|  | // Copyright 2014 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "ui/gfx/geometry/cubic_bezier.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | #include "base/logging.h" | 
|  |  | 
|  | namespace gfx { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | static const double kBezierEpsilon = 1e-7; | 
|  | static const int MAX_STEPS = 30; | 
|  |  | 
|  | static double eval_bezier(double p1, double p2, double t) { | 
|  | const double p1_times_3 = 3.0 * p1; | 
|  | const double p2_times_3 = 3.0 * p2; | 
|  | const double h3 = p1_times_3; | 
|  | const double h1 = p1_times_3 - p2_times_3 + 1.0; | 
|  | const double h2 = p2_times_3 - 6.0 * p1; | 
|  | return t * (t * (t * h1 + h2) + h3); | 
|  | } | 
|  |  | 
|  | static double eval_bezier_derivative(double p1, double p2, double t) { | 
|  | const double h1 = 9.0 * p1 - 9.0 * p2 + 3.0; | 
|  | const double h2 = 6.0 * p2 - 12.0 * p1; | 
|  | const double h3 = 3.0 * p1; | 
|  | return t * (t * h1 + h2) + h3; | 
|  | } | 
|  |  | 
|  | // Finds t such that eval_bezier(x1, x2, t) = x. | 
|  | // There is a unique solution if x1 and x2 lie within (0, 1). | 
|  | static double bezier_interp(double x1, | 
|  | double x2, | 
|  | double x) { | 
|  | DCHECK_GE(1.0, x1); | 
|  | DCHECK_LE(0.0, x1); | 
|  | DCHECK_GE(1.0, x2); | 
|  | DCHECK_LE(0.0, x2); | 
|  |  | 
|  | x1 = std::min(std::max(x1, 0.0), 1.0); | 
|  | x2 = std::min(std::max(x2, 0.0), 1.0); | 
|  | x = std::min(std::max(x, 0.0), 1.0); | 
|  |  | 
|  | // We're just going to do bisection for now (for simplicity), but we could | 
|  | // easily do some newton steps if this turns out to be a bottleneck. | 
|  | double t = 0.0; | 
|  | double step = 1.0; | 
|  | for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { | 
|  | const double error = eval_bezier(x1, x2, t) - x; | 
|  | if (std::abs(error) < kBezierEpsilon) | 
|  | break; | 
|  | t += error > 0.0 ? -step : step; | 
|  | } | 
|  |  | 
|  | // We should have terminated the above loop because we got close to x, not | 
|  | // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. | 
|  | DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | CubicBezier::CubicBezier(double x1, double y1, double x2, double y2) | 
|  | : x1_(x1), | 
|  | y1_(y1), | 
|  | x2_(x2), | 
|  | y2_(y2) { | 
|  | } | 
|  |  | 
|  | CubicBezier::~CubicBezier() { | 
|  | } | 
|  |  | 
|  | double CubicBezier::Solve(double x) const { | 
|  | return eval_bezier(y1_, y2_, bezier_interp(x1_, x2_, x)); | 
|  | } | 
|  |  | 
|  | double CubicBezier::Slope(double x) const { | 
|  | double t = bezier_interp(x1_, x2_, x); | 
|  | double dx_dt = eval_bezier_derivative(x1_, x2_, t); | 
|  | double dy_dt = eval_bezier_derivative(y1_, y2_, t); | 
|  | return dy_dt / dx_dt; | 
|  | } | 
|  |  | 
|  | void CubicBezier::Range(double* min, double* max) const { | 
|  | *min = 0; | 
|  | *max = 1; | 
|  | if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1) | 
|  | return; | 
|  |  | 
|  | // Represent the function's derivative in the form at^2 + bt + c. | 
|  | // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros | 
|  | // but does not actually give the slope of the curve.) | 
|  | double a = 3 * (y1_ - y2_) + 1; | 
|  | double b = 2 * (y2_ - 2 * y1_); | 
|  | double c = y1_; | 
|  |  | 
|  | // Check if the derivative is constant. | 
|  | if (std::abs(a) < kBezierEpsilon && | 
|  | std::abs(b) < kBezierEpsilon) | 
|  | return; | 
|  |  | 
|  | // Zeros of the function's derivative. | 
|  | double t_1 = 0; | 
|  | double t_2 = 0; | 
|  |  | 
|  | if (std::abs(a) < kBezierEpsilon) { | 
|  | // The function's derivative is linear. | 
|  | t_1 = -c / b; | 
|  | } else { | 
|  | // The function's derivative is a quadratic. We find the zeros of this | 
|  | // quadratic using the quadratic formula. | 
|  | double discriminant = b * b - 4 * a * c; | 
|  | if (discriminant < 0) | 
|  | return; | 
|  | double discriminant_sqrt = sqrt(discriminant); | 
|  | t_1 = (-b + discriminant_sqrt) / (2 * a); | 
|  | t_2 = (-b - discriminant_sqrt) / (2 * a); | 
|  | } | 
|  |  | 
|  | double sol_1 = 0; | 
|  | double sol_2 = 0; | 
|  |  | 
|  | if (0 < t_1 && t_1 < 1) | 
|  | sol_1 = eval_bezier(y1_, y2_, t_1); | 
|  |  | 
|  | if (0 < t_2 && t_2 < 1) | 
|  | sol_2 = eval_bezier(y1_, y2_, t_2); | 
|  |  | 
|  | *min = std::min(std::min(*min, sol_1), sol_2); | 
|  | *max = std::max(std::max(*max, sol_1), sol_2); | 
|  | } | 
|  |  | 
|  | }  // namespace gfx |