| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This is a OS-independent* module which purpose is tracking allocations and |
| // their call sites (stack traces). It is able to deal with hole punching |
| // (read: munmap). Also, it has low overhead and its presence in the system its |
| // barely noticeable, even if tracing *all* the processes. |
| // This module does NOT know how to deal with stack unwinding. The caller must |
| // do that and pass the addresses of the unwound stack. |
| // * (Modulo three lines for mutexes.) |
| // |
| // Exposed API: |
| // void heap_profiler_init(HeapStats*); |
| // void heap_profiler_alloc(addr, size, stack_frames, depth, flags); |
| // void heap_profiler_free(addr, size); (size == 0 means free entire region). |
| // |
| // The profiling information is tracked into two data structures: |
| // 1) A RB-Tree of non-overlapping VM regions (allocs) sorted by their start |
| // addr. Each entry tracks the start-end addresses and points to the stack |
| // trace which created that allocation (see below). |
| // 2) A (hash) table of stack traces. In general the #allocations >> #call sites |
| // which create those allocations. In order to avoid duplicating the latter, |
| // they are stored distinctly in this hash table and used by reference. |
| // |
| // / Process virtual address space \ |
| // +------+ +------+ +------+ |
| // |Alloc1| |Alloc2| |Alloc3| <- Allocs (a RB-Tree underneath) |
| // +------+ +------+ +------+ |
| // Len: 12 Len: 4 Len: 4 |
| // | | | stack_traces |
| // | | | +-----------+--------------+ |
| // | | | | Alloc tot | stack frames + |
| // | | | +-----------+--------------+ |
| // +------------|-------------+------------> | 16 | 0x1234 .... | |
| // | +-----------+--------------+ |
| // +--------------------------> | 4 | 0x5678 .... | |
| // +-----------+--------------+ |
| // (A hash-table underneath) |
| // |
| // Final note: the memory for both 1) and 2) entries is carved out from two |
| // static pools (i.e. stack_traces and allocs). The pools are treated as |
| // a sbrk essentially, and are kept compact by reusing freed elements (hence |
| // having a freelist for each of them). |
| // |
| // All the internal (static) functions here assume that the |lock| is held. |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| // Platform-dependent mutex boilerplate. |
| #if defined(__linux__) || defined(__ANDROID__) |
| #include <pthread.h> |
| #define DEFINE_MUTEX(x) pthread_mutex_t x = PTHREAD_MUTEX_INITIALIZER |
| #define LOCK_MUTEX(x) pthread_mutex_lock(&x) |
| #define UNLOCK_MUTEX(x) pthread_mutex_unlock(&x) |
| #else |
| #error OS not supported. |
| #endif |
| |
| #include "tools/android/heap_profiler/heap_profiler.h" |
| |
| |
| static DEFINE_MUTEX(lock); |
| |
| // |stats| contains the global tracking metadata and is the entry point which |
| // is read by the heap_dump tool. |
| static HeapStats* stats; |
| |
| // +---------------------------------------------------------------------------+ |
| // + Stack traces hash-table + |
| // +---------------------------------------------------------------------------+ |
| #define ST_ENTRIES_MAX (64 * 1024) |
| #define ST_HASHTABLE_BUCKETS (64 * 1024) /* Must be a power of 2. */ |
| |
| static StacktraceEntry stack_traces[ST_ENTRIES_MAX]; |
| static StacktraceEntry* stack_traces_freelist; |
| static StacktraceEntry* stack_traces_ht[ST_HASHTABLE_BUCKETS]; |
| |
| // Looks up a stack trace from the stack frames. Creates a new one if necessary. |
| static StacktraceEntry* record_stacktrace(uintptr_t* frames, uint32_t depth) { |
| if (depth == 0) |
| return NULL; |
| |
| if (depth > HEAP_PROFILER_MAX_DEPTH) |
| depth = HEAP_PROFILER_MAX_DEPTH; |
| |
| uint32_t i; |
| uintptr_t hash = 0; |
| for (i = 0; i < depth; ++i) |
| hash = (hash << 1) ^ (frames[i]); |
| const uint32_t slot = hash & (ST_HASHTABLE_BUCKETS - 1); |
| StacktraceEntry* st = stack_traces_ht[slot]; |
| |
| // Look for an existing entry in the hash-table. |
| const size_t frames_length = depth * sizeof(uintptr_t); |
| while (st != NULL && st->hash != hash && |
| memcmp(frames, st->frames, frames_length) != 0) { |
| st = st->next; |
| } |
| |
| // If not found, create a new one from the stack_traces array and add it to |
| // the hash-table. |
| if (st == NULL) { |
| // Get a free element either from the freelist or from the pool. |
| if (stack_traces_freelist != NULL) { |
| st = stack_traces_freelist; |
| stack_traces_freelist = stack_traces_freelist->next; |
| } else if (stats->max_stack_traces < ST_ENTRIES_MAX) { |
| st = &stack_traces[stats->max_stack_traces]; |
| ++stats->max_stack_traces; |
| } else { |
| return NULL; |
| } |
| |
| memset(st, 0, sizeof(*st)); |
| memcpy(st->frames, frames, frames_length); |
| st->hash = hash; |
| st->next = stack_traces_ht[slot]; |
| stack_traces_ht[slot] = st; |
| ++stats->num_stack_traces; |
| } |
| |
| return st; |
| } |
| |
| // Frees up a stack trace and appends it to the corresponding freelist. |
| static void free_stacktrace(StacktraceEntry* st) { |
| assert(st->alloc_bytes == 0); |
| const uint32_t slot = st->hash & (ST_HASHTABLE_BUCKETS - 1); |
| |
| // The expected load factor of the hash-table is very low. Frees should be |
| // pretty rare. Hence don't bother with a doubly linked list, might cost more. |
| StacktraceEntry** prev = &stack_traces_ht[slot]; |
| while (*prev != st) |
| prev = &((*prev)->next); |
| |
| // Remove from the hash-table bucket. |
| assert(*prev == st); |
| *prev = st->next; |
| |
| // Add to the freelist. |
| st->next = stack_traces_freelist; |
| stack_traces_freelist = st; |
| --stats->num_stack_traces; |
| } |
| |
| // +---------------------------------------------------------------------------+ |
| // + Allocs RB-tree + |
| // +---------------------------------------------------------------------------+ |
| #define ALLOCS_ENTRIES_MAX (256 * 1024) |
| |
| static Alloc allocs[ALLOCS_ENTRIES_MAX]; |
| static Alloc* allocs_freelist; |
| static RB_HEAD(HeapEntriesTree, Alloc) allocs_tree = |
| RB_INITIALIZER(&allocs_tree); |
| |
| // Comparator used by the RB-Tree (mind the overflow, avoid arith on addresses). |
| static int allocs_tree_cmp(Alloc *alloc_1, Alloc *alloc_2) { |
| if (alloc_1->start < alloc_2->start) |
| return -1; |
| if (alloc_1->start > alloc_2->start) |
| return 1; |
| return 0; |
| } |
| |
| RB_PROTOTYPE(HeapEntriesTree, Alloc, rb_node, allocs_tree_cmp); |
| RB_GENERATE(HeapEntriesTree, Alloc, rb_node, allocs_tree_cmp); |
| |
| // Allocates a new Alloc and inserts it in the tree. |
| static Alloc* insert_alloc( |
| uintptr_t start, uintptr_t end, StacktraceEntry* st, uint32_t flags) { |
| Alloc* alloc = NULL; |
| |
| // First of all, get a free element either from the freelist or from the pool. |
| if (allocs_freelist != NULL) { |
| alloc = allocs_freelist; |
| allocs_freelist = alloc->next_free; |
| } else if (stats->max_allocs < ALLOCS_ENTRIES_MAX) { |
| alloc = &allocs[stats->max_allocs]; |
| ++stats->max_allocs; |
| } else { |
| return NULL; // OOM. |
| } |
| |
| alloc->start = start; |
| alloc->end = end; |
| alloc->st = st; |
| alloc->flags = flags; |
| alloc->next_free = NULL; |
| RB_INSERT(HeapEntriesTree, &allocs_tree, alloc); |
| ++stats->num_allocs; |
| return alloc; |
| } |
| |
| // Deletes all the allocs in the range [addr, addr+size[ dealing with partial |
| // frees and hole punching. Note that in the general case this function might |
| // need to deal with very unfortunate cases, as below: |
| // |
| // Alloc tree begin: [Alloc 1]----[Alloc 2]-------[Alloc 3][Alloc 4]---[Alloc 5] |
| // Deletion range: [xxxxxxxxxxxxxxxxxxxx] |
| // Alloc tree end: [Alloc 1]----[Al.2]----------------------[Al.4]---[Alloc 5] |
| // Alloc3 has to be deleted and Alloc 2,4 shrunk. |
| static uint32_t delete_allocs_in_range(void* addr, size_t size) { |
| uintptr_t del_start = (uintptr_t) addr; |
| uintptr_t del_end = del_start + size - 1; |
| uint32_t flags = 0; |
| |
| Alloc* alloc = NULL; |
| Alloc* next_alloc = RB_ROOT(&allocs_tree); |
| |
| // Lookup the first (by address) relevant Alloc to initiate the deletion walk. |
| // At the end of the loop next_alloc is either: |
| // - the closest alloc starting before (or exactly at) the start of the |
| // deletion range (i.e. addr == del_start). |
| // - the first alloc inside the deletion range. |
| // - the first alloc after the deletion range iff the range was already empty |
| // (in this case the next loop will just bail out doing nothing). |
| // - NULL: iff the entire tree is empty (as above). |
| while (next_alloc != NULL) { |
| alloc = next_alloc; |
| if (alloc->start > del_start) { |
| next_alloc = RB_LEFT(alloc, rb_node); |
| } else if (alloc->end < del_start) { |
| next_alloc = RB_RIGHT(alloc, rb_node); |
| } else { // alloc->start <= del_start && alloc->end >= del_start |
| break; |
| } |
| } |
| |
| // Now scan the allocs linearly deleting chunks (or eventually whole allocs) |
| // until passing the end of the deleting region. |
| next_alloc = alloc; |
| while (next_alloc != NULL) { |
| alloc = next_alloc; |
| next_alloc = RB_NEXT(HeapEntriesTree, &allocs_tree, alloc); |
| |
| if (size != 0) { |
| // In the general case we stop passed the end of the deletion range. |
| if (alloc->start > del_end) |
| break; |
| |
| // This deals with the case of the first Alloc laying before the range. |
| if (alloc->end < del_start) |
| continue; |
| } else { |
| // size == 0 is a special case. It means deleting only the alloc which |
| // starts exactly at |del_start| if any (for dealing with free(ptr)). |
| if (alloc->start > del_start) |
| break; |
| if (alloc->start < del_start) |
| continue; |
| del_end = alloc->end; |
| } |
| |
| // Reached this point the Alloc must overlap (partially or completely) with |
| // the deletion range. |
| assert(!(alloc->start > del_end || alloc->end < del_start)); |
| |
| StacktraceEntry* st = alloc->st; |
| flags |= alloc->flags; |
| uintptr_t freed_bytes = 0; // Bytes freed in this cycle. |
| |
| if (del_start <= alloc->start) { |
| if (del_end >= alloc->end) { |
| // Complete overlap. Delete full Alloc. Note: the range might might |
| // still overlap with the next allocs. |
| // Begin: ------[alloc.start alloc.end]-[next alloc] |
| // Del range: [xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx] |
| // Result: ---------------------------------[next alloc] |
| // [next alloc] will be shrinked on the next iteration. |
| freed_bytes = alloc->end - alloc->start + 1; |
| RB_REMOVE(HeapEntriesTree, &allocs_tree, alloc); |
| |
| // Clean-up, so heap_dump can tell this is a free entry and skip it. |
| alloc->start = alloc->end = 0; |
| alloc->st = NULL; |
| |
| // Put in the freelist. |
| alloc->next_free = allocs_freelist; |
| allocs_freelist = alloc; |
| --stats->num_allocs; |
| } else { |
| // Partial overlap at beginning. Cut first part and shrink the alloc. |
| // Begin: ------[alloc.start alloc.end]-[next alloc] |
| // Del range: [xxxxxx] |
| // Result: ------------[start alloc.end]-[next alloc] |
| freed_bytes = del_end - alloc->start + 1; |
| alloc->start = del_end + 1; |
| // No need to update the tree even if we changed the key. The keys are |
| // still monotonic (because the ranges are guaranteed to not overlap). |
| } |
| } else { |
| if (del_end >= alloc->end) { |
| // Partial overlap at end. Cut last part and shrink the alloc left. |
| // Begin: ------[alloc.start alloc.end]-[next alloc] |
| // Del range: [xxxxxxxx] |
| // Result: ------[alloc.start alloc.end]-----[next alloc] |
| // [next alloc] will be shrinked on the next iteration. |
| freed_bytes = alloc->end - del_start + 1; |
| alloc->end = del_start - 1; |
| } else { |
| // Hole punching. Requires creating an extra alloc. |
| // Begin: ------[alloc.start alloc.end]-[next alloc] |
| // Del range: [xxx] |
| // Result: ------[ alloc 1 ]-----[ alloc 2 ]-[next alloc] |
| freed_bytes = del_end - del_start + 1; |
| const uintptr_t old_end = alloc->end; |
| alloc->end = del_start - 1; |
| |
| // In case of OOM, don't count the 2nd alloc we failed to allocate. |
| if (insert_alloc(del_end + 1, old_end, st, alloc->flags) == NULL) |
| freed_bytes += (old_end - del_end); |
| } |
| } |
| // Now update the StackTraceEntry the Alloc was pointing to, eventually |
| // freeing it up. |
| assert(st->alloc_bytes >= freed_bytes); |
| st->alloc_bytes -= freed_bytes; |
| if (st->alloc_bytes == 0) |
| free_stacktrace(st); |
| stats->total_alloc_bytes -= freed_bytes; |
| } |
| return flags; |
| } |
| |
| // +---------------------------------------------------------------------------+ |
| // + Library entry points (refer to heap_profiler.h for API doc). + |
| // +---------------------------------------------------------------------------+ |
| void heap_profiler_free(void* addr, size_t size, uint32_t* old_flags) { |
| assert(size == 0 || ((uintptr_t) addr + (size - 1)) >= (uintptr_t) addr); |
| |
| LOCK_MUTEX(lock); |
| uint32_t flags = delete_allocs_in_range(addr, size); |
| UNLOCK_MUTEX(lock); |
| |
| if (old_flags != NULL) |
| *old_flags = flags; |
| } |
| |
| void heap_profiler_alloc(void* addr, size_t size, uintptr_t* frames, |
| uint32_t depth, uint32_t flags) { |
| if (depth > HEAP_PROFILER_MAX_DEPTH) |
| depth = HEAP_PROFILER_MAX_DEPTH; |
| |
| if (size == 0) // Apps calling malloc(0), sometimes it happens. |
| return; |
| |
| const uintptr_t start = (uintptr_t) addr; |
| const uintptr_t end = start + (size - 1); |
| assert(start <= end); |
| |
| LOCK_MUTEX(lock); |
| |
| delete_allocs_in_range(addr, size); |
| |
| StacktraceEntry* st = record_stacktrace(frames, depth); |
| if (st != NULL) { |
| Alloc* alloc = insert_alloc(start, end, st, flags); |
| if (alloc != NULL) { |
| st->alloc_bytes += size; |
| stats->total_alloc_bytes += size; |
| } |
| } |
| |
| UNLOCK_MUTEX(lock); |
| } |
| |
| void heap_profiler_init(HeapStats* heap_stats) { |
| LOCK_MUTEX(lock); |
| |
| assert(stats == NULL); |
| stats = heap_stats; |
| memset(stats, 0, sizeof(HeapStats)); |
| stats->magic_start = HEAP_PROFILER_MAGIC_MARKER; |
| stats->allocs = &allocs[0]; |
| stats->stack_traces = &stack_traces[0]; |
| |
| UNLOCK_MUTEX(lock); |
| } |
| |
| void heap_profiler_cleanup(void) { |
| LOCK_MUTEX(lock); |
| |
| assert(stats != NULL); |
| memset(stack_traces, 0, sizeof(StacktraceEntry) * stats->max_stack_traces); |
| memset(stack_traces_ht, 0, sizeof(stack_traces_ht)); |
| stack_traces_freelist = NULL; |
| |
| memset(allocs, 0, sizeof(Alloc) * stats->max_allocs); |
| allocs_freelist = NULL; |
| RB_INIT(&allocs_tree); |
| |
| stats = NULL; |
| |
| UNLOCK_MUTEX(lock); |
| } |