| // Copyright 2016 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef UI_ACCESSIBILITY_AX_RANGE_H_ |
| #define UI_ACCESSIBILITY_AX_RANGE_H_ |
| |
| #include <memory> |
| #include <ostream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "ax_enums.h" |
| #include "ax_offscreen_result.h" |
| #include "ax_role_properties.h" |
| #include "ax_tree_manager_map.h" |
| #include "base/string_utils.h" |
| |
| namespace ui { |
| |
| // Specifies how AXRange::GetText treats line breaks introduced by layout. |
| // For example, consider the following HTML snippet: "A<div>B</div>C". |
| enum class AXTextConcatenationBehavior { |
| // Preserve any introduced line breaks, e.g. GetText = "A\nB\nC". |
| kAsInnerText, |
| // Ignore any introduced line breaks, e.g. GetText = "ABC". |
| kAsTextContent |
| }; |
| |
| class AXRangeRectDelegate { |
| public: |
| virtual gfx::Rect GetInnerTextRangeBoundsRect( |
| AXTreeID tree_id, |
| AXNode::AXID node_id, |
| int start_offset, |
| int end_offset, |
| AXOffscreenResult* offscreen_result) = 0; |
| virtual gfx::Rect GetBoundsRect(AXTreeID tree_id, |
| AXNode::AXID node_id, |
| AXOffscreenResult* offscreen_result) = 0; |
| }; |
| |
| // A range delimited by two positions in the AXTree. |
| // |
| // In order to avoid any confusion regarding whether a deep or a shallow copy is |
| // being performed, this class can be moved, but not copied. |
| template <class AXPositionType> |
| class AXRange { |
| public: |
| using AXPositionInstance = std::unique_ptr<AXPositionType>; |
| |
| AXRange() |
| : anchor_(AXPositionType::CreateNullPosition()), |
| focus_(AXPositionType::CreateNullPosition()) {} |
| |
| AXRange(AXPositionInstance anchor, AXPositionInstance focus) { |
| anchor_ = anchor ? std::move(anchor) : AXPositionType::CreateNullPosition(); |
| focus_ = focus ? std::move(focus) : AXPositionType::CreateNullPosition(); |
| } |
| |
| AXRange(const AXRange& other) = delete; |
| |
| AXRange(AXRange&& other) : AXRange() { |
| anchor_.swap(other.anchor_); |
| focus_.swap(other.focus_); |
| } |
| |
| virtual ~AXRange() = default; |
| |
| AXPositionType* anchor() const { |
| BASE_DCHECK(anchor_); |
| return anchor_.get(); |
| } |
| |
| AXPositionType* focus() const { |
| BASE_DCHECK(focus_); |
| return focus_.get(); |
| } |
| |
| AXRange& operator=(const AXRange& other) = delete; |
| |
| AXRange& operator=(AXRange&& other) { |
| if (this != &other) { |
| anchor_ = AXPositionType::CreateNullPosition(); |
| focus_ = AXPositionType::CreateNullPosition(); |
| anchor_.swap(other.anchor_); |
| focus_.swap(other.focus_); |
| } |
| return *this; |
| } |
| |
| bool operator==(const AXRange& other) const { |
| if (IsNull()) |
| return other.IsNull(); |
| return !other.IsNull() && *anchor_ == *other.anchor() && |
| *focus_ == *other.focus(); |
| } |
| |
| bool operator!=(const AXRange& other) const { return !(*this == other); } |
| |
| // Given a pair of AXPosition, determines how the first compares with the |
| // second, relative to the order they would be iterated over by using |
| // AXRange::Iterator to traverse all leaf text ranges in a tree. |
| // |
| // Notice that this method is different from using AXPosition::CompareTo since |
| // the following logic takes into account BOTH tree pre-order traversal and |
| // text offsets when both positions are located within the same anchor. |
| // |
| // Returns: |
| // 0 - If both positions are equivalent. |
| // <0 - If the first position would come BEFORE the second. |
| // >0 - If the first position would come AFTER the second. |
| // nullopt - If positions are not comparable (see AXPosition::CompareTo). |
| static std::optional<int> CompareEndpoints(const AXPositionType* first, |
| const AXPositionType* second) { |
| std::optional<int> tree_position_comparison = |
| first->AsTreePosition()->CompareTo(*second->AsTreePosition()); |
| |
| // When the tree comparison is nullopt, using value_or(1) forces a default |
| // value of 1, making the following statement return nullopt as well. |
| return (tree_position_comparison.value_or(1) != 0) |
| ? tree_position_comparison |
| : first->CompareTo(*second); |
| } |
| |
| AXRange AsForwardRange() const { |
| return (CompareEndpoints(anchor(), focus()).value_or(0) > 0) |
| ? AXRange(focus_->Clone(), anchor_->Clone()) |
| : AXRange(anchor_->Clone(), focus_->Clone()); |
| } |
| |
| AXRange AsBackwardRange() const { |
| return (CompareEndpoints(anchor(), focus()).value_or(0) < 0) |
| ? AXRange(focus_->Clone(), anchor_->Clone()) |
| : AXRange(anchor_->Clone(), focus_->Clone()); |
| } |
| |
| bool IsCollapsed() const { return !IsNull() && *anchor_ == *focus_; } |
| |
| // We define a "leaf text range" as an AXRange whose endpoints are leaf text |
| // positions located within the same anchor of the AXTree. |
| bool IsLeafTextRange() const { |
| return !IsNull() && anchor_->GetAnchor() == focus_->GetAnchor() && |
| anchor_->IsLeafTextPosition() && focus_->IsLeafTextPosition(); |
| } |
| |
| bool IsNull() const { |
| BASE_DCHECK(anchor_ && focus_); |
| return anchor_->IsNullPosition() || focus_->IsNullPosition(); |
| } |
| |
| std::string ToString() const { |
| return "Range\nAnchor:" + anchor_->ToString() + |
| "\nFocus:" + focus_->ToString(); |
| } |
| |
| // We can decompose any given AXRange into multiple "leaf text ranges". |
| // As an example, consider the following HTML code: |
| // |
| // <p>line with text<br><input type="checkbox">line with checkbox</p> |
| // |
| // It will produce the following AXTree; notice that the leaf text nodes |
| // (enclosed in parenthesis) compose its text representation: |
| // |
| // paragraph |
| // staticText name='line with text' |
| // (inlineTextBox name='line with text') |
| // lineBreak name='<newline>' |
| // (inlineTextBox name='<newline>') |
| // (checkBox) |
| // staticText name='line with checkbox' |
| // (inlineTextBox name='line with checkbox') |
| // |
| // Suppose we have an AXRange containing all elements from the example above. |
| // The text representation of such range, with AXRange's endpoints marked by |
| // opening and closing brackets, will look like the following: |
| // |
| // "[line with text\n{checkBox}line with checkbox]" |
| // |
| // Note that in the text representation {checkBox} is not visible, but it is |
| // effectively a "leaf text range", so we include it in the example above only |
| // to visualize how the iterator should work. |
| // |
| // Decomposing the AXRange above into its "leaf text ranges" would result in: |
| // |
| // "[line with text][\n][{checkBox}][line with checkbox]" |
| // |
| // This class allows AXRange to be iterated through all "leaf text ranges" |
| // contained between its endpoints, composing the entire range. |
| class Iterator : public std::iterator<std::input_iterator_tag, AXRange> { |
| public: |
| Iterator() |
| : current_start_(AXPositionType::CreateNullPosition()), |
| iterator_end_(AXPositionType::CreateNullPosition()) {} |
| |
| Iterator(AXPositionInstance start, AXPositionInstance end) { |
| if (end && !end->IsNullPosition()) { |
| current_start_ = !start ? AXPositionType::CreateNullPosition() |
| : start->AsLeafTextPosition(); |
| iterator_end_ = end->AsLeafTextPosition(); |
| } else { |
| current_start_ = AXPositionType::CreateNullPosition(); |
| iterator_end_ = AXPositionType::CreateNullPosition(); |
| } |
| } |
| |
| Iterator(const Iterator& other) = delete; |
| |
| Iterator(Iterator&& other) |
| : current_start_(std::move(other.current_start_)), |
| iterator_end_(std::move(other.iterator_end_)) {} |
| |
| ~Iterator() = default; |
| |
| bool operator==(const Iterator& other) const { |
| return current_start_->GetAnchor() == other.current_start_->GetAnchor() && |
| iterator_end_->GetAnchor() == other.iterator_end_->GetAnchor() && |
| *current_start_ == *other.current_start_ && |
| *iterator_end_ == *other.iterator_end_; |
| } |
| |
| bool operator!=(const Iterator& other) const { return !(*this == other); } |
| |
| // Only forward iteration is supported, so operator-- is not implemented. |
| Iterator& operator++() { |
| BASE_DCHECK(!current_start_->IsNullPosition()); |
| if (current_start_->GetAnchor() == iterator_end_->GetAnchor()) { |
| current_start_ = AXPositionType::CreateNullPosition(); |
| } else { |
| current_start_ = current_start_->CreateNextLeafTreePosition(); |
| BASE_DCHECK(*current_start_ <= *iterator_end_); |
| } |
| return *this; |
| } |
| |
| AXRange operator*() const { |
| BASE_DCHECK(!current_start_->IsNullPosition()); |
| AXPositionInstance current_end = |
| (current_start_->GetAnchor() != iterator_end_->GetAnchor()) |
| ? current_start_->CreatePositionAtEndOfAnchor() |
| : iterator_end_->Clone(); |
| BASE_DCHECK(*current_end <= *iterator_end_); |
| |
| AXRange current_leaf_text_range(current_start_->AsTextPosition(), |
| current_end->AsTextPosition()); |
| BASE_DCHECK(current_leaf_text_range.IsLeafTextRange()); |
| return std::move(current_leaf_text_range); |
| } |
| |
| private: |
| AXPositionInstance current_start_; |
| AXPositionInstance iterator_end_; |
| }; |
| |
| Iterator begin() const { |
| if (IsNull()) |
| return Iterator(nullptr, nullptr); |
| AXRange forward_range = AsForwardRange(); |
| return Iterator(std::move(forward_range.anchor_), |
| std::move(forward_range.focus_)); |
| } |
| |
| Iterator end() const { |
| if (IsNull()) |
| return Iterator(nullptr, nullptr); |
| AXRange forward_range = AsForwardRange(); |
| return Iterator(nullptr, std::move(forward_range.focus_)); |
| } |
| |
| // Returns the concatenation of the accessible names of all text nodes |
| // contained between this AXRange's endpoints. |
| // Pass a |max_count| of -1 to retrieve all text in the AXRange. |
| // Note that if this AXRange has its anchor or focus located at an ignored |
| // position, we shrink the range to the closest unignored positions. |
| std::u16string GetText(AXTextConcatenationBehavior concatenation_behavior = |
| AXTextConcatenationBehavior::kAsTextContent, |
| int max_count = -1, |
| bool include_ignored = false, |
| size_t* appended_newlines_count = nullptr) const { |
| if (max_count == 0 || IsNull()) |
| return std::u16string(); |
| |
| std::optional<int> endpoint_comparison = |
| CompareEndpoints(anchor(), focus()); |
| if (!endpoint_comparison) |
| return std::u16string(); |
| |
| AXPositionInstance start = (endpoint_comparison.value() < 0) |
| ? anchor_->AsLeafTextPosition() |
| : focus_->AsLeafTextPosition(); |
| AXPositionInstance end = (endpoint_comparison.value() < 0) |
| ? focus_->AsLeafTextPosition() |
| : anchor_->AsLeafTextPosition(); |
| |
| std::u16string range_text; |
| size_t computed_newlines_count = 0; |
| bool is_first_non_whitespace_leaf = true; |
| bool crossed_paragraph_boundary = false; |
| bool is_first_unignored_leaf = true; |
| bool found_trailing_newline = false; |
| |
| while (!start->IsNullPosition()) { |
| BASE_DCHECK(start->IsLeafTextPosition()); |
| BASE_DCHECK(start->text_offset() >= 0); |
| |
| if (include_ignored || !start->IsIgnored()) { |
| if (concatenation_behavior == |
| AXTextConcatenationBehavior::kAsInnerText && |
| !start->IsInWhiteSpace()) { |
| if (is_first_non_whitespace_leaf) { |
| // The first non-whitespace leaf in the range could be preceded by |
| // whitespace spanning even before the start of this range, we need |
| // to check such positions in order to correctly determine if this |
| // is a paragraph's start (see |AXPosition::AtStartOfParagraph|). |
| crossed_paragraph_boundary = |
| !is_first_unignored_leaf && start->AtStartOfParagraph(); |
| } |
| |
| // When preserving layout line breaks, don't append `\n` next if the |
| // previous leaf position was a <br> (already ending with a newline). |
| if (crossed_paragraph_boundary && !found_trailing_newline) { |
| range_text += base::ASCIIToUTF16("\n"); |
| computed_newlines_count++; |
| } |
| |
| is_first_non_whitespace_leaf = false; |
| crossed_paragraph_boundary = false; |
| } |
| |
| int current_end_offset = (start->GetAnchor() != end->GetAnchor()) |
| ? start->MaxTextOffset() |
| : end->text_offset(); |
| |
| if (current_end_offset > start->text_offset()) { |
| int characters_to_append = |
| (max_count > 0) |
| ? std::min(max_count - static_cast<int>(range_text.length()), |
| current_end_offset - start->text_offset()) |
| : current_end_offset - start->text_offset(); |
| |
| range_text += start->GetText().substr(start->text_offset(), |
| characters_to_append); |
| |
| // Collapse all whitespace following any line break. |
| found_trailing_newline = |
| start->IsInLineBreak() || |
| (found_trailing_newline && start->IsInWhiteSpace()); |
| } |
| |
| BASE_DCHECK(max_count < 0 || |
| static_cast<int>(range_text.length()) <= max_count); |
| is_first_unignored_leaf = false; |
| } |
| |
| if (start->GetAnchor() == end->GetAnchor() || |
| static_cast<int>(range_text.length()) == max_count) { |
| break; |
| } else if (concatenation_behavior == |
| AXTextConcatenationBehavior::kAsInnerText && |
| !crossed_paragraph_boundary && !is_first_non_whitespace_leaf) { |
| start = start->CreateNextLeafTextPosition(&crossed_paragraph_boundary); |
| } else { |
| start = start->CreateNextLeafTextPosition(); |
| } |
| } |
| |
| if (appended_newlines_count) |
| *appended_newlines_count = computed_newlines_count; |
| return range_text; |
| } |
| |
| // Appends rects of all anchor nodes that span between anchor_ and focus_. |
| // Rects outside of the viewport are skipped. |
| // Coordinate system is determined by the passed-in delegate. |
| std::vector<gfx::Rect> GetRects(AXRangeRectDelegate* delegate) const { |
| std::vector<gfx::Rect> rects; |
| |
| for (const AXRange& leaf_text_range : *this) { |
| BASE_DCHECK(leaf_text_range.IsLeafTextRange()); |
| AXPositionType* current_line_start = leaf_text_range.anchor(); |
| AXPositionType* current_line_end = leaf_text_range.focus(); |
| |
| // For text anchors, we retrieve the bounding rectangles of its text |
| // content. For non-text anchors (such as checkboxes, images, etc.), we |
| // want to directly retrieve their bounding rectangles. |
| AXOffscreenResult offscreen_result; |
| gfx::Rect current_rect = |
| (current_line_start->IsInLineBreak() || |
| current_line_start->IsInTextObject()) |
| ? delegate->GetInnerTextRangeBoundsRect( |
| current_line_start->tree_id(), |
| current_line_start->anchor_id(), |
| current_line_start->text_offset(), |
| current_line_end->text_offset(), &offscreen_result) |
| : delegate->GetBoundsRect(current_line_start->tree_id(), |
| current_line_start->anchor_id(), |
| &offscreen_result); |
| |
| // If the bounding box of the current range is clipped because it lies |
| // outside an ancestor’s bounds, then the bounding box is pushed to the |
| // nearest edge of such ancestor's bounds, with its width and height |
| // forced to be 1, and the node will be marked as "offscreen". |
| // |
| // Only add rectangles that are not empty and not marked as "offscreen". |
| // |
| // See the documentation for how bounding boxes are calculated in AXTree: |
| // https://chromium.googlesource.com/chromium/src/+/HEAD/docs/accessibility/offscreen.md |
| if (!current_rect.IsEmpty() && |
| offscreen_result == AXOffscreenResult::kOnscreen) |
| rects.push_back(current_rect); |
| } |
| return rects; |
| } |
| |
| private: |
| AXPositionInstance anchor_; |
| AXPositionInstance focus_; |
| }; |
| |
| template <class AXPositionType> |
| std::ostream& operator<<(std::ostream& stream, |
| const AXRange<AXPositionType>& range) { |
| return stream << range.ToString(); |
| } |
| |
| } // namespace ui |
| |
| #endif // UI_ACCESSIBILITY_AX_RANGE_H_ |