blob: c51a455065fba646a5a8dfd696e781ecf5138286 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_
#define MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_
#include <string.h>
#include <algorithm>
#include <set>
#include <string>
#include <vector>
#include "mojo/public/cpp/bindings/lib/array_internal.h"
#include "mojo/public/cpp/bindings/lib/bindings_internal.h"
#include "mojo/public/cpp/bindings/lib/template_util.h"
#include "mojo/public/cpp/bindings/type_converter.h"
namespace mojo {
// Represents a moveable array with contents of type |T|. The array can be null,
// meaning that no value has been assigned to it. Null is distinct from empty.
template <typename T>
class Array {
MOJO_MOVE_ONLY_TYPE(Array)
public:
typedef internal::ArrayTraits<T, internal::IsMoveOnlyType<T>::value> Traits;
typedef typename Traits::ConstRefType ConstRefType;
typedef typename Traits::RefType RefType;
typedef typename Traits::StorageType StorageType;
typedef typename Traits::ForwardType ForwardType;
typedef internal::Array_Data<typename internal::WrapperTraits<T>::DataType>
Data_;
// Constructs a new array that is null.
Array() : is_null_(true) {}
// Constructs a new non-null array of the specified size. The elements will
// be value-initialized (meaning that they will be initialized by their
// default constructor, if any, or else zero-initialized).
explicit Array(size_t size) : vec_(size), is_null_(false) {
Traits::Initialize(&vec_);
}
~Array() { Traits::Finalize(&vec_); }
// Moves the contents of |other| into this array.
Array(Array&& other) : is_null_(true) { Take(&other); }
Array& operator=(Array&& other) {
Take(&other);
return *this;
}
// Creates a non-null array of the specified size. The elements will be
// value-initialized (meaning that they will be initialized by their default
// constructor, if any, or else zero-initialized).
static Array New(size_t size) { return Array(size).Pass(); }
// Creates a new array with a copy of the contents of |other|.
template <typename U>
static Array From(const U& other) {
return TypeConverter<Array, U>::Convert(other);
}
// Copies the contents of this array to a new object of type |U|.
template <typename U>
U To() const {
return TypeConverter<U, Array>::Convert(*this);
}
// Resets the contents of this array back to null.
void reset() {
if (!vec_.empty()) {
Traits::Finalize(&vec_);
vec_.clear();
}
is_null_ = true;
}
// Indicates whether the array is null (which is distinct from empty).
bool is_null() const { return is_null_; }
// Returns a reference to the first element of the array. Calling this on a
// null or empty array causes undefined behavior.
ConstRefType front() const { return vec_.front(); }
RefType front() { return vec_.front(); }
// Returns the size of the array, which will be zero if the array is null.
size_t size() const { return vec_.size(); }
// Returns a reference to the element at zero-based |offset|. Calling this on
// an array with size less than |offset|+1 causes undefined behavior.
ConstRefType at(size_t offset) const { return Traits::at(&vec_, offset); }
ConstRefType operator[](size_t offset) const { return at(offset); }
RefType at(size_t offset) { return Traits::at(&vec_, offset); }
RefType operator[](size_t offset) { return at(offset); }
// Pushes |value| onto the back of the array. If this array was null, it will
// become non-null with a size of 1.
void push_back(ForwardType value) {
is_null_ = false;
Traits::PushBack(&vec_, value);
}
// Resizes the array to |size| and makes it non-null. Otherwise, works just
// like the resize method of |std::vector|.
void resize(size_t size) {
is_null_ = false;
Traits::Resize(&vec_, size);
}
// Returns a const reference to the |std::vector| managed by this class. If
// the array is null, this will be an empty vector.
const std::vector<StorageType>& storage() const { return vec_; }
operator const std::vector<StorageType>&() const { return vec_; }
// Swaps the contents of this array with the |other| array, including
// nullness.
void Swap(Array* other) {
std::swap(is_null_, other->is_null_);
vec_.swap(other->vec_);
}
// Swaps the contents of this array with the specified vector, making this
// array non-null. Since the vector cannot represent null, it will just be
// made empty if this array is null.
void Swap(std::vector<StorageType>* other) {
is_null_ = false;
vec_.swap(*other);
}
// Returns a copy of the array where each value of the new array has been
// "cloned" from the corresponding value of this array. If this array contains
// primitive data types, this is equivalent to simply copying the contents.
// However, if the array contains objects, then each new element is created by
// calling the |Clone| method of the source element, which should make a copy
// of the element.
//
// Please note that calling this method will fail compilation if the element
// type cannot be cloned (which usually means that it is a Mojo handle type or
// a type contains Mojo handles).
Array Clone() const {
Array result;
result.is_null_ = is_null_;
Traits::Clone(vec_, &result.vec_);
return result.Pass();
}
// Indicates whether the contents of this array are equal to |other|. A null
// array is only equal to another null array. Elements are compared using the
// |ValueTraits::Equals| method, which in most cases calls the |Equals| method
// of the element.
bool Equals(const Array& other) const {
if (is_null() != other.is_null())
return false;
if (size() != other.size())
return false;
for (size_t i = 0; i < size(); ++i) {
if (!internal::ValueTraits<T>::Equals(at(i), other.at(i)))
return false;
}
return true;
}
private:
typedef std::vector<StorageType> Array::*Testable;
public:
operator Testable() const { return is_null_ ? 0 : &Array::vec_; }
private:
void Take(Array* other) {
reset();
Swap(other);
}
std::vector<StorageType> vec_;
bool is_null_;
};
// A |TypeConverter| that will create an |Array<T>| containing a copy of the
// contents of an |std::vector<E>|, using |TypeConverter<T, E>| to copy each
// element. The returned array will always be non-null.
template <typename T, typename E>
struct TypeConverter<Array<T>, std::vector<E>> {
static Array<T> Convert(const std::vector<E>& input) {
Array<T> result(input.size());
for (size_t i = 0; i < input.size(); ++i)
result[i] = TypeConverter<T, E>::Convert(input[i]);
return result.Pass();
}
};
// A |TypeConverter| that will create an |std::vector<E>| containing a copy of
// the contents of an |Array<T>|, using |TypeConverter<E, T>| to copy each
// element. If the input array is null, the output vector will be empty.
template <typename E, typename T>
struct TypeConverter<std::vector<E>, Array<T>> {
static std::vector<E> Convert(const Array<T>& input) {
std::vector<E> result;
if (!input.is_null()) {
result.resize(input.size());
for (size_t i = 0; i < input.size(); ++i)
result[i] = TypeConverter<E, T>::Convert(input[i]);
}
return result;
}
};
// A |TypeConverter| that will create an |Array<T>| containing a copy of the
// contents of an |std::set<E>|, using |TypeConverter<T, E>| to copy each
// element. The returned array will always be non-null.
template <typename T, typename E>
struct TypeConverter<Array<T>, std::set<E>> {
static Array<T> Convert(const std::set<E>& input) {
Array<T> result(0u);
for (auto i : input)
result.push_back(TypeConverter<T, E>::Convert(i));
return result.Pass();
}
};
// A |TypeConverter| that will create an |std::set<E>| containing a copy of
// the contents of an |Array<T>|, using |TypeConverter<E, T>| to copy each
// element. If the input array is null, the output set will be empty.
template <typename E, typename T>
struct TypeConverter<std::set<E>, Array<T>> {
static std::set<E> Convert(const Array<T>& input) {
std::set<E> result;
if (!input.is_null()) {
for (size_t i = 0; i < input.size(); ++i)
result.insert(TypeConverter<E, T>::Convert(input[i]));
}
return result;
}
};
} // namespace mojo
#endif // MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_