|  | /* | 
|  | * jcdctmgr.c | 
|  | * | 
|  | * Copyright (C) 1994-1996, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains the forward-DCT management logic. | 
|  | * This code selects a particular DCT implementation to be used, | 
|  | * and it performs related housekeeping chores including coefficient | 
|  | * quantization. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jdct.h"		/* Private declarations for DCT subsystem */ | 
|  |  | 
|  |  | 
|  | /* Private subobject for this module */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_forward_dct pub;	/* public fields */ | 
|  |  | 
|  | /* Pointer to the DCT routine actually in use */ | 
|  | forward_DCT_method_ptr do_dct; | 
|  |  | 
|  | /* The actual post-DCT divisors --- not identical to the quant table | 
|  | * entries, because of scaling (especially for an unnormalized DCT). | 
|  | * Each table is given in normal array order. | 
|  | */ | 
|  | DCTELEM * divisors[NUM_QUANT_TBLS]; | 
|  |  | 
|  | #ifdef DCT_FLOAT_SUPPORTED | 
|  | /* Same as above for the floating-point case. */ | 
|  | float_DCT_method_ptr do_float_dct; | 
|  | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | 
|  | #endif | 
|  | } my_fdct_controller; | 
|  |  | 
|  | typedef my_fdct_controller * my_fdct_ptr; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for a processing pass. | 
|  | * Verify that all referenced Q-tables are present, and set up | 
|  | * the divisor table for each one. | 
|  | * In the current implementation, DCT of all components is done during | 
|  | * the first pass, even if only some components will be output in the | 
|  | * first scan.  Hence all components should be examined here. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_fdctmgr (j_compress_ptr cinfo) | 
|  | { | 
|  | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
|  | int ci, qtblno, i; | 
|  | jpeg_component_info *compptr; | 
|  | JQUANT_TBL * qtbl; | 
|  | DCTELEM * dtbl; | 
|  |  | 
|  | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
|  | ci++, compptr++) { | 
|  | qtblno = compptr->quant_tbl_no; | 
|  | /* Make sure specified quantization table is present */ | 
|  | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | 
|  | cinfo->quant_tbl_ptrs[qtblno] == NULL) | 
|  | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | 
|  | qtbl = cinfo->quant_tbl_ptrs[qtblno]; | 
|  | /* Compute divisors for this quant table */ | 
|  | /* We may do this more than once for same table, but it's not a big deal */ | 
|  | switch (cinfo->dct_method) { | 
|  | #ifdef DCT_ISLOW_SUPPORTED | 
|  | case JDCT_ISLOW: | 
|  | /* For LL&M IDCT method, divisors are equal to raw quantization | 
|  | * coefficients multiplied by 8 (to counteract scaling). | 
|  | */ | 
|  | if (fdct->divisors[qtblno] == NULL) { | 
|  | fdct->divisors[qtblno] = (DCTELEM *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | DCTSIZE2 * SIZEOF(DCTELEM)); | 
|  | } | 
|  | dtbl = fdct->divisors[qtblno]; | 
|  | for (i = 0; i < DCTSIZE2; i++) { | 
|  | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | #ifdef DCT_IFAST_SUPPORTED | 
|  | case JDCT_IFAST: | 
|  | { | 
|  | /* For AA&N IDCT method, divisors are equal to quantization | 
|  | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
|  | *   scalefactor[0] = 1 | 
|  | *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
|  | * We apply a further scale factor of 8. | 
|  | */ | 
|  | #define CONST_BITS 14 | 
|  | static const INT16 aanscales[DCTSIZE2] = { | 
|  | /* precomputed values scaled up by 14 bits */ | 
|  | 16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
|  | 22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | 
|  | 21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | 
|  | 19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | 
|  | 16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
|  | 12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | 
|  | 8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | 
|  | 4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | 
|  | }; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | if (fdct->divisors[qtblno] == NULL) { | 
|  | fdct->divisors[qtblno] = (DCTELEM *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | DCTSIZE2 * SIZEOF(DCTELEM)); | 
|  | } | 
|  | dtbl = fdct->divisors[qtblno]; | 
|  | for (i = 0; i < DCTSIZE2; i++) { | 
|  | dtbl[i] = (DCTELEM) | 
|  | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | 
|  | (INT32) aanscales[i]), | 
|  | CONST_BITS-3); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | #ifdef DCT_FLOAT_SUPPORTED | 
|  | case JDCT_FLOAT: | 
|  | { | 
|  | /* For float AA&N IDCT method, divisors are equal to quantization | 
|  | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
|  | *   scalefactor[0] = 1 | 
|  | *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
|  | * We apply a further scale factor of 8. | 
|  | * What's actually stored is 1/divisor so that the inner loop can | 
|  | * use a multiplication rather than a division. | 
|  | */ | 
|  | FAST_FLOAT * fdtbl; | 
|  | int row, col; | 
|  | static const double aanscalefactor[DCTSIZE] = { | 
|  | 1.0, 1.387039845, 1.306562965, 1.175875602, | 
|  | 1.0, 0.785694958, 0.541196100, 0.275899379 | 
|  | }; | 
|  |  | 
|  | if (fdct->float_divisors[qtblno] == NULL) { | 
|  | fdct->float_divisors[qtblno] = (FAST_FLOAT *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | DCTSIZE2 * SIZEOF(FAST_FLOAT)); | 
|  | } | 
|  | fdtbl = fdct->float_divisors[qtblno]; | 
|  | i = 0; | 
|  | for (row = 0; row < DCTSIZE; row++) { | 
|  | for (col = 0; col < DCTSIZE; col++) { | 
|  | fdtbl[i] = (FAST_FLOAT) | 
|  | (1.0 / (((double) qtbl->quantval[i] * | 
|  | aanscalefactor[row] * aanscalefactor[col] * 8.0))); | 
|  | i++; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform forward DCT on one or more blocks of a component. | 
|  | * | 
|  | * The input samples are taken from the sample_data[] array starting at | 
|  | * position start_row/start_col, and moving to the right for any additional | 
|  | * blocks. The quantized coefficients are returned in coef_blocks[]. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
|  | JDIMENSION start_row, JDIMENSION start_col, | 
|  | JDIMENSION num_blocks) | 
|  | /* This version is used for integer DCT implementations. */ | 
|  | { | 
|  | /* This routine is heavily used, so it's worth coding it tightly. */ | 
|  | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
|  | forward_DCT_method_ptr do_dct = fdct->do_dct; | 
|  | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | 
|  | DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */ | 
|  | JDIMENSION bi; | 
|  |  | 
|  | sample_data += start_row;	/* fold in the vertical offset once */ | 
|  |  | 
|  | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
|  | /* Load data into workspace, applying unsigned->signed conversion */ | 
|  | { register DCTELEM *workspaceptr; | 
|  | register JSAMPROW elemptr; | 
|  | register int elemr; | 
|  |  | 
|  | workspaceptr = workspace; | 
|  | for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
|  | elemptr = sample_data[elemr] + start_col; | 
|  | #if DCTSIZE == 8		/* unroll the inner loop */ | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | #else | 
|  | { register int elemc; | 
|  | for (elemc = DCTSIZE; elemc > 0; elemc--) { | 
|  | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perform the DCT */ | 
|  | (*do_dct) (workspace); | 
|  |  | 
|  | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
|  | { register DCTELEM temp, qval; | 
|  | register int i; | 
|  | register JCOEFPTR output_ptr = coef_blocks[bi]; | 
|  |  | 
|  | for (i = 0; i < DCTSIZE2; i++) { | 
|  | qval = divisors[i]; | 
|  | temp = workspace[i]; | 
|  | /* Divide the coefficient value by qval, ensuring proper rounding. | 
|  | * Since C does not specify the direction of rounding for negative | 
|  | * quotients, we have to force the dividend positive for portability. | 
|  | * | 
|  | * In most files, at least half of the output values will be zero | 
|  | * (at default quantization settings, more like three-quarters...) | 
|  | * so we should ensure that this case is fast.  On many machines, | 
|  | * a comparison is enough cheaper than a divide to make a special test | 
|  | * a win.  Since both inputs will be nonnegative, we need only test | 
|  | * for a < b to discover whether a/b is 0. | 
|  | * If your machine's division is fast enough, define FAST_DIVIDE. | 
|  | */ | 
|  | #ifdef FAST_DIVIDE | 
|  | #define DIVIDE_BY(a,b)	a /= b | 
|  | #else | 
|  | #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0 | 
|  | #endif | 
|  | if (temp < 0) { | 
|  | temp = -temp; | 
|  | temp += qval>>1;	/* for rounding */ | 
|  | DIVIDE_BY(temp, qval); | 
|  | temp = -temp; | 
|  | } else { | 
|  | temp += qval>>1;	/* for rounding */ | 
|  | DIVIDE_BY(temp, qval); | 
|  | } | 
|  | output_ptr[i] = (JCOEF) temp; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef DCT_FLOAT_SUPPORTED | 
|  |  | 
|  | METHODDEF(void) | 
|  | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
|  | JDIMENSION start_row, JDIMENSION start_col, | 
|  | JDIMENSION num_blocks) | 
|  | /* This version is used for floating-point DCT implementations. */ | 
|  | { | 
|  | /* This routine is heavily used, so it's worth coding it tightly. */ | 
|  | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
|  | float_DCT_method_ptr do_dct = fdct->do_float_dct; | 
|  | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | 
|  | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | 
|  | JDIMENSION bi; | 
|  |  | 
|  | sample_data += start_row;	/* fold in the vertical offset once */ | 
|  |  | 
|  | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
|  | /* Load data into workspace, applying unsigned->signed conversion */ | 
|  | { register FAST_FLOAT *workspaceptr; | 
|  | register JSAMPROW elemptr; | 
|  | register int elemr; | 
|  |  | 
|  | workspaceptr = workspace; | 
|  | for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
|  | elemptr = sample_data[elemr] + start_col; | 
|  | #if DCTSIZE == 8		/* unroll the inner loop */ | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | #else | 
|  | { register int elemc; | 
|  | for (elemc = DCTSIZE; elemc > 0; elemc--) { | 
|  | *workspaceptr++ = (FAST_FLOAT) | 
|  | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perform the DCT */ | 
|  | (*do_dct) (workspace); | 
|  |  | 
|  | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
|  | { register FAST_FLOAT temp; | 
|  | register int i; | 
|  | register JCOEFPTR output_ptr = coef_blocks[bi]; | 
|  |  | 
|  | for (i = 0; i < DCTSIZE2; i++) { | 
|  | /* Apply the quantization and scaling factor */ | 
|  | temp = workspace[i] * divisors[i]; | 
|  | /* Round to nearest integer. | 
|  | * Since C does not specify the direction of rounding for negative | 
|  | * quotients, we have to force the dividend positive for portability. | 
|  | * The maximum coefficient size is +-16K (for 12-bit data), so this | 
|  | * code should work for either 16-bit or 32-bit ints. | 
|  | */ | 
|  | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* DCT_FLOAT_SUPPORTED */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize FDCT manager. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_forward_dct (j_compress_ptr cinfo) | 
|  | { | 
|  | my_fdct_ptr fdct; | 
|  | int i; | 
|  |  | 
|  | fdct = (my_fdct_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(my_fdct_controller)); | 
|  | cinfo->fdct = (struct jpeg_forward_dct *) fdct; | 
|  | fdct->pub.start_pass = start_pass_fdctmgr; | 
|  |  | 
|  | switch (cinfo->dct_method) { | 
|  | #ifdef DCT_ISLOW_SUPPORTED | 
|  | case JDCT_ISLOW: | 
|  | fdct->pub.forward_DCT = forward_DCT; | 
|  | fdct->do_dct = jpeg_fdct_islow; | 
|  | break; | 
|  | #endif | 
|  | #ifdef DCT_IFAST_SUPPORTED | 
|  | case JDCT_IFAST: | 
|  | fdct->pub.forward_DCT = forward_DCT; | 
|  | fdct->do_dct = jpeg_fdct_ifast; | 
|  | break; | 
|  | #endif | 
|  | #ifdef DCT_FLOAT_SUPPORTED | 
|  | case JDCT_FLOAT: | 
|  | fdct->pub.forward_DCT = forward_DCT_float; | 
|  | fdct->do_float_dct = jpeg_fdct_float; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Mark divisor tables unallocated */ | 
|  | for (i = 0; i < NUM_QUANT_TBLS; i++) { | 
|  | fdct->divisors[i] = NULL; | 
|  | #ifdef DCT_FLOAT_SUPPORTED | 
|  | fdct->float_divisors[i] = NULL; | 
|  | #endif | 
|  | } | 
|  | } |