'u' && *(i + 2) == 'l' && *(i + 3) == 'l') {
+ i += 4;
+ v = null_t();
+ }
+ if (*i && nullptr == detail::my_strchr(":,\x7d]\r\n ", *i)) {
+ i = p;
+ return undefined_error;
+ }
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_boolean(Iter &i, value &v) {
+ Iter p = i;
+ if (*i == 't' && *(i + 1) == 'r' && *(i + 2) == 'u' && *(i + 3) == 'e') {
+ i += 4;
+ v = static_cast<boolean>(true);
+ } else if (*i == 'f' && *(i + 1) == 'a' && *(i + 2) == 'l' &&
+ *(i + 3) == 's' && *(i + 4) == 'e') {
+ i += 5;
+ v = static_cast<boolean>(false);
+ }
+ if (*i && nullptr == detail::my_strchr(":,\x7d]\r\n ", *i)) {
+ i = p;
+ return undefined_error;
+ }
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_number(Iter &i, value &v) {
+ Iter p = i;
+
+#define MINIJSON_IS_NUM(x) ('0' <= x && x <= '9')
+#define MINIJSON_IS_ALNUM(x) \
+ (('0' <= x && x <= '9') || ('a' <= x && x <= 'f') || ('A' <= x && x <= 'F'))
+ if (*i == '0' && *(i + 1) == 'x' && MINIJSON_IS_ALNUM(*(i + 2))) {
+ i += 3;
+ while (MINIJSON_IS_ALNUM(*i)) i++;
+ v = static_cast<number>(detail::from_chars(p));
+ } else {
+ while (MINIJSON_IS_NUM(*i)) i++;
+ if (*i == '.') {
+ i++;
+ if (!MINIJSON_IS_NUM(*i)) {
+ i = p;
+ return invalid_token_error;
+ }
+ while (MINIJSON_IS_NUM(*i)) i++;
+ }
+ if (*i == 'e') {
+ i++;
+ if (!MINIJSON_IS_NUM(*i)) {
+ i = p;
+ return invalid_token_error;
+ }
+ while (MINIJSON_IS_NUM(*i)) i++;
+ }
+ v = static_cast<number>(detail::from_chars(p));
+ }
+ if (*i && nullptr == detail::my_strchr(":,\x7d]\r\n ", *i)) {
+ i = p;
+ return invalid_token_error;
+ }
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_string(Iter &i, value &v) {
+ if (*i != '"') return invalid_token_error;
+
+ Iter s = i;
+ char t = *i++; // = '"'
+ Iter p = i;
+
+#if 0
+ std::stringstream ss;
+ while (*i && *i != t) {
+ if (*i == '\\' && *(i + 1)) {
+ i++;
+ if (*i == 'n')
+ ss << "\n";
+ else if (*i == 'r')
+ ss << "\r";
+ else if (*i == 't')
+ ss << "\t";
+ else
+ ss << *i;
+ } else {
+ ss << *i;
+ }
+ i++;
+ }
+#else
+ // read until '"'
+ while (*i && *i != t) {
+ if (*i == '\\' && *(i + 1)) {
+ i++;
+ }
+ i++;
+ }
+
+#endif
+ if (!*i) return invalid_token_error;
+ if (i < p) {
+ return corrupted_json_error;
+ }
+
+#if 0
+ v = std::string(p, size_t(i - p));
+
+ i++;
+ if (*i && nullptr == detail::my_strchr(":,\x7d]\r\n ", *i)) {
+ i = p;
+ return invalid_token_error;
+ }
+
+#else
+
+ i++;
+ if (*i && nullptr == detail::my_strchr(":,\x7d]\r\n ", *i)) {
+ i = p;
+ return invalid_token_error;
+ }
+
+ // include first and last '"' char
+ std::string buf(s, size_t(i - s));
+
+ detail::string_parser str_parser;
+ str_parser.set_input(buf);
+
+ if (!str_parser.scan_string()) {
+ // TODO: error message
+ // str_parser.error_message;
+ return invalid_token_error;
+ } else {
+ v = str_parser.token_buffer;
+ }
+
+#endif
+
+ return no_error;
+}
+
+template <typename Iter>
+inline error parse_any(Iter &i, value &v) {
+ MINIJSON_SKIP(i)
+ if (*i == '\x7b') return parse_object(i, v);
+ if (*i == '[') return parse_array(i, v);
+ if (*i == 't' || *i == 'f') return parse_boolean(i, v);
+ if (*i == 'n') return parse_null(i, v);
+ if ('0' <= *i && *i <= '9') return parse_number(i, v);
+ if (*i == '"') return parse_string(i, v);
+ return invalid_token_error;
+}
+
+template <typename Iter>
+inline error parse(Iter &i, value &v) {
+ return parse_any(i, v);
+}
+
+#undef MINIJSON_SKIP
+
+inline const char *errstr(error e) {
+ const char *s = "unknown error";
+ switch (e) {
+ case no_error: {
+ s = "no error";
+ break;
+ }
+ case undefined_error: {
+ s = "undefined";
+ break;
+ }
+ case invalid_token_error: {
+ s = "invalid token";
+ break;
+ }
+ case unknown_type_error: {
+ s = "unknown type";
+ break;
+ }
+ case memory_allocation_error: {
+ s = "memory allocation error";
+ break;
+ }
+ case corrupted_json_error: {
+ s = "input is corrupted";
+ break;
+ }
+ case duplicated_key_error: {
+ s = "duplicated key found";
+ break;
+ }
+ // default: return "unknown error";
+ }
+
+ return s;
+}
+
+} // namespace minijson
+
+#if defined(MINIJSON_IMPLEMENTATION)
+
+namespace minijson {
+
+namespace detail {
+
+// clang-format off
+//
+// From json.hpp ---------------------------------------------------------
+// __ _____ _____ _____
+// __| | __| | | | JSON for Modern C++
+// | | |__ | | | | | | version 3.11.3
+// |_____|_____|_____|_|___| https://github.com/nlohmann/json
+//
+// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
+// SPDX-License-Identifier: MIT
+
+#if 1
+ #define JSON_HEDLEY_UNLIKELY(cond) (cond)
+ #define JSON_HEDLEY_LIKELY(cond) (cond)
+
+ /*!
+ @brief get codepoint from 4 hex characters following `\u`
+
+ For input "\u c1 c2 c3 c4" the codepoint is:
+ (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
+ = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
+
+ Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
+ must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
+ conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
+ between the ASCII value of the character and the desired integer value.
+
+ @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
+ non-hex character)
+ */
+ int string_parser::get_codepoint()
+ {
+ // this function only makes sense after reading `\u`
+ //JSON_ASSERT(current == 'u');
+ if (current != 'u') {
+ return -1;
+ }
+ int codepoint = 0;
+
+ const auto factors = { 12u, 8u, 4u, 0u };
+ for (const auto factor : factors)
+ {
+ get();
+
+ if (current >= '0' && current <= '9')
+ {
+ codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor);
+ }
+ else if (current >= 'A' && current <= 'F')
+ {
+ codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor);
+ }
+ else if (current >= 'a' && current <= 'f')
+ {
+ codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor);
+ }
+ else
+ {
+ return -1;
+ }
+ }
+
+ if (0x0000 <= codepoint && codepoint <= 0xFFFF) {
+ } else {
+ return -1;
+ }
+ return codepoint;
+ }
+
+ /*!
+ @brief check if the next byte(s) are inside a given range
+
+ Adds the current byte and, for each passed range, reads a new byte and
+ checks if it is inside the range. If a violation was detected, set up an
+ error message and return false. Otherwise, return true.
+
+ @param[in] ranges list of integers; interpreted as list of pairs of
+ inclusive lower and upper bound, respectively
+
+ @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
+ 1, 2, or 3 pairs. This precondition is enforced by an assertion.
+
+ @return true if and only if no range violation was detected
+ */
+ bool string_parser::next_byte_in_range(const std::initializer_list<int> ranges)
+ {
+ if (ranges.size() == 2 || ranges.size() == 4 || ranges.size() == 6) {
+ } else {
+ return false;
+ }
+
+ add(current);
+
+ for (auto range = ranges.begin(); range != ranges.end(); ++range)
+ {
+ get();
+ if (JSON_HEDLEY_LIKELY(*range <= current && current <= *(++range))) // NOLINT(bugprone-inc-dec-in-conditions)
+ {
+ add(current);
+ }
+ else
+ {
+ error_message = "invalid string: ill-formed UTF-8 byte";
+ return false;
+ }
+ }
+
+ return true;
+ }
+ /*!
+ @brief scan a string literal
+
+ This function scans a string according to Sect. 7 of RFC 8259. While
+ scanning, bytes are escaped and copied into buffer token_buffer. Then the
+ function returns successfully, token_buffer is *not* null-terminated (as it
+ may contain \0 bytes), and token_buffer.size() is the number of bytes in the
+ string.
+
+ @return true if string could be successfully scanned,
+ false otherwise
+
+ @note In case of errors, variable error_message contains a textual
+ description.
+ */
+ bool string_parser::scan_string()
+ {
+ // reset token_buffer (ignore opening quote)
+ reset();
+
+ // we entered the function by reading an open quote
+ //JSON_ASSERT(current == '\"');
+ if (current != '\"') {
+ error_message = "first character must be '\"'";
+ return false;
+ }
+
+
+ while (!eof())
+ {
+
+ // get next character
+ switch (get())
+ {
+
+ // closing quote
+ case '\"':
+ {
+ return true;
+ }
+
+ // escapes
+ case '\\':
+ {
+ switch (get())
+ {
+ // quotation mark
+ case '\"':
+ add('\"');
+ break;
+ // reverse solidus
+ case '\\':
+ add('\\');
+ break;
+ // solidus
+ case '/':
+ add('/');
+ break;
+ // backspace
+ case 'b':
+ add('\b');
+ break;
+ // form feed
+ case 'f':
+ add('\f');
+ break;
+ // line feed
+ case 'n':
+ add('\n');
+ break;
+ // carriage return
+ case 'r':
+ add('\r');
+ break;
+ // tab
+ case 't':
+ add('\t');
+ break;
+
+ // unicode escapes
+ case 'u':
+ {
+ const int codepoint1 = get_codepoint();
+ int codepoint = codepoint1; // start with codepoint1
+
+ if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1))
+ {
+ error_message = "invalid string: '\\u' must be followed by 4 hex digits";
+ return false;
+ }
+
+ // check if code point is a high surrogate
+ if (0xD800 <= codepoint1 && codepoint1 <= 0xDBFF)
+ {
+ // expect next \uxxxx entry
+ if (JSON_HEDLEY_LIKELY(get() == '\\' && get() == 'u'))
+ {
+ const int codepoint2 = get_codepoint();
+
+ if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1))
+ {
+ error_message = "invalid string: '\\u' must be followed by 4 hex digits";
+ return false;
+ }
+
+ // check if codepoint2 is a low surrogate
+ if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 && codepoint2 <= 0xDFFF))
+ {
+ // overwrite codepoint
+ codepoint = static_cast<int>(
+ // high surrogate occupies the most significant 22 bits
+ (static_cast<unsigned int>(codepoint1) << 10u)
+ // low surrogate occupies the least significant 15 bits
+ + static_cast<unsigned int>(codepoint2)
+ // there is still the 0xD800, 0xDC00 and 0x10000 noise
+ // in the result, so we have to subtract with:
+ // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
+ - 0x35FDC00u);
+ }
+ else
+ {
+ error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF";
+ return false;
+ }
+ }
+ else
+ {
+ error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF";
+ return false;
+ }
+ }
+ else
+ {
+ if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 && codepoint1 <= 0xDFFF))
+ {
+ error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
+ return false;
+ }
+ }
+
+ // result of the above calculation yields a proper codepoint
+ //JSON_ASSERT(0x00 <= codepoint && codepoint <= 0x10FFFF);
+ if (0x00 <= codepoint && codepoint <= 0x10FFFF) {
+ } else {
+ error_message = "invalid string: invalid codepoint";
+ return false;
+ }
+
+ // translate codepoint into bytes
+ if (codepoint < 0x80)
+ {
+ // 1-byte characters: 0xxxxxxx (ASCII)
+ add(static_cast<int>(codepoint));
+ }
+ else if (codepoint <= 0x7FF)
+ {
+ // 2-byte characters: 110xxxxx 10xxxxxx
+ add(static_cast<int>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u)));
+ add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
+ }
+ else if (codepoint <= 0xFFFF)
+ {
+ // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
+ add(static_cast<int>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u)));
+ add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
+ add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
+ }
+ else
+ {
+ // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
+ add(static_cast<int>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u)));
+ add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu)));
+ add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
+ add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
+ }
+
+ break;
+ }
+
+ // other characters after escape
+ default:
+ error_message = "invalid string: forbidden character after backslash";
+ return false;
+ }
+
+ break;
+ }
+
+ // invalid control characters
+ case 0x00:
+ {
+ error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
+ return false;
+ }
+
+ case 0x01:
+ {
+ error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
+ return false;
+ }
+
+ case 0x02:
+ {
+ error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
+ return false;
+ }
+
+ case 0x03:
+ {
+ error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
+ return false;
+ }
+
+ case 0x04:
+ {
+ error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
+ return false;
+ }
+
+ case 0x05:
+ {
+ error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
+ return false;
+ }
+
+ case 0x06:
+ {
+ error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
+ return false;
+ }
+
+ case 0x07:
+ {
+ error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
+ return false;
+ }
+
+ case 0x08:
+ {
+ error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
+ return false;
+ }
+
+ case 0x09:
+ {
+ error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
+ return false;
+ }
+
+ case 0x0A:
+ {
+ error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
+ return false;
+ }
+
+ case 0x0B:
+ {
+ error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
+ return false;
+ }
+
+ case 0x0C:
+ {
+ error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
+ return false;
+ }
+
+ case 0x0D:
+ {
+ error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
+ return false;
+ }
+
+ case 0x0E:
+ {
+ error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
+ return false;
+ }
+
+ case 0x0F:
+ {
+ error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
+ return false;
+ }
+
+ case 0x10:
+ {
+ error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
+ return false;
+ }
+
+ case 0x11:
+ {
+ error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
+ return false;
+ }
+
+ case 0x12:
+ {
+ error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
+ return false;
+ }
+
+ case 0x13:
+ {
+ error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
+ return false;
+ }
+
+ case 0x14:
+ {
+ error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
+ return false;
+ }
+
+ case 0x15:
+ {
+ error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
+ return false;
+ }
+
+ case 0x16:
+ {
+ error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
+ return false;
+ }
+
+ case 0x17:
+ {
+ error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
+ return false;
+ }
+
+ case 0x18:
+ {
+ error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
+ return false;
+ }
+
+ case 0x19:
+ {
+ error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
+ return false;
+ }
+
+ case 0x1A:
+ {
+ error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
+ return false;
+ }
+
+ case 0x1B:
+ {
+ error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
+ return false;
+ }
+
+ case 0x1C:
+ {
+ error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
+ return false;
+ }
+
+ case 0x1D:
+ {
+ error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
+ return false;
+ }
+
+ case 0x1E:
+ {
+ error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
+ return false;
+ }
+
+ case 0x1F:
+ {
+ error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
+ return false;
+ }
+
+ // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
+ case 0x20:
+ case 0x21:
+ case 0x23:
+ case 0x24:
+ case 0x25:
+ case 0x26:
+ case 0x27:
+ case 0x28:
+ case 0x29:
+ case 0x2A:
+ case 0x2B:
+ case 0x2C:
+ case 0x2D:
+ case 0x2E:
+ case 0x2F:
+ case 0x30:
+ case 0x31:
+ case 0x32:
+ case 0x33:
+ case 0x34:
+ case 0x35:
+ case 0x36:
+ case 0x37:
+ case 0x38:
+ case 0x39:
+ case 0x3A:
+ case 0x3B:
+ case 0x3C:
+ case 0x3D:
+ case 0x3E:
+ case 0x3F:
+ case 0x40:
+ case 0x41:
+ case 0x42:
+ case 0x43:
+ case 0x44:
+ case 0x45:
+ case 0x46:
+ case 0x47:
+ case 0x48:
+ case 0x49:
+ case 0x4A:
+ case 0x4B:
+ case 0x4C:
+ case 0x4D:
+ case 0x4E:
+ case 0x4F:
+ case 0x50:
+ case 0x51:
+ case 0x52:
+ case 0x53:
+ case 0x54:
+ case 0x55:
+ case 0x56:
+ case 0x57:
+ case 0x58:
+ case 0x59:
+ case 0x5A:
+ case 0x5B:
+ case 0x5D:
+ case 0x5E:
+ case 0x5F:
+ case 0x60:
+ case 0x61:
+ case 0x62:
+ case 0x63:
+ case 0x64:
+ case 0x65:
+ case 0x66:
+ case 0x67:
+ case 0x68:
+ case 0x69:
+ case 0x6A:
+ case 0x6B:
+ case 0x6C:
+ case 0x6D:
+ case 0x6E:
+ case 0x6F:
+ case 0x70:
+ case 0x71:
+ case 0x72:
+ case 0x73:
+ case 0x74:
+ case 0x75:
+ case 0x76:
+ case 0x77:
+ case 0x78:
+ case 0x79:
+ case 0x7A:
+ case 0x7B:
+ case 0x7C:
+ case 0x7D:
+ case 0x7E:
+ case 0x7F:
+ {
+ add(current);
+ break;
+ }
+
+ // U+0080..U+07FF: bytes C2..DF 80..BF
+ case 0xC2:
+ case 0xC3:
+ case 0xC4:
+ case 0xC5:
+ case 0xC6:
+ case 0xC7:
+ case 0xC8:
+ case 0xC9:
+ case 0xCA:
+ case 0xCB:
+ case 0xCC:
+ case 0xCD:
+ case 0xCE:
+ case 0xCF:
+ case 0xD0:
+ case 0xD1:
+ case 0xD2:
+ case 0xD3:
+ case 0xD4:
+ case 0xD5:
+ case 0xD6:
+ case 0xD7:
+ case 0xD8:
+ case 0xD9:
+ case 0xDA:
+ case 0xDB:
+ case 0xDC:
+ case 0xDD:
+ case 0xDE:
+ case 0xDF:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!next_byte_in_range({0x80, 0xBF})))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
+ case 0xE0:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
+ // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
+ case 0xE1:
+ case 0xE2:
+ case 0xE3:
+ case 0xE4:
+ case 0xE5:
+ case 0xE6:
+ case 0xE7:
+ case 0xE8:
+ case 0xE9:
+ case 0xEA:
+ case 0xEB:
+ case 0xEC:
+ case 0xEE:
+ case 0xEF:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+D000..U+D7FF: bytes ED 80..9F 80..BF
+ case 0xED:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
+ case 0xF0:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
+ case 0xF1:
+ case 0xF2:
+ case 0xF3:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
+ case 0xF4:
+ {
+ if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
+ {
+ return false;
+ }
+ break;
+ }
+
+ // remaining bytes (80..C1 and F5..FF) are ill-formed
+ default:
+ {
+ error_message = "invalid string: ill-formed UTF-8 byte";
+ return false;
+ }
+ }
+ }
+
+ error_message = "invalid string: missing closing quote";
+ return false;
+ }
+#endif
+// end json.hpp
+// clang-format on
+
+} // namespace detail
+
+namespace detail {
+
+double from_chars(const char *p) {
+#if defined(MINIJSON_USE_STRTOD)
+ return strtod(p, nullptr);
+#else
+ return simdjson::internal::from_chars(p);
+#endif
+}
+
+const char *my_strchr(const char *p, int ch) {
+ char c;
+
+ constexpr uint64_t kMaxCount = 1024ull * 1024ull; // up to 1M chars
+
+ uint64_t cnt{0};
+
+ c = ch;
+ for (;; ++p, cnt++) {
+ if (cnt > kMaxCount) {
+ return nullptr;
+ }
+
+ if (*p == c) {
+ return (p);
+ }
+ if (*p == '\0') {
+ return (nullptr);
+ }
+ }
+}
+
+} // namespace detail
+} // namespace minijson
+
+#if !defined(MINIJSON_USE_STRTOD)
+
+#include <cstring>
+#include <limits>
+
+namespace minijson {
+namespace simdjson {
+namespace internal {
+
+/**
+ * The code in the internal::from_chars function is meant to handle the
+ *floating-point number parsing when we have more than 19 digits in the decimal
+ *mantissa. This should only be seen in adversarial scenarios: we do not expect
+ *production systems to even produce such floating-point numbers.
+ *
+ * The parser is based on work by Nigel Tao (at
+ *https://github.com/google/wuffs/) who credits Ken Thompson for the design (via
+ *a reference to the Go source code). See
+ * https://github.com/google/wuffs/blob/aa46859ea40c72516deffa1b146121952d6dfd3b/internal/cgen/base/floatconv-submodule-data.c
+ * https://github.com/google/wuffs/blob/46cd8105f47ca07ae2ba8e6a7818ef9c0df6c152/internal/cgen/base/floatconv-submodule-code.c
+ * It is probably not very fast but it is a fallback that should almost never be
+ * called in real life. Google Wuffs is published under APL 2.0.
+ **/
+
+namespace {
+constexpr uint32_t max_digits = 768;
+constexpr int32_t decimal_point_range = 2047;
+} // namespace
+
+struct adjusted_mantissa {
+ uint64_t mantissa;
+ int power2;
+ adjusted_mantissa() : mantissa(0), power2(0) {}
+};
+
+struct decimal {
+ uint32_t num_digits;
+ int32_t decimal_point;
+ bool negative;
+ bool truncated;
+ uint8_t digits[max_digits];
+};
+
+template <typename T>
+struct binary_format {
+ static constexpr int mantissa_explicit_bits();
+ static constexpr int minimum_exponent();
+ static constexpr int infinite_power();
+ static constexpr int sign_index();
+};
+
+template <>
+constexpr int binary_format<double>::mantissa_explicit_bits() {
+ return 52;
+}
+
+template <>
+constexpr int binary_format<double>::minimum_exponent() {
+ return -1023;
+}
+template <>
+constexpr int binary_format<double>::infinite_power() {
+ return 0x7FF;
+}
+
+template <>
+constexpr int binary_format<double>::sign_index() {
+ return 63;
+}
+
+inline bool is_integer(char c) noexcept { return (c >= '0' && c <= '9'); }
+
+// This should always succeed since it follows a call to parse_number.
+static decimal parse_decimal(const char *&p) noexcept {
+ decimal answer;
+ answer.num_digits = 0;
+ answer.decimal_point = 0;
+ answer.truncated = false;
+ answer.negative = (*p == '-');
+ if ((*p == '-') || (*p == '+')) {
+ ++p;
+ }
+
+ while (*p == '0') {
+ ++p;
+ }
+ while (is_integer(*p)) {
+ if (answer.num_digits < max_digits) {
+ answer.digits[answer.num_digits] = uint8_t(*p - '0');
+ }
+ answer.num_digits++;
+ ++p;
+ }
+ if (*p == '.') {
+ ++p;
+ const char *first_after_period = p;
+ // if we have not yet encountered a zero, we have to skip it as well
+ if (answer.num_digits == 0) {
+ // skip zeros
+ while (*p == '0') {
+ ++p;
+ }
+ }
+ while (is_integer(*p)) {
+ if (answer.num_digits < max_digits) {
+ answer.digits[answer.num_digits] = uint8_t(*p - '0');
+ }
+ answer.num_digits++;
+ ++p;
+ }
+ answer.decimal_point = int32_t(first_after_period - p);
+ }
+ if (answer.num_digits > 0) {
+ const char *preverse = p - 1;
+ int32_t trailing_zeros = 0;
+ while ((*preverse == '0') || (*preverse == '.')) {
+ if (*preverse == '0') {
+ trailing_zeros++;
+ }
+ --preverse;
+ }
+ answer.decimal_point += int32_t(answer.num_digits);
+ answer.num_digits -= uint32_t(trailing_zeros);
+ }
+ if (answer.num_digits > max_digits) {
+ answer.num_digits = max_digits;
+ answer.truncated = true;
+ }
+ if (('e' == *p) || ('E' == *p)) {
+ ++p;
+ bool neg_exp = false;
+ if ('-' == *p) {
+ neg_exp = true;
+ ++p;
+ } else if ('+' == *p) {
+ ++p;
+ }
+ int32_t exp_number = 0; // exponential part
+ while (is_integer(*p)) {
+ uint8_t digit = uint8_t(*p - '0');
+ if (exp_number < 0x10000) {
+ exp_number = 10 * exp_number + digit;
+ }
+ ++p;
+ }
+ answer.decimal_point += (neg_exp ? -exp_number : exp_number);
+ }
+ return answer;
+}
+
+// This should always succeed since it follows a call to parse_number.
+// Will not read at or beyond the "end" pointer.
+static decimal parse_decimal(const char *&p, const char *end) noexcept {
+ decimal answer;
+ answer.num_digits = 0;
+ answer.decimal_point = 0;
+ answer.truncated = false;
+ if (p == end) {
+ return answer;
+ } // should never happen
+ answer.negative = (*p == '-');
+ if ((*p == '-') || (*p == '+')) {
+ ++p;
+ }
+
+ while ((p != end) && (*p == '0')) {
+ ++p;
+ }
+ while ((p != end) && is_integer(*p)) {
+ if (answer.num_digits < max_digits) {
+ answer.digits[answer.num_digits] = uint8_t(*p - '0');
+ }
+ answer.num_digits++;
+ ++p;
+ }
+ if ((p != end) && (*p == '.')) {
+ ++p;
+ if (p == end) {
+ return answer;
+ } // should never happen
+ const char *first_after_period = p;
+ // if we have not yet encountered a zero, we have to skip it as well
+ if (answer.num_digits == 0) {
+ // skip zeros
+ while (*p == '0') {
+ ++p;
+ }
+ }
+ while ((p != end) && is_integer(*p)) {
+ if (answer.num_digits < max_digits) {
+ answer.digits[answer.num_digits] = uint8_t(*p - '0');
+ }
+ answer.num_digits++;
+ ++p;
+ }
+ answer.decimal_point = int32_t(first_after_period - p);
+ }
+ if (answer.num_digits > 0) {
+ const char *preverse = p - 1;
+ int32_t trailing_zeros = 0;
+ while ((*preverse == '0') || (*preverse == '.')) {
+ if (*preverse == '0') {
+ trailing_zeros++;
+ }
+ --preverse;
+ }
+ answer.decimal_point += int32_t(answer.num_digits);
+ answer.num_digits -= uint32_t(trailing_zeros);
+ }
+ if (answer.num_digits > max_digits) {
+ answer.num_digits = max_digits;
+ answer.truncated = true;
+ }
+ if ((p != end) && (('e' == *p) || ('E' == *p))) {
+ ++p;
+ if (p == end) {
+ return answer;
+ } // should never happen
+ bool neg_exp = false;
+ if ('-' == *p) {
+ neg_exp = true;
+ ++p;
+ } else if ('+' == *p) {
+ ++p;
+ }
+ int32_t exp_number = 0; // exponential part
+ while ((p != end) && is_integer(*p)) {
+ uint8_t digit = uint8_t(*p - '0');
+ if (exp_number < 0x10000) {
+ exp_number = 10 * exp_number + digit;
+ }
+ ++p;
+ }
+ answer.decimal_point += (neg_exp ? -exp_number : exp_number);
+ }
+ return answer;
+}
+
+namespace {
+
+// remove all final zeroes
+inline void trim(decimal &h) {
+ while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) {
+ h.num_digits--;
+ }
+}
+
+uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) {
+ shift &= 63;
+ const static uint16_t number_of_digits_decimal_left_shift_table[65] = {
+ 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
+ 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
+ 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
+ 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
+ 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
+ 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
+ 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
+ 0x051C, 0x051C,
+ };
+ uint32_t x_a = number_of_digits_decimal_left_shift_table[shift];
+ uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1];
+ uint32_t num_new_digits = x_a >> 11;
+ uint32_t pow5_a = 0x7FF & x_a;
+ uint32_t pow5_b = 0x7FF & x_b;
+ const static uint8_t
+ number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = {
+ 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5,
+ 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8,
+ 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2,
+ 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1,
+ 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5,
+ 3, 8, 1, 4, 6, 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2,
+ 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3,
+ 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5,
+ 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6,
+ 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3,
+ 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7,
+ 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2,
+ 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8,
+ 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3,
+ 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1,
+ 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6,
+ 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3,
+ 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6,
+ 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3,
+ 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, 5, 1, 4, 5,
+ 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, 6, 2, 5,
+ 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3,
+ 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6,
+ 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6,
+ 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,
+ 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7,
+ 3, 5, 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5,
+ 2, 2, 7, 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5,
+ 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0,
+ 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8,
+ 8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5,
+ 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4,
+ 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2,
+ 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5,
+ 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7,
+ 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9,
+ 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5,
+ 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9,
+ 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3,
+ 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8,
+ 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2,
+ 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1,
+ 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1,
+ 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3,
+ 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2,
+ 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, 4, 1,
+ 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, 3,
+ 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1,
+ 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3,
+ 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,
+ 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6,
+ 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3,
+ 6, 1, 4, 1, 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7,
+ 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9,
+ 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2,
+ 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9,
+ 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5,
+ };
+ const uint8_t *pow5 =
+ &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a];
+ uint32_t i = 0;
+ uint32_t n = pow5_b - pow5_a;
+ for (; i < n; i++) {
+ if (i >= h.num_digits) {
+ return num_new_digits - 1;
+ } else if (h.digits[i] == pow5[i]) {
+ continue;
+ } else if (h.digits[i] < pow5[i]) {
+ return num_new_digits - 1;
+ } else {
+ return num_new_digits;
+ }
+ }
+ return num_new_digits;
+}
+
+} // end of anonymous namespace
+
+static uint64_t round(decimal &h) {
+ if ((h.num_digits == 0) || (h.decimal_point < 0)) {
+ return 0;
+ } else if (h.decimal_point > 18) {
+ return UINT64_MAX;
+ }
+ // at this point, we know that h.decimal_point >= 0
+ uint32_t dp = uint32_t(h.decimal_point);
+ uint64_t n = 0;
+ for (uint32_t i = 0; i < dp; i++) {
+ n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0);
+ }
+ bool round_up = false;
+ if (dp < h.num_digits) {
+ round_up = h.digits[dp] >= 5; // normally, we round up
+ // but we may need to round to even!
+ if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) {
+ round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1]));
+ }
+ }
+ if (round_up) {
+ n++;
+ }
+ return n;
+}
+
+// computes h * 2^-shift
+static void decimal_left_shift(decimal &h, uint32_t shift) {
+ if (h.num_digits == 0) {
+ return;
+ }
+ uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift);
+ int32_t read_index = int32_t(h.num_digits - 1);
+ uint32_t write_index = h.num_digits - 1 + num_new_digits;
+ uint64_t n = 0;
+
+ while (read_index >= 0) {
+ n += uint64_t(h.digits[read_index]) << shift;
+ uint64_t quotient = n / 10;
+ uint64_t remainder = n - (10 * quotient);
+ if (write_index < max_digits) {
+ h.digits[write_index] = uint8_t(remainder);
+ } else if (remainder > 0) {
+ h.truncated = true;
+ }
+ n = quotient;
+ write_index--;
+ read_index--;
+ }
+ while (n > 0) {
+ uint64_t quotient = n / 10;
+ uint64_t remainder = n - (10 * quotient);
+ if (write_index < max_digits) {
+ h.digits[write_index] = uint8_t(remainder);
+ } else if (remainder > 0) {
+ h.truncated = true;
+ }
+ n = quotient;
+ write_index--;
+ }
+ h.num_digits += num_new_digits;
+ if (h.num_digits > max_digits) {
+ h.num_digits = max_digits;
+ }
+ h.decimal_point += int32_t(num_new_digits);
+ trim(h);
+}
+
+// computes h * 2^shift
+static void decimal_right_shift(decimal &h, uint32_t shift) {
+ uint32_t read_index = 0;
+ uint32_t write_index = 0;
+
+ uint64_t n = 0;
+
+ while ((n >> shift) == 0) {
+ if (read_index < h.num_digits) {
+ n = (10 * n) + h.digits[read_index++];
+ } else if (n == 0) {
+ return;
+ } else {
+ while ((n >> shift) == 0) {
+ n = 10 * n;
+ read_index++;
+ }
+ break;
+ }
+ }
+ h.decimal_point -= int32_t(read_index - 1);
+ if (h.decimal_point < -decimal_point_range) { // it is zero
+ h.num_digits = 0;
+ h.decimal_point = 0;
+ h.negative = false;
+ h.truncated = false;
+ return;
+ }
+ uint64_t mask = (uint64_t(1) << shift) - 1;
+ while (read_index < h.num_digits) {
+ uint8_t new_digit = uint8_t(n >> shift);
+ n = (10 * (n & mask)) + h.digits[read_index++];
+ h.digits[write_index++] = new_digit;
+ }
+ while (n > 0) {
+ uint8_t new_digit = uint8_t(n >> shift);
+ n = 10 * (n & mask);
+ if (write_index < max_digits) {
+ h.digits[write_index++] = new_digit;
+ } else if (new_digit > 0) {
+ h.truncated = true;
+ }
+ }
+ h.num_digits = write_index;
+ trim(h);
+}
+
+template <typename binary>
+adjusted_mantissa compute_float(decimal &d) {
+ adjusted_mantissa answer;
+ if (d.num_digits == 0) {
+ // should be zero
+ answer.power2 = 0;
+ answer.mantissa = 0;
+ return answer;
+ }
+ // At this point, going further, we can assume that d.num_digits > 0.
+ // We want to guard against excessive decimal point values because
+ // they can result in long running times. Indeed, we do
+ // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22
+ // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not
+ // fine (runs for a long time).
+ //
+ if (d.decimal_point < -324) {
+ // We have something smaller than 1e-324 which is always zero
+ // in binary64 and binary32.
+ // It should be zero.
+ answer.power2 = 0;
+ answer.mantissa = 0;
+ return answer;
+ } else if (d.decimal_point >= 310) {
+ // We have something at least as large as 0.1e310 which is
+ // always infinite.
+ answer.power2 = binary::infinite_power();
+ answer.mantissa = 0;
+ return answer;
+ }
+
+ static const uint32_t max_shift = 60;
+ static const uint32_t num_powers = 19;
+ static const uint8_t powers[19] = {
+ 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, //
+ 33, 36, 39, 43, 46, 49, 53, 56, 59, //
+ };
+ int32_t exp2 = 0;
+ while (d.decimal_point > 0) {
+ uint32_t n = uint32_t(d.decimal_point);
+ uint32_t shift = (n < num_powers) ? powers[n] : max_shift;
+ decimal_right_shift(d, shift);
+ if (d.decimal_point < -decimal_point_range) {
+ // should be zero
+ answer.power2 = 0;
+ answer.mantissa = 0;
+ return answer;
+ }
+ exp2 += int32_t(shift);
+ }
+ // We shift left toward [1/2 ... 1].
+ while (d.decimal_point <= 0) {
+ uint32_t shift;
+ if (d.decimal_point == 0) {
+ if (d.digits[0] >= 5) {
+ break;
+ }
+ shift = (d.digits[0] < 2) ? 2 : 1;
+ } else {
+ uint32_t n = uint32_t(-d.decimal_point);
+ shift = (n < num_powers) ? powers[n] : max_shift;
+ }
+ decimal_left_shift(d, shift);
+ if (d.decimal_point > decimal_point_range) {
+ // we want to get infinity:
+ answer.power2 = 0xFF;
+ answer.mantissa = 0;
+ return answer;
+ }
+ exp2 -= int32_t(shift);
+ }
+ // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
+ exp2--;
+ constexpr int32_t minimum_exponent = binary::minimum_exponent();
+ while ((minimum_exponent + 1) > exp2) {
+ uint32_t n = uint32_t((minimum_exponent + 1) - exp2);
+ if (n > max_shift) {
+ n = max_shift;
+ }
+ decimal_right_shift(d, n);
+ exp2 += int32_t(n);
+ }
+ if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
+ answer.power2 = binary::infinite_power();
+ answer.mantissa = 0;
+ return answer;
+ }
+
+ const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1;
+ decimal_left_shift(d, mantissa_size_in_bits);
+
+ uint64_t mantissa = round(d);
+ // It is possible that we have an overflow, in which case we need
+ // to shift back.
+ if (mantissa >= (uint64_t(1) << mantissa_size_in_bits)) {
+ decimal_right_shift(d, 1);
+ exp2 += 1;
+ mantissa = round(d);
+ if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
+ answer.power2 = binary::infinite_power();
+ answer.mantissa = 0;
+ return answer;
+ }
+ }
+ answer.power2 = exp2 - binary::minimum_exponent();
+ if (mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) {
+ answer.power2--;
+ }
+ answer.mantissa =
+ mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1);
+ return answer;
+}
+
+template <typename binary>
+adjusted_mantissa parse_long_mantissa(const char *first) {
+ decimal d = parse_decimal(first);
+ return compute_float<binary>(d);
+}
+
+template <typename binary>
+adjusted_mantissa parse_long_mantissa(const char *first, const char *end) {
+ decimal d = parse_decimal(first, end);
+ return compute_float<binary>(d);
+}
+
+double from_chars(const char *first) noexcept {
+ bool negative = first[0] == '-';
+ if (negative) {
+ first++;
+ }
+ adjusted_mantissa am = parse_long_mantissa<binary_format<double>>(first);
+ uint64_t word = am.mantissa;
+ word |= uint64_t(am.power2)
+ << binary_format<double>::mantissa_explicit_bits();
+ word = negative ? word | (uint64_t(1) << binary_format<double>::sign_index())
+ : word;
+ double value;
+ std::memcpy(&value, &word, sizeof(double));
+ return value;
+}
+
+double from_chars(const char *first, const char *end) noexcept {
+ bool negative = first[0] == '-';
+ if (negative) {
+ first++;
+ }
+ adjusted_mantissa am = parse_long_mantissa<binary_format<double>>(first, end);
+ uint64_t word = am.mantissa;
+ word |= uint64_t(am.power2)
+ << binary_format<double>::mantissa_explicit_bits();
+ word = negative ? word | (uint64_t(1) << binary_format<double>::sign_index())
+ : word;
+ double value;
+ std::memcpy(&value, &word, sizeof(double));
+ return value;
+}
+
+} // namespace internal
+} // namespace simdjson
+} // namespace minijson
+
+namespace minijson {
+namespace simdjson {
+namespace internal {
+/*!
+implements the Grisu2 algorithm for binary to decimal floating-point
+conversion.
+Adapted from JSON for Modern C++
+
+This implementation is a slightly modified version of the reference
+implementation which may be obtained from
+http://florian.loitsch.com/publications (bench.tar.gz).
+The code is distributed under the MIT license, Copyright (c) 2009 Florian
+Loitsch. For a detailed description of the algorithm see: [1] Loitsch, "Printing
+Floating-Point Numbers Quickly and Accurately with Integers", Proceedings of the
+ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation,
+PLDI 2010 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and
+Accurately", Proceedings of the ACM SIGPLAN 1996 Conference on Programming
+Language Design and Implementation, PLDI 1996
+*/
+namespace dtoa_impl {
+
+template <typename Target, typename Source>
+Target reinterpret_bits(const Source source) {
+ static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
+
+ Target target;
+ std::memcpy(&target, &source, sizeof(Source));
+ return target;
+}
+
+struct diyfp // f * 2^e
+{
+ static constexpr int kPrecision = 64; // = q
+
+ std::uint64_t f = 0;
+ int e = 0;
+
+ constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
+
+ /*!
+ @brief returns x - y
+ @pre x.e == y.e and x.f >= y.f
+ */
+ static diyfp sub(const diyfp &x, const diyfp &y) noexcept {
+ return {x.f - y.f, x.e};
+ }
+
+ /*!
+ @brief returns x * y
+ @note The result is rounded. (Only the upper q bits are returned.)
+ */
+ static diyfp mul(const diyfp &x, const diyfp &y) noexcept {
+ static_assert(kPrecision == 64, "internal error");
+
+ // Computes:
+ // f = round((x.f * y.f) / 2^q)
+ // e = x.e + y.e + q
+
+ // Emulate the 64-bit * 64-bit multiplication:
+ //
+ // p = u * v
+ // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
+ // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) +
+ // 2^64 (u_hi v_hi ) = (p0 ) + 2^32 ((p1 ) + (p2 ))
+ // + 2^64 (p3 ) = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo +
+ // 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) =
+ // (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi +
+ // p2_hi + p3) = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) = (p0_lo ) +
+ // 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
+ //
+ // (Since Q might be larger than 2^32 - 1)
+ //
+ // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
+ //
+ // (Q_hi + H does not overflow a 64-bit int)
+ //
+ // = p_lo + 2^64 p_hi
+
+ const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
+ const std::uint64_t u_hi = x.f >> 32u;
+ const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
+ const std::uint64_t v_hi = y.f >> 32u;
+
+ const std::uint64_t p0 = u_lo * v_lo;
+ const std::uint64_t p1 = u_lo * v_hi;
+ const std::uint64_t p2 = u_hi * v_lo;
+ const std::uint64_t p3 = u_hi * v_hi;
+
+ const std::uint64_t p0_hi = p0 >> 32u;
+ const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
+ const std::uint64_t p1_hi = p1 >> 32u;
+ const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
+ const std::uint64_t p2_hi = p2 >> 32u;
+
+ std::uint64_t Q = p0_hi + p1_lo + p2_lo;
+
+ // The full product might now be computed as
+ //
+ // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
+ // p_lo = p0_lo + (Q << 32)
+ //
+ // But in this particular case here, the full p_lo is not required.
+ // Effectively we only need to add the highest bit in p_lo to p_hi (and
+ // Q_hi + 1 does not overflow).
+
+ Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
+
+ const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
+
+ return {h, x.e + y.e + 64};
+ }
+
+ /*!
+ @brief normalize x such that the significand is >= 2^(q-1)
+ @pre x.f != 0
+ */
+ static diyfp normalize(diyfp x) noexcept {
+ while ((x.f >> 63u) == 0) {
+ x.f <<= 1u;
+ x.e--;
+ }
+
+ return x;
+ }
+
+ /*!
+ @brief normalize x such that the result has the exponent E
+ @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
+ */
+ static diyfp normalize_to(const diyfp &x,
+ const int target_exponent) noexcept {
+ const int delta = x.e - target_exponent;
+
+ return {x.f << delta, target_exponent};
+ }
+};
+
+struct boundaries {
+ diyfp w;
+ diyfp minus;
+ diyfp plus;
+};
+
+/*!
+Compute the (normalized) diyfp representing the input number 'value' and its
+boundaries.
+@pre value must be finite and positive
+*/
+template <typename FloatType>
+boundaries compute_boundaries(FloatType value) {
+ // Convert the IEEE representation into a diyfp.
+ //
+ // If v is denormal:
+ // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
+ // If v is normalized:
+ // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
+
+ static_assert(std::numeric_limits<FloatType>::is_iec559,
+ "internal error: dtoa_short requires an IEEE-754 "
+ "floating-point implementation");
+
+ constexpr int kPrecision =
+ std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
+ constexpr int kBias =
+ std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
+ constexpr int kMinExp = 1 - kBias;
+ constexpr std::uint64_t kHiddenBit = std::uint64_t{1}
+ << (kPrecision - 1); // = 2^(p-1)
+
+ using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t,
+ std::uint64_t>::type;
+
+ const std::uint64_t bits = reinterpret_bits<bits_type>(value);
+ const std::uint64_t E = bits >> (kPrecision - 1);
+ const std::uint64_t F = bits & (kHiddenBit - 1);
+
+ const bool is_denormal = E == 0;
+ const diyfp v = is_denormal
+ ? diyfp(F, kMinExp)
+ : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
+
+ // Compute the boundaries m- and m+ of the floating-point value
+ // v = f * 2^e.
+ //
+ // Determine v- and v+, the floating-point predecessor and successor if v,
+ // respectively.
+ //
+ // v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
+ // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
+ //
+ // v+ = v + 2^e
+ //
+ // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
+ // between m- and m+ round to v, regardless of how the input rounding
+ // algorithm breaks ties.
+ //
+ // ---+-------------+-------------+-------------+-------------+--- (A)
+ // v- m- v m+ v+
+ //
+ // -----------------+------+------+-------------+-------------+--- (B)
+ // v- m- v m+ v+
+
+ const bool lower_boundary_is_closer = F == 0 && E > 1;
+ const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
+ const diyfp m_minus = lower_boundary_is_closer
+ ? diyfp(4 * v.f - 1, v.e - 2) // (B)
+ : diyfp(2 * v.f - 1, v.e - 1); // (A)
+
+ // Determine the normalized w+ = m+.
+ const diyfp w_plus = diyfp::normalize(m_plus);
+
+ // Determine w- = m- such that e_(w-) = e_(w+).
+ const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
+
+ return {diyfp::normalize(v), w_minus, w_plus};
+}
+
+// Given normalized diyfp w, Grisu needs to find a (normalized) cached
+// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
+// within a certain range [alpha, gamma] (Definition 3.2 from [1])
+//
+// alpha <= e = e_c + e_w + q <= gamma
+//
+// or
+//
+// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
+// <= f_c * f_w * 2^gamma
+//
+// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
+//
+// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
+//
+// or
+//
+// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
+//
+// The choice of (alpha,gamma) determines the size of the table and the form of
+// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
+// in practice:
+//
+// The idea is to cut the number c * w = f * 2^e into two parts, which can be
+// processed independently: An integral part p1, and a fractional part p2:
+//
+// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
+// = (f div 2^-e) + (f mod 2^-e) * 2^e
+// = p1 + p2 * 2^e
+//
+// The conversion of p1 into decimal form requires a series of divisions and
+// modulos by (a power of) 10. These operations are faster for 32-bit than for
+// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
+// achieved by choosing
+//
+// -e >= 32 or e <= -32 := gamma
+//
+// In order to convert the fractional part
+//
+// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
+//
+// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
+// d[-i] are extracted in order:
+//
+// (10 * p2) div 2^-e = d[-1]
+// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
+//
+// The multiplication by 10 must not overflow. It is sufficient to choose
+//
+// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
+//
+// Since p2 = f mod 2^-e < 2^-e,
+//
+// -e <= 60 or e >= -60 := alpha
+
+constexpr int kAlpha = -60;
+constexpr int kGamma = -32;
+
+struct cached_power // c = f * 2^e ~= 10^k
+{
+ std::uint64_t f;
+ int e;
+ int k;
+};
+
+/*!
+For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
+power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
+satisfies (Definition 3.2 from [1])
+ alpha <= e_c + e + q <= gamma.
+*/
+inline cached_power get_cached_power_for_binary_exponent(int e) {
+ // Now
+ //
+ // alpha <= e_c + e + q <= gamma (1)
+ // ==> f_c * 2^alpha <= c * 2^e * 2^q
+ //
+ // and since the c's are normalized, 2^(q-1) <= f_c,
+ //
+ // ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
+ // ==> 2^(alpha - e - 1) <= c
+ //
+ // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
+ //
+ // k = ceil( log_10( 2^(alpha - e - 1) ) )
+ // = ceil( (alpha - e - 1) * log_10(2) )
+ //
+ // From the paper:
+ // "In theory the result of the procedure could be wrong since c is rounded,
+ // and the computation itself is approximated [...]. In practice, however,
+ // this simple function is sufficient."
+ //
+ // For IEEE double precision floating-point numbers converted into
+ // normalized diyfp's w = f * 2^e, with q = 64,
+ //
+ // e >= -1022 (min IEEE exponent)
+ // -52 (p - 1)
+ // -52 (p - 1, possibly normalize denormal IEEE numbers)
+ // -11 (normalize the diyfp)
+ // = -1137
+ //
+ // and
+ //
+ // e <= +1023 (max IEEE exponent)
+ // -52 (p - 1)
+ // -11 (normalize the diyfp)
+ // = 960
+ //
+ // This binary exponent range [-1137,960] results in a decimal exponent
+ // range [-307,324]. One does not need to store a cached power for each
+ // k in this range. For each such k it suffices to find a cached power
+ // such that the exponent of the product lies in [alpha,gamma].
+ // This implies that the difference of the decimal exponents of adjacent
+ // table entries must be less than or equal to
+ //
+ // floor( (gamma - alpha) * log_10(2) ) = 8.
+ //
+ // (A smaller distance gamma-alpha would require a larger table.)
+
+ // NB:
+ // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
+
+ constexpr int kCachedPowersMinDecExp = -300;
+ constexpr int kCachedPowersDecStep = 8;
+
+ static constexpr std::array<cached_power, 79> kCachedPowers = {{
+ {0xAB70FE17C79AC6CA, -1060, -300}, {0xFF77B1FCBEBCDC4F, -1034, -292},
+ {0xBE5691EF416BD60C, -1007, -284}, {0x8DD01FAD907FFC3C, -980, -276},
+ {0xD3515C2831559A83, -954, -268}, {0x9D71AC8FADA6C9B5, -927, -260},
+ {0xEA9C227723EE8BCB, -901, -252}, {0xAECC49914078536D, -874, -244},
+ {0x823C12795DB6CE57, -847, -236}, {0xC21094364DFB5637, -821, -228},
+ {0x9096EA6F3848984F, -794, -220}, {0xD77485CB25823AC7, -768, -212},
+ {0xA086CFCD97BF97F4, -741, -204}, {0xEF340A98172AACE5, -715, -196},
+ {0xB23867FB2A35B28E, -688, -188}, {0x84C8D4DFD2C63F3B, -661, -180},
+ {0xC5DD44271AD3CDBA, -635, -172}, {0x936B9FCEBB25C996, -608, -164},
+ {0xDBAC6C247D62A584, -582, -156}, {0xA3AB66580D5FDAF6, -555, -148},
+ {0xF3E2F893DEC3F126, -529, -140}, {0xB5B5ADA8AAFF80B8, -502, -132},
+ {0x87625F056C7C4A8B, -475, -124}, {0xC9BCFF6034C13053, -449, -116},
+ {0x964E858C91BA2655, -422, -108}, {0xDFF9772470297EBD, -396, -100},
+ {0xA6DFBD9FB8E5B88F, -369, -92}, {0xF8A95FCF88747D94, -343, -84},
+ {0xB94470938FA89BCF, -316, -76}, {0x8A08F0F8BF0F156B, -289, -68},
+ {0xCDB02555653131B6, -263, -60}, {0x993FE2C6D07B7FAC, -236, -52},
+ {0xE45C10C42A2B3B06, -210, -44}, {0xAA242499697392D3, -183, -36},
+ {0xFD87B5F28300CA0E, -157, -28}, {0xBCE5086492111AEB, -130, -20},
+ {0x8CBCCC096F5088CC, -103, -12}, {0xD1B71758E219652C, -77, -4},
+ {0x9C40000000000000, -50, 4}, {0xE8D4A51000000000, -24, 12},
+ {0xAD78EBC5AC620000, 3, 20}, {0x813F3978F8940984, 30, 28},
+ {0xC097CE7BC90715B3, 56, 36}, {0x8F7E32CE7BEA5C70, 83, 44},
+ {0xD5D238A4ABE98068, 109, 52}, {0x9F4F2726179A2245, 136, 60},
+ {0xED63A231D4C4FB27, 162, 68}, {0xB0DE65388CC8ADA8, 189, 76},
+ {0x83C7088E1AAB65DB, 216, 84}, {0xC45D1DF942711D9A, 242, 92},
+ {0x924D692CA61BE758, 269, 100}, {0xDA01EE641A708DEA, 295, 108},
+ {0xA26DA3999AEF774A, 322, 116}, {0xF209787BB47D6B85, 348, 124},
+ {0xB454E4A179DD1877, 375, 132}, {0x865B86925B9BC5C2, 402, 140},
+ {0xC83553C5C8965D3D, 428, 148}, {0x952AB45CFA97A0B3, 455, 156},
+ {0xDE469FBD99A05FE3, 481, 164}, {0xA59BC234DB398C25, 508, 172},
+ {0xF6C69A72A3989F5C, 534, 180}, {0xB7DCBF5354E9BECE, 561, 188},
+ {0x88FCF317F22241E2, 588, 196}, {0xCC20CE9BD35C78A5, 614, 204},
+ {0x98165AF37B2153DF, 641, 212}, {0xE2A0B5DC971F303A, 667, 220},
+ {0xA8D9D1535CE3B396, 694, 228}, {0xFB9B7CD9A4A7443C, 720, 236},
+ {0xBB764C4CA7A44410, 747, 244}, {0x8BAB8EEFB6409C1A, 774, 252},
+ {0xD01FEF10A657842C, 800, 260}, {0x9B10A4E5E9913129, 827, 268},
+ {0xE7109BFBA19C0C9D, 853, 276}, {0xAC2820D9623BF429, 880, 284},
+ {0x80444B5E7AA7CF85, 907, 292}, {0xBF21E44003ACDD2D, 933, 300},
+ {0x8E679C2F5E44FF8F, 960, 308}, {0xD433179D9C8CB841, 986, 316},
+ {0x9E19DB92B4E31BA9, 1013, 324},
+ }};
+
+ // This computation gives exactly the same results for k as
+ // k = ceil((kAlpha - e - 1) * 0.30102999566398114)
+ // for |e| <= 1500, but doesn't require floating-point operations.
+ // NB: log_10(2) ~= 78913 / 2^18
+ const int f = kAlpha - e - 1;
+ const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
+
+ const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) /
+ kCachedPowersDecStep;
+
+ const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
+
+ return cached;
+}
+
+/*!
+For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
+For n == 0, returns 1 and sets pow10 := 1.
+*/
+inline int find_largest_pow10(const std::uint32_t n, std::uint32_t &pow10) {
+ // LCOV_EXCL_START
+ if (n >= 1000000000) {
+ pow10 = 1000000000;
+ return 10;
+ }
+ // LCOV_EXCL_STOP
+ else if (n >= 100000000) {
+ pow10 = 100000000;
+ return 9;
+ } else if (n >= 10000000) {
+ pow10 = 10000000;
+ return 8;
+ } else if (n >= 1000000) {
+ pow10 = 1000000;
+ return 7;
+ } else if (n >= 100000) {
+ pow10 = 100000;
+ return 6;
+ } else if (n >= 10000) {
+ pow10 = 10000;
+ return 5;
+ } else if (n >= 1000) {
+ pow10 = 1000;
+ return 4;
+ } else if (n >= 100) {
+ pow10 = 100;
+ return 3;
+ } else if (n >= 10) {
+ pow10 = 10;
+ return 2;
+ } else {
+ pow10 = 1;
+ return 1;
+ }
+}
+
+inline void grisu2_round(char *buf, int len, std::uint64_t dist,
+ std::uint64_t delta, std::uint64_t rest,
+ std::uint64_t ten_k) {
+ // <--------------------------- delta ---->
+ // <---- dist --------->
+ // --------------[------------------+-------------------]--------------
+ // M- w M+
+ //
+ // ten_k
+ // <------>
+ // <---- rest ---->
+ // --------------[------------------+----+--------------]--------------
+ // w V
+ // = buf * 10^k
+ //
+ // ten_k represents a unit-in-the-last-place in the decimal representation
+ // stored in buf.
+ // Decrement buf by ten_k while this takes buf closer to w.
+
+ // The tests are written in this order to avoid overflow in unsigned
+ // integer arithmetic.
+
+ while (rest < dist && delta - rest >= ten_k &&
+ (rest + ten_k < dist || dist - rest > rest + ten_k - dist)) {
+ buf[len - 1]--;
+ rest += ten_k;
+ }
+}
+
+/*!
+Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
+M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
+*/
+inline void grisu2_digit_gen(char *buffer, int &length, int &decimal_exponent,
+ diyfp M_minus, diyfp w, diyfp M_plus) {
+ static_assert(kAlpha >= -60, "internal error");
+ static_assert(kGamma <= -32, "internal error");
+
+ // Generates the digits (and the exponent) of a decimal floating-point
+ // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
+ // w, M- and M+ share the same exponent e, which satisfies alpha <= e <=
+ // gamma.
+ //
+ // <--------------------------- delta ---->
+ // <---- dist --------->
+ // --------------[------------------+-------------------]--------------
+ // M- w M+
+ //
+ // Grisu2 generates the digits of M+ from left to right and stops as soon as
+ // V is in [M-,M+].
+
+ std::uint64_t delta =
+ diyfp::sub(M_plus, M_minus)
+ .f; // (significand of (M+ - M-), implicit exponent is e)
+ std::uint64_t dist =
+ diyfp::sub(M_plus, w)
+ .f; // (significand of (M+ - w ), implicit exponent is e)
+
+ // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
+ //
+ // M+ = f * 2^e
+ // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
+ // = ((p1 ) * 2^-e + (p2 )) * 2^e
+ // = p1 + p2 * 2^e
+
+ const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
+
+ auto p1 = static_cast<std::uint32_t>(
+ M_plus.f >>
+ -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
+ std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
+
+ // 1)
+ //
+ // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
+
+ std::uint32_t pow10;
+ const int k = find_largest_pow10(p1, pow10);
+
+ // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
+ //
+ // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
+ // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
+ //
+ // M+ = p1 + p2 * 2^e
+ // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
+ // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
+ // = d[k-1] * 10^(k-1) + ( rest) * 2^e
+ //
+ // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
+ //
+ // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
+ //
+ // but stop as soon as
+ //
+ // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
+
+ int n = k;
+ while (n > 0) {
+ // Invariants:
+ // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
+ // pow10 = 10^(n-1) <= p1 < 10^n
+ //
+ const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
+ const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
+ //
+ // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
+ // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
+ //
+ buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
+ //
+ // M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
+ //
+ p1 = r;
+ n--;
+ //
+ // M+ = buffer * 10^n + (p1 + p2 * 2^e)
+ // pow10 = 10^n
+ //
+
+ // Now check if enough digits have been generated.
+ // Compute
+ //
+ // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
+ //
+ // Note:
+ // Since rest and delta share the same exponent e, it suffices to
+ // compare the significands.
+ const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
+ if (rest <= delta) {
+ // V = buffer * 10^n, with M- <= V <= M+.
+
+ decimal_exponent += n;
+
+ // We may now just stop. But instead look if the buffer could be
+ // decremented to bring V closer to w.
+ //
+ // pow10 = 10^n is now 1 ulp in the decimal representation V.
+ // The rounding procedure works with diyfp's with an implicit
+ // exponent of e.
+ //
+ // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
+ //
+ const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
+ grisu2_round(buffer, length, dist, delta, rest, ten_n);
+
+ return;
+ }
+
+ pow10 /= 10;
+ //
+ // pow10 = 10^(n-1) <= p1 < 10^n
+ // Invariants restored.
+ }
+
+ // 2)
+ //
+ // The digits of the integral part have been generated:
+ //
+ // M+ = d[k-1]...d[1]d[0] + p2 * 2^e
+ // = buffer + p2 * 2^e
+ //
+ // Now generate the digits of the fractional part p2 * 2^e.
+ //
+ // Note:
+ // No decimal point is generated: the exponent is adjusted instead.
+ //
+ // p2 actually represents the fraction
+ //
+ // p2 * 2^e
+ // = p2 / 2^-e
+ // = d[-1] / 10^1 + d[-2] / 10^2 + ...
+ //
+ // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
+ //
+ // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
+ // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
+ //
+ // using
+ //
+ // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
+ // = ( d) * 2^-e + ( r)
+ //
+ // or
+ // 10^m * p2 * 2^e = d + r * 2^e
+ //
+ // i.e.
+ //
+ // M+ = buffer + p2 * 2^e
+ // = buffer + 10^-m * (d + r * 2^e)
+ // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
+ //
+ // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
+
+ int m = 0;
+ for (;;) {
+ // Invariant:
+ // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...)
+ // * 2^e
+ // = buffer * 10^-m + 10^-m * (p2 )
+ // * 2^e = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e =
+ // buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e +
+ // (10*p2 mod 2^-e)) * 2^e
+ //
+ p2 *= 10;
+ const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
+ const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
+ //
+ // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
+ // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
+ // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
+ //
+ buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
+ //
+ // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
+ //
+ p2 = r;
+ m++;
+ //
+ // M+ = buffer * 10^-m + 10^-m * p2 * 2^e
+ // Invariant restored.
+
+ // Check if enough digits have been generated.
+ //
+ // 10^-m * p2 * 2^e <= delta * 2^e
+ // p2 * 2^e <= 10^m * delta * 2^e
+ // p2 <= 10^m * delta
+ delta *= 10;
+ dist *= 10;
+ if (p2 <= delta) {
+ break;
+ }
+ }
+
+ // V = buffer * 10^-m, with M- <= V <= M+.
+
+ decimal_exponent -= m;
+
+ // 1 ulp in the decimal representation is now 10^-m.
+ // Since delta and dist are now scaled by 10^m, we need to do the
+ // same with ulp in order to keep the units in sync.
+ //
+ // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
+ //
+ const std::uint64_t ten_m = one.f;
+ grisu2_round(buffer, length, dist, delta, p2, ten_m);
+
+ // By construction this algorithm generates the shortest possible decimal
+ // number (Loitsch, Theorem 6.2) which rounds back to w.
+ // For an input number of precision p, at least
+ //
+ // N = 1 + ceil(p * log_10(2))
+ //
+ // decimal digits are sufficient to identify all binary floating-point
+ // numbers (Matula, "In-and-Out conversions").
+ // This implies that the algorithm does not produce more than N decimal
+ // digits.
+ //
+ // N = 17 for p = 53 (IEEE double precision)
+ // N = 9 for p = 24 (IEEE single precision)
+}
+
+/*!
+v = buf * 10^decimal_exponent
+len is the length of the buffer (number of decimal digits)
+The buffer must be large enough, i.e. >= max_digits10.
+*/
+inline void grisu2(char *buf, int &len, int &decimal_exponent, diyfp m_minus,
+ diyfp v, diyfp m_plus) {
+ // --------(-----------------------+-----------------------)-------- (A)
+ // m- v m+
+ //
+ // --------------------(-----------+-----------------------)-------- (B)
+ // m- v m+
+ //
+ // First scale v (and m- and m+) such that the exponent is in the range
+ // [alpha, gamma].
+
+ const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
+
+ const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
+
+ // The exponent of the products is = v.e + c_minus_k.e + q and is in the range
+ // [alpha,gamma]
+ const diyfp w = diyfp::mul(v, c_minus_k);
+ const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
+ const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
+
+ // ----(---+---)---------------(---+---)---------------(---+---)----
+ // w- w w+
+ // = c*m- = c*v = c*m+
+ //
+ // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
+ // w+ are now off by a small amount.
+ // In fact:
+ //
+ // w - v * 10^k < 1 ulp
+ //
+ // To account for this inaccuracy, add resp. subtract 1 ulp.
+ //
+ // --------+---[---------------(---+---)---------------]---+--------
+ // w- M- w M+ w+
+ //
+ // Now any number in [M-, M+] (bounds included) will round to w when input,
+ // regardless of how the input rounding algorithm breaks ties.
+ //
+ // And digit_gen generates the shortest possible such number in [M-, M+].
+ // Note that this does not mean that Grisu2 always generates the shortest
+ // possible number in the interval (m-, m+).
+ const diyfp M_minus(w_minus.f + 1, w_minus.e);
+ const diyfp M_plus(w_plus.f - 1, w_plus.e);
+
+ decimal_exponent = -cached.k; // = -(-k) = k
+
+ grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
+}
+
+/*!
+v = buf * 10^decimal_exponent
+len is the length of the buffer (number of decimal digits)
+The buffer must be large enough, i.e. >= max_digits10.
+*/
+template <typename FloatType>
+void grisu2(char *buf, int &len, int &decimal_exponent, FloatType value) {
+ static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
+ "internal error: not enough precision");
+
+ // If the neighbors (and boundaries) of 'value' are always computed for
+ // double-precision numbers, all float's can be recovered using strtod (and
+ // strtof). However, the resulting decimal representations are not exactly
+ // "short".
+ //
+ // The documentation for 'std::to_chars'
+ // (https://en.cppreference.com/w/cpp/utility/to_chars) says "value is
+ // converted to a string as if by std::sprintf in the default ("C") locale"
+ // and since sprintf promotes float's to double's, I think this is exactly
+ // what 'std::to_chars' does. On the other hand, the documentation for
+ // 'std::to_chars' requires that "parsing the representation using the
+ // corresponding std::from_chars function recovers value exactly". That
+ // indicates that single precision floating-point numbers should be recovered
+ // using 'std::strtof'.
+ //
+ // NB: If the neighbors are computed for single-precision numbers, there is a
+ // single float
+ // (7.0385307e-26f) which can't be recovered using strtod. The resulting
+ // double precision value is off by 1 ulp.
+#if 0
+ const boundaries w = compute_boundaries(static_cast<double>(value));
+#else
+ const boundaries w = compute_boundaries(value);
+#endif
+
+ grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
+}
+
+/*!
+@brief appends a decimal representation of e to buf
+@return a pointer to the element following the exponent.
+@pre -1000 < e < 1000
+*/
+inline char *append_exponent(char *buf, int e) {
+ if (e < 0) {
+ e = -e;
+ *buf++ = '-';
+ } else {
+ *buf++ = '+';
+ }
+
+ auto k = static_cast<std::uint32_t>(e);
+ if (k < 10) {
+ // Always print at least two digits in the exponent.
+ // This is for compatibility with printf("%g").
+ *buf++ = '0';
+ *buf++ = static_cast<char>('0' + k);
+ } else if (k < 100) {
+ *buf++ = static_cast<char>('0' + k / 10);
+ k %= 10;
+ *buf++ = static_cast<char>('0' + k);
+ } else {
+ *buf++ = static_cast<char>('0' + k / 100);
+ k %= 100;
+ *buf++ = static_cast<char>('0' + k / 10);
+ k %= 10;
+ *buf++ = static_cast<char>('0' + k);
+ }
+
+ return buf;
+}
+
+/*!
+@brief prettify v = buf * 10^decimal_exponent
+If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
+notation. Otherwise it will be printed in exponential notation.
+@pre min_exp < 0
+@pre max_exp > 0
+*/
+inline char *format_buffer(char *buf, int len, int decimal_exponent,
+ int min_exp, int max_exp) {
+ const int k = len;
+ const int n = len + decimal_exponent;
+
+ // v = buf * 10^(n-k)
+ // k is the length of the buffer (number of decimal digits)
+ // n is the position of the decimal point relative to the start of the buffer.
+
+ if (k <= n && n <= max_exp) {
+ // digits[000]
+ // len <= max_exp + 2
+
+ std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
+ // Make it look like a floating-point number (#362, #378)
+ buf[n + 0] = '.';
+ buf[n + 1] = '0';
+ return buf + (static_cast<size_t>(n)) + 2;
+ }
+
+ if (0 < n && n <= max_exp) {
+ // dig.its
+ // len <= max_digits10 + 1
+ std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n,
+ static_cast<size_t>(k) - static_cast<size_t>(n));
+ buf[n] = '.';
+ return buf + (static_cast<size_t>(k) + 1U);
+ }
+
+ if (min_exp < n && n <= 0) {
+ // 0.[000]digits
+ // len <= 2 + (-min_exp - 1) + max_digits10
+
+ std::memmove(buf + (2 + static_cast<size_t>(-n)), buf,
+ static_cast<size_t>(k));
+ buf[0] = '0';
+ buf[1] = '.';
+ std::memset(buf + 2, '0', static_cast<size_t>(-n));
+ return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
+ }
+
+ if (k == 1) {
+ // dE+123
+ // len <= 1 + 5
+
+ buf += 1;
+ } else {
+ // d.igitsE+123
+ // len <= max_digits10 + 1 + 5
+
+ std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
+ buf[1] = '.';
+ buf += 1 + static_cast<size_t>(k);
+ }
+
+ *buf++ = 'e';
+ return append_exponent(buf, n - 1);
+}
+
+} // namespace dtoa_impl
+
+/*!
+The format of the resulting decimal representation is similar to printf's %g
+format. Returns an iterator pointing past-the-end of the decimal representation.
+@note The input number must be finite, i.e. NaN's and Inf's are not supported.
+@note The buffer must be large enough.
+@note The result is NOT null-terminated.
+*/
+char *to_chars(char *first, const char *last, double value) {
+ static_cast<void>(last); // maybe unused - fix warning
+
+ // bool negative = std::signbit(value);
+ bool negative = (*reinterpret_cast<uint64_t *>(&value)) & (1 << 31ull);
+ if (negative) {
+ value = -value;
+ *first++ = '-';
+ }
+
+#ifdef __clang__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wfloat-equal"
+#endif
+
+ if (value == 0) // +-0
+ {
+ *first++ = '0';
+ // Make it look like a floating-point number (#362, #378)
+ *first++ = '.';
+ *first++ = '0';
+ return first;
+ }
+
+#ifdef __clang__
+#pragma clang diagnostic pop
+#endif
+
+ // Compute v = buffer * 10^decimal_exponent.
+ // The decimal digits are stored in the buffer, which needs to be interpreted
+ // as an unsigned decimal integer.
+ // len is the length of the buffer, i.e. the number of decimal digits.
+ int len = 0;
+ int decimal_exponent = 0;
+ dtoa_impl::grisu2(first, len, decimal_exponent, value);
+ // Format the buffer like printf("%.*g", prec, value)
+ constexpr int kMinExp = -4;
+ constexpr int kMaxExp = std::numeric_limits<double>::digits10;
+
+ return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp,
+ kMaxExp);
+}
+} // namespace internal
+} // namespace simdjson
+} // namespace minijson
+
+#endif // !MINIJSON_USE_STRTOD
+
+#endif // MINIJSON_IMPLEMENTATION
+
+#endif /* minijson_h */
diff --git a/tiny_gltf.h b/tiny_gltf.h
index 4a8d073..2147946 100644
--- a/tiny_gltf.h
+++ b/tiny_gltf.h
@@ -1721,6 +1721,9 @@
#endif // __GNUC__
#ifndef TINYGLTF_NO_INCLUDE_JSON
+#ifdef TINYGLTF_USE_MINIJSON
+#include "minijson.h"
+#else // !TINYGLTF_USE_MINIJSON
#ifndef TINYGLTF_USE_RAPIDJSON
#include "json.hpp"
#else
@@ -1732,6 +1735,7 @@
#include "writer.h"
#endif
#endif
+#endif // !TINYGLTF_USE_MINIJSON
#endif
#ifdef TINYGLTF_ENABLE_DRACO