|  | // Copyright 2014 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "ui/gfx/geometry/cubic_bezier.h" | 
|  |  | 
|  | #include "base/memory/scoped_ptr.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | namespace gfx { | 
|  | namespace { | 
|  |  | 
|  | TEST(CubicBezierTest, Basic) { | 
|  | CubicBezier function(0.25, 0.0, 0.75, 1.0); | 
|  |  | 
|  | double epsilon = 0.00015; | 
|  |  | 
|  | EXPECT_NEAR(function.Solve(0), 0, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon); | 
|  | EXPECT_NEAR(function.Solve(1), 1, epsilon); | 
|  | } | 
|  |  | 
|  | // Tests that solving the bezier works with knots with y not in (0, 1). | 
|  | TEST(CubicBezierTest, UnclampedYValues) { | 
|  | CubicBezier function(0.5, -1.0, 0.5, 2.0); | 
|  |  | 
|  | double epsilon = 0.00015; | 
|  |  | 
|  | EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon); | 
|  | EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon); | 
|  | EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon); | 
|  | } | 
|  |  | 
|  | TEST(CubicBezierTest, Range) { | 
|  | double epsilon = 0.00015; | 
|  | double min, max; | 
|  |  | 
|  | // Derivative is a constant. | 
|  | scoped_ptr<CubicBezier> function( | 
|  | new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0))); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative is linear. | 
|  | function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0))); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_NEAR(min, -0.225, epsilon); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has no real roots. | 
|  | function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has exactly one real root. | 
|  | function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has one root < 0 and one root > 1. | 
|  | function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has two roots in [0,1]. | 
|  | function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_NEAR(max, 1.28818, epsilon); | 
|  | function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_NEAR(min, -0.28818, epsilon); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has one root < 0 and one root in [0,1]. | 
|  | function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_NEAR(max, 1.10755, epsilon); | 
|  |  | 
|  | // Derivative has one root in [0,1] and one root > 1. | 
|  | function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_NEAR(min, -0.10755, epsilon); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has two roots < 0. | 
|  | function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0, min); | 
|  | EXPECT_EQ(1, max); | 
|  |  | 
|  | // Derivative has two roots > 1. | 
|  | function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7)); | 
|  | function->Range(&min, &max); | 
|  | EXPECT_EQ(0.f, min); | 
|  | EXPECT_EQ(1.f, max); | 
|  | } | 
|  |  | 
|  | TEST(CubicBezierTest, Slope) { | 
|  | CubicBezier function(0.25, 0.0, 0.75, 1.0); | 
|  |  | 
|  | double epsilon = 0.00015; | 
|  |  | 
|  | EXPECT_NEAR(function.Slope(0), 0, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.05), 0.42170, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.1), 0.69778, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.15), 0.89121, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.2), 1.03184, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.25), 1.13576, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.3), 1.21239, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.35), 1.26751, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.4), 1.30474, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.45), 1.32628, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.5), 1.33333, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.55), 1.32628, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.6), 1.30474, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.65), 1.26751, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.7), 1.21239, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.75), 1.13576, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.8), 1.03184, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.85), 0.89121, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.9), 0.69778, epsilon); | 
|  | EXPECT_NEAR(function.Slope(0.95), 0.42170, epsilon); | 
|  | EXPECT_NEAR(function.Slope(1), 0, epsilon); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace gfx |