blob: 068a193b334cb7317a4a7eff673c7b4336bb0475 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/codec/png_codec.h"
#include "base/logging.h"
#include "base/strings/string_util.h"
#include "third_party/libpng/png.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
#include "third_party/zlib/zlib.h"
#include "ui/gfx/size.h"
#include "ui/gfx/skia_util.h"
namespace gfx {
namespace {
// Converts BGRA->RGBA and RGBA->BGRA.
void ConvertBetweenBGRAandRGBA(const unsigned char* input, int pixel_width,
unsigned char* output, bool* is_opaque) {
for (int x = 0; x < pixel_width; x++) {
const unsigned char* pixel_in = &input[x * 4];
unsigned char* pixel_out = &output[x * 4];
pixel_out[0] = pixel_in[2];
pixel_out[1] = pixel_in[1];
pixel_out[2] = pixel_in[0];
pixel_out[3] = pixel_in[3];
}
}
void ConvertRGBAtoRGB(const unsigned char* rgba, int pixel_width,
unsigned char* rgb, bool* is_opaque) {
for (int x = 0; x < pixel_width; x++)
memcpy(&rgb[x * 3], &rgba[x * 4], 3);
}
void ConvertSkiaToRGB(const unsigned char* skia, int pixel_width,
unsigned char* rgb, bool* is_opaque) {
for (int x = 0; x < pixel_width; x++) {
const uint32_t pixel_in = *reinterpret_cast<const uint32_t*>(&skia[x * 4]);
unsigned char* pixel_out = &rgb[x * 3];
int alpha = SkGetPackedA32(pixel_in);
if (alpha != 0 && alpha != 255) {
SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(pixel_in);
pixel_out[0] = SkColorGetR(unmultiplied);
pixel_out[1] = SkColorGetG(unmultiplied);
pixel_out[2] = SkColorGetB(unmultiplied);
} else {
pixel_out[0] = SkGetPackedR32(pixel_in);
pixel_out[1] = SkGetPackedG32(pixel_in);
pixel_out[2] = SkGetPackedB32(pixel_in);
}
}
}
void ConvertSkiaToRGBA(const unsigned char* skia, int pixel_width,
unsigned char* rgba, bool* is_opaque) {
gfx::ConvertSkiaToRGBA(skia, pixel_width, rgba);
}
} // namespace
// Decoder --------------------------------------------------------------------
//
// This code is based on WebKit libpng interface (PNGImageDecoder), which is
// in turn based on the Mozilla png decoder.
namespace {
// Gamma constants: We assume we're on Windows which uses a gamma of 2.2.
const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library.
const double kDefaultGamma = 2.2;
const double kInverseGamma = 1.0 / kDefaultGamma;
class PngDecoderState {
public:
// Output is a vector<unsigned char>.
PngDecoderState(PNGCodec::ColorFormat ofmt, std::vector<unsigned char>* o)
: output_format(ofmt),
output_channels(0),
bitmap(NULL),
is_opaque(true),
output(o),
width(0),
height(0),
done(false) {
}
// Output is an SkBitmap.
explicit PngDecoderState(SkBitmap* skbitmap)
: output_format(PNGCodec::FORMAT_SkBitmap),
output_channels(0),
bitmap(skbitmap),
is_opaque(true),
output(NULL),
width(0),
height(0),
done(false) {
}
PNGCodec::ColorFormat output_format;
int output_channels;
// An incoming SkBitmap to write to. If NULL, we write to output instead.
SkBitmap* bitmap;
// Used during the reading of an SkBitmap. Defaults to true until we see a
// pixel with anything other than an alpha of 255.
bool is_opaque;
// The other way to decode output, where we write into an intermediary buffer
// instead of directly to an SkBitmap.
std::vector<unsigned char>* output;
// Size of the image, set in the info callback.
int width;
int height;
// Set to true when we've found the end of the data.
bool done;
private:
DISALLOW_COPY_AND_ASSIGN(PngDecoderState);
};
// User transform (passed to libpng) which converts a row decoded by libpng to
// Skia format. Expects the row to have 4 channels, otherwise there won't be
// enough room in |data|.
void ConvertRGBARowToSkia(png_structp png_ptr,
png_row_infop row_info,
png_bytep data) {
const int channels = row_info->channels;
DCHECK_EQ(channels, 4);
PngDecoderState* state =
static_cast<PngDecoderState*>(png_get_user_transform_ptr(png_ptr));
DCHECK(state) << "LibPNG user transform pointer is NULL";
unsigned char* const end = data + row_info->rowbytes;
for (unsigned char* p = data; p < end; p += channels) {
uint32_t* sk_pixel = reinterpret_cast<uint32_t*>(p);
const unsigned char alpha = p[channels - 1];
if (alpha != 255) {
state->is_opaque = false;
*sk_pixel = SkPreMultiplyARGB(alpha, p[0], p[1], p[2]);
} else {
*sk_pixel = SkPackARGB32(alpha, p[0], p[1], p[2]);
}
}
}
// Called when the png header has been read. This code is based on the WebKit
// PNGImageDecoder
void DecodeInfoCallback(png_struct* png_ptr, png_info* info_ptr) {
PngDecoderState* state = static_cast<PngDecoderState*>(
png_get_progressive_ptr(png_ptr));
int bit_depth, color_type, interlace_type, compression_type;
int filter_type;
png_uint_32 w, h;
png_get_IHDR(png_ptr, info_ptr, &w, &h, &bit_depth, &color_type,
&interlace_type, &compression_type, &filter_type);
// Bounds check. When the image is unreasonably big, we'll error out and
// end up back at the setjmp call when we set up decoding. "Unreasonably big"
// means "big enough that w * h * 32bpp might overflow an int"; we choose this
// threshold to match WebKit and because a number of places in code assume
// that an image's size (in bytes) fits in a (signed) int.
unsigned long long total_size =
static_cast<unsigned long long>(w) * static_cast<unsigned long long>(h);
if (total_size > ((1 << 29) - 1))
longjmp(png_jmpbuf(png_ptr), 1);
state->width = static_cast<int>(w);
state->height = static_cast<int>(h);
// The following png_set_* calls have to be done in the order dictated by
// the libpng docs. Please take care if you have to move any of them. This
// is also why certain things are done outside of the switch, even though
// they look like they belong there.
// Expand to ensure we use 24-bit for RGB and 32-bit for RGBA.
if (color_type == PNG_COLOR_TYPE_PALETTE ||
(color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8))
png_set_expand(png_ptr);
// The '!= 0' is for silencing a Windows compiler warning.
bool input_has_alpha = ((color_type & PNG_COLOR_MASK_ALPHA) != 0);
// Transparency for paletted images.
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) {
png_set_expand(png_ptr);
input_has_alpha = true;
}
// Convert 16-bit to 8-bit.
if (bit_depth == 16)
png_set_strip_16(png_ptr);
// Pick our row format converter necessary for this data.
if (!input_has_alpha) {
switch (state->output_format) {
case PNGCodec::FORMAT_RGB:
state->output_channels = 3;
break;
case PNGCodec::FORMAT_RGBA:
state->output_channels = 4;
png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER);
break;
case PNGCodec::FORMAT_BGRA:
state->output_channels = 4;
png_set_bgr(png_ptr);
png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER);
break;
case PNGCodec::FORMAT_SkBitmap:
state->output_channels = 4;
png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER);
break;
}
} else {
switch (state->output_format) {
case PNGCodec::FORMAT_RGB:
state->output_channels = 3;
png_set_strip_alpha(png_ptr);
break;
case PNGCodec::FORMAT_RGBA:
state->output_channels = 4;
break;
case PNGCodec::FORMAT_BGRA:
state->output_channels = 4;
png_set_bgr(png_ptr);
break;
case PNGCodec::FORMAT_SkBitmap:
state->output_channels = 4;
break;
}
}
// Expand grayscale to RGB.
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);
// Deal with gamma and keep it under our control.
double gamma;
if (png_get_gAMA(png_ptr, info_ptr, &gamma)) {
if (gamma <= 0.0 || gamma > kMaxGamma) {
gamma = kInverseGamma;
png_set_gAMA(png_ptr, info_ptr, gamma);
}
png_set_gamma(png_ptr, kDefaultGamma, gamma);
} else {
png_set_gamma(png_ptr, kDefaultGamma, kInverseGamma);
}
// Setting the user transforms here (as opposed to inside the switch above)
// because all png_set_* calls need to be done in the specific order
// mandated by libpng.
if (state->output_format == PNGCodec::FORMAT_SkBitmap) {
png_set_read_user_transform_fn(png_ptr, ConvertRGBARowToSkia);
png_set_user_transform_info(png_ptr, state, 0, 0);
}
// Tell libpng to send us rows for interlaced pngs.
if (interlace_type == PNG_INTERLACE_ADAM7)
png_set_interlace_handling(png_ptr);
png_read_update_info(png_ptr, info_ptr);
if (state->bitmap) {
state->bitmap->allocN32Pixels(state->width, state->height);
} else if (state->output) {
state->output->resize(
state->width * state->output_channels * state->height);
}
}
void DecodeRowCallback(png_struct* png_ptr, png_byte* new_row,
png_uint_32 row_num, int pass) {
if (!new_row)
return; // Interlaced image; row didn't change this pass.
PngDecoderState* state = static_cast<PngDecoderState*>(
png_get_progressive_ptr(png_ptr));
if (static_cast<int>(row_num) > state->height) {
NOTREACHED() << "Invalid row";
return;
}
unsigned char* base = NULL;
if (state->bitmap)
base = reinterpret_cast<unsigned char*>(state->bitmap->getAddr32(0, 0));
else if (state->output)
base = &state->output->front();
unsigned char* dest = &base[state->width * state->output_channels * row_num];
png_progressive_combine_row(png_ptr, dest, new_row);
}
void DecodeEndCallback(png_struct* png_ptr, png_info* info) {
PngDecoderState* state = static_cast<PngDecoderState*>(
png_get_progressive_ptr(png_ptr));
// Mark the image as complete, this will tell the Decode function that we
// have successfully found the end of the data.
state->done = true;
}
// Automatically destroys the given read structs on destruction to make
// cleanup and error handling code cleaner.
class PngReadStructDestroyer {
public:
PngReadStructDestroyer(png_struct** ps, png_info** pi) : ps_(ps), pi_(pi) {
}
~PngReadStructDestroyer() {
png_destroy_read_struct(ps_, pi_, NULL);
}
private:
png_struct** ps_;
png_info** pi_;
DISALLOW_COPY_AND_ASSIGN(PngReadStructDestroyer);
};
// Automatically destroys the given write structs on destruction to make
// cleanup and error handling code cleaner.
class PngWriteStructDestroyer {
public:
explicit PngWriteStructDestroyer(png_struct** ps) : ps_(ps), pi_(0) {
}
~PngWriteStructDestroyer() {
png_destroy_write_struct(ps_, pi_);
}
void SetInfoStruct(png_info** pi) {
pi_ = pi;
}
private:
png_struct** ps_;
png_info** pi_;
DISALLOW_COPY_AND_ASSIGN(PngWriteStructDestroyer);
};
bool BuildPNGStruct(const unsigned char* input, size_t input_size,
png_struct** png_ptr, png_info** info_ptr) {
if (input_size < 8)
return false; // Input data too small to be a png
// Have libpng check the signature, it likes the first 8 bytes.
if (png_sig_cmp(const_cast<unsigned char*>(input), 0, 8) != 0)
return false;
*png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!*png_ptr)
return false;
*info_ptr = png_create_info_struct(*png_ptr);
if (!*info_ptr) {
png_destroy_read_struct(png_ptr, NULL, NULL);
return false;
}
return true;
}
// Libpng user error and warning functions which allows us to print libpng
// errors and warnings using Chrome's logging facilities instead of stderr.
void LogLibPNGDecodeError(png_structp png_ptr, png_const_charp error_msg) {
DLOG(ERROR) << "libpng decode error: " << error_msg;
longjmp(png_jmpbuf(png_ptr), 1);
}
void LogLibPNGDecodeWarning(png_structp png_ptr, png_const_charp warning_msg) {
DLOG(ERROR) << "libpng decode warning: " << warning_msg;
}
void LogLibPNGEncodeError(png_structp png_ptr, png_const_charp error_msg) {
DLOG(ERROR) << "libpng encode error: " << error_msg;
longjmp(png_jmpbuf(png_ptr), 1);
}
void LogLibPNGEncodeWarning(png_structp png_ptr, png_const_charp warning_msg) {
DLOG(ERROR) << "libpng encode warning: " << warning_msg;
}
} // namespace
// static
bool PNGCodec::Decode(const unsigned char* input, size_t input_size,
ColorFormat format, std::vector<unsigned char>* output,
int* w, int* h) {
png_struct* png_ptr = NULL;
png_info* info_ptr = NULL;
if (!BuildPNGStruct(input, input_size, &png_ptr, &info_ptr))
return false;
PngReadStructDestroyer destroyer(&png_ptr, &info_ptr);
if (setjmp(png_jmpbuf(png_ptr))) {
// The destroyer will ensure that the structures are cleaned up in this
// case, even though we may get here as a jump from random parts of the
// PNG library called below.
return false;
}
PngDecoderState state(format, output);
png_set_error_fn(png_ptr, NULL, LogLibPNGDecodeError, LogLibPNGDecodeWarning);
png_set_progressive_read_fn(png_ptr, &state, &DecodeInfoCallback,
&DecodeRowCallback, &DecodeEndCallback);
png_process_data(png_ptr,
info_ptr,
const_cast<unsigned char*>(input),
input_size);
if (!state.done) {
// Fed it all the data but the library didn't think we got all the data, so
// this file must be truncated.
output->clear();
return false;
}
*w = state.width;
*h = state.height;
return true;
}
// static
bool PNGCodec::Decode(const unsigned char* input, size_t input_size,
SkBitmap* bitmap) {
DCHECK(bitmap);
png_struct* png_ptr = NULL;
png_info* info_ptr = NULL;
if (!BuildPNGStruct(input, input_size, &png_ptr, &info_ptr))
return false;
PngReadStructDestroyer destroyer(&png_ptr, &info_ptr);
if (setjmp(png_jmpbuf(png_ptr))) {
// The destroyer will ensure that the structures are cleaned up in this
// case, even though we may get here as a jump from random parts of the
// PNG library called below.
return false;
}
PngDecoderState state(bitmap);
png_set_progressive_read_fn(png_ptr, &state, &DecodeInfoCallback,
&DecodeRowCallback, &DecodeEndCallback);
png_process_data(png_ptr,
info_ptr,
const_cast<unsigned char*>(input),
input_size);
if (!state.done) {
return false;
}
// Set the bitmap's opaqueness based on what we saw.
bitmap->setAlphaType(state.is_opaque ?
kOpaque_SkAlphaType : kPremul_SkAlphaType);
return true;
}
// Encoder --------------------------------------------------------------------
//
// This section of the code is based on nsPNGEncoder.cpp in Mozilla
// (Copyright 2005 Google Inc.)
namespace {
// Passed around as the io_ptr in the png structs so our callbacks know where
// to write data.
struct PngEncoderState {
explicit PngEncoderState(std::vector<unsigned char>* o) : out(o) {}
std::vector<unsigned char>* out;
};
// Called by libpng to flush its internal buffer to ours.
void EncoderWriteCallback(png_structp png, png_bytep data, png_size_t size) {
PngEncoderState* state = static_cast<PngEncoderState*>(png_get_io_ptr(png));
DCHECK(state->out);
size_t old_size = state->out->size();
state->out->resize(old_size + size);
memcpy(&(*state->out)[old_size], data, size);
}
void FakeFlushCallback(png_structp png) {
// We don't need to perform any flushing since we aren't doing real IO, but
// we're required to provide this function by libpng.
}
void ConvertBGRAtoRGB(const unsigned char* bgra, int pixel_width,
unsigned char* rgb, bool* is_opaque) {
for (int x = 0; x < pixel_width; x++) {
const unsigned char* pixel_in = &bgra[x * 4];
unsigned char* pixel_out = &rgb[x * 3];
pixel_out[0] = pixel_in[2];
pixel_out[1] = pixel_in[1];
pixel_out[2] = pixel_in[0];
}
}
#ifdef PNG_TEXT_SUPPORTED
class CommentWriter {
public:
explicit CommentWriter(const std::vector<PNGCodec::Comment>& comments)
: comments_(comments),
png_text_(new png_text[comments.size()]) {
for (size_t i = 0; i < comments.size(); ++i)
AddComment(i, comments[i]);
}
~CommentWriter() {
for (size_t i = 0; i < comments_.size(); ++i) {
free(png_text_[i].key);
free(png_text_[i].text);
}
delete [] png_text_;
}
bool HasComments() {
return !comments_.empty();
}
png_text* get_png_text() {
return png_text_;
}
int size() {
return static_cast<int>(comments_.size());
}
private:
void AddComment(size_t pos, const PNGCodec::Comment& comment) {
png_text_[pos].compression = PNG_TEXT_COMPRESSION_NONE;
// A PNG comment's key can only be 79 characters long.
DCHECK(comment.key.length() < 79);
png_text_[pos].key = base::strdup(comment.key.substr(0, 78).c_str());
png_text_[pos].text = base::strdup(comment.text.c_str());
png_text_[pos].text_length = comment.text.length();
#ifdef PNG_iTXt_SUPPORTED
png_text_[pos].itxt_length = 0;
png_text_[pos].lang = 0;
png_text_[pos].lang_key = 0;
#endif
}
DISALLOW_COPY_AND_ASSIGN(CommentWriter);
const std::vector<PNGCodec::Comment> comments_;
png_text* png_text_;
};
#endif // PNG_TEXT_SUPPORTED
// The type of functions usable for converting between pixel formats.
typedef void (*FormatConverter)(const unsigned char* in, int w,
unsigned char* out, bool* is_opaque);
// libpng uses a wacky setjmp-based API, which makes the compiler nervous.
// We constrain all of the calls we make to libpng where the setjmp() is in
// place to this function.
// Returns true on success.
bool DoLibpngWrite(png_struct* png_ptr, png_info* info_ptr,
PngEncoderState* state,
int width, int height, int row_byte_width,
const unsigned char* input, int compression_level,
int png_output_color_type, int output_color_components,
FormatConverter converter,
const std::vector<PNGCodec::Comment>& comments) {
#ifdef PNG_TEXT_SUPPORTED
CommentWriter comment_writer(comments);
#endif
unsigned char* row_buffer = NULL;
// Make sure to not declare any locals here -- locals in the presence
// of setjmp() in C++ code makes gcc complain.
if (setjmp(png_jmpbuf(png_ptr))) {
delete[] row_buffer;
return false;
}
png_set_compression_level(png_ptr, compression_level);
// Set our callback for libpng to give us the data.
png_set_write_fn(png_ptr, state, EncoderWriteCallback, FakeFlushCallback);
png_set_error_fn(png_ptr, NULL, LogLibPNGEncodeError, LogLibPNGEncodeWarning);
png_set_IHDR(png_ptr, info_ptr, width, height, 8, png_output_color_type,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
#ifdef PNG_TEXT_SUPPORTED
if (comment_writer.HasComments()) {
png_set_text(png_ptr, info_ptr, comment_writer.get_png_text(),
comment_writer.size());
}
#endif
png_write_info(png_ptr, info_ptr);
if (!converter) {
// No conversion needed, give the data directly to libpng.
for (int y = 0; y < height; y ++) {
png_write_row(png_ptr,
const_cast<unsigned char*>(&input[y * row_byte_width]));
}
} else {
// Needs conversion using a separate buffer.
row_buffer = new unsigned char[width * output_color_components];
for (int y = 0; y < height; y ++) {
converter(&input[y * row_byte_width], width, row_buffer, NULL);
png_write_row(png_ptr, row_buffer);
}
delete[] row_buffer;
}
png_write_end(png_ptr, info_ptr);
return true;
}
bool EncodeWithCompressionLevel(const unsigned char* input,
PNGCodec::ColorFormat format,
const Size& size,
int row_byte_width,
bool discard_transparency,
const std::vector<PNGCodec::Comment>& comments,
int compression_level,
std::vector<unsigned char>* output) {
// Run to convert an input row into the output row format, NULL means no
// conversion is necessary.
FormatConverter converter = NULL;
int input_color_components, output_color_components;
int png_output_color_type;
switch (format) {
case PNGCodec::FORMAT_RGB:
input_color_components = 3;
output_color_components = 3;
png_output_color_type = PNG_COLOR_TYPE_RGB;
break;
case PNGCodec::FORMAT_RGBA:
input_color_components = 4;
if (discard_transparency) {
output_color_components = 3;
png_output_color_type = PNG_COLOR_TYPE_RGB;
converter = ConvertRGBAtoRGB;
} else {
output_color_components = 4;
png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA;
converter = NULL;
}
break;
case PNGCodec::FORMAT_BGRA:
input_color_components = 4;
if (discard_transparency) {
output_color_components = 3;
png_output_color_type = PNG_COLOR_TYPE_RGB;
converter = ConvertBGRAtoRGB;
} else {
output_color_components = 4;
png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA;
converter = ConvertBetweenBGRAandRGBA;
}
break;
case PNGCodec::FORMAT_SkBitmap:
// Compare row_byte_width and size.width() to detect the format of
// SkBitmap. kA8_Config (1bpp) and kARGB_8888_Config (4bpp) are the two
// supported formats.
if (row_byte_width < 4 * size.width()) {
// Not 4bpp, so must be 1bpp.
// Ignore discard_transparency - it doesn't make sense in this context,
// since alpha is the only thing we have and it needs to be used for
// color intensity.
input_color_components = 1;
output_color_components = 1;
png_output_color_type = PNG_COLOR_TYPE_GRAY;
// |converter| is left as null
} else {
input_color_components = 4;
if (discard_transparency) {
output_color_components = 3;
png_output_color_type = PNG_COLOR_TYPE_RGB;
converter = ConvertSkiaToRGB;
} else {
output_color_components = 4;
png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA;
converter = ConvertSkiaToRGBA;
}
}
break;
default:
NOTREACHED() << "Unknown pixel format";
return false;
}
// Row stride should be at least as long as the length of the data.
DCHECK(input_color_components * size.width() <= row_byte_width);
png_struct* png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if (!png_ptr)
return false;
PngWriteStructDestroyer destroyer(&png_ptr);
png_info* info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
return false;
destroyer.SetInfoStruct(&info_ptr);
output->clear();
PngEncoderState state(output);
bool success = DoLibpngWrite(png_ptr, info_ptr, &state,
size.width(), size.height(), row_byte_width,
input, compression_level, png_output_color_type,
output_color_components, converter, comments);
return success;
}
bool InternalEncodeSkBitmap(const SkBitmap& input,
bool discard_transparency,
int compression_level,
std::vector<unsigned char>* output) {
if (input.empty() || input.isNull())
return false;
int bpp = input.bytesPerPixel();
DCHECK(bpp == 1 || bpp == 4); // We support kA8_Config and kARGB_8888_Config.
SkAutoLockPixels lock_input(input);
unsigned char* inputAddr = bpp == 1 ?
reinterpret_cast<unsigned char*>(input.getAddr8(0, 0)) :
reinterpret_cast<unsigned char*>(input.getAddr32(0, 0)); // bpp = 4
return EncodeWithCompressionLevel(
inputAddr,
PNGCodec::FORMAT_SkBitmap,
Size(input.width(), input.height()),
static_cast<int>(input.rowBytes()),
discard_transparency,
std::vector<PNGCodec::Comment>(),
compression_level,
output);
}
} // namespace
// static
bool PNGCodec::Encode(const unsigned char* input,
ColorFormat format,
const Size& size,
int row_byte_width,
bool discard_transparency,
const std::vector<Comment>& comments,
std::vector<unsigned char>* output) {
return EncodeWithCompressionLevel(input,
format,
size,
row_byte_width,
discard_transparency,
comments,
Z_DEFAULT_COMPRESSION,
output);
}
// static
bool PNGCodec::EncodeBGRASkBitmap(const SkBitmap& input,
bool discard_transparency,
std::vector<unsigned char>* output) {
return InternalEncodeSkBitmap(input,
discard_transparency,
Z_DEFAULT_COMPRESSION,
output);
}
// static
bool PNGCodec::EncodeA8SkBitmap(const SkBitmap& input,
std::vector<unsigned char>* output) {
return InternalEncodeSkBitmap(input,
false,
Z_DEFAULT_COMPRESSION,
output);
}
// static
bool PNGCodec::FastEncodeBGRASkBitmap(const SkBitmap& input,
bool discard_transparency,
std::vector<unsigned char>* output) {
return InternalEncodeSkBitmap(input,
discard_transparency,
Z_BEST_SPEED,
output);
}
PNGCodec::Comment::Comment(const std::string& k, const std::string& t)
: key(k), text(t) {
}
PNGCodec::Comment::~Comment() {
}
} // namespace gfx