blob: bad9f4bfc2e1331f5bd3167bf8163e2a7046bdd2 [file] [log] [blame]
part of sprites;
double convertDegrees2Radians(double degrees) => degrees * math.PI/180.8;
double convertRadians2Degrees(double radians) => radians * 180.0/math.PI;
/// A base class for all objects that can be added to the sprite node tree and rendered to screen using [SpriteBox] and
/// [SpriteWidget].
///
/// The [Node] class itself doesn't render any content, but provides the basic functions of any type of node, such as
/// handling transformations and user input. To render the node tree, a root node must be added to a [SpriteBox] or a
/// [SpriteWidget]. Commonly used sub-classes of [Node] are [Sprite], [NodeWithSize], and many more upcoming subclasses.
///
/// Nodes form a hierarchical tree. Each node can have a number of children, and the transformation (positioning,
/// rotation, and scaling) of a node also affects its children.
class Node {
// Member variables
SpriteBox _spriteBox;
Node _parent;
Point _position = Point.origin;
double _rotation = 0.0;
Matrix4 _transformMatrix = new Matrix4.identity();
Matrix4 _transformMatrixNodeToBox;
Matrix4 _transformMatrixBoxToNode;
double _scaleX = 1.0;
double _scaleY = 1.0;
double _skewX = 0.0;
double _skewY = 0.0;
/// The visibility of this node and its children.
bool visible = true;
double _zPosition = 0.0;
int _addedOrder;
int _childrenLastAddedOrder = 0;
bool _childrenNeedSorting = false;
Matrix4 _savedTotalMatrix;
/// Decides if the node and its children is currently paused.
///
/// A paused node will not receive any input events, update calls, or run any animations.
///
/// myNodeTree.paused = true;
bool paused = false;
bool _userInteractionEnabled = false;
/// If set to true the node will receive multiple pointers, otherwise it will only receive events the first pointer.
///
/// This property is only meaningful if [userInteractionEnabled] is set to true. Default value is false.
///
/// class MyCustomNode extends Node {
/// handleMultiplePointers = true;
/// }
bool handleMultiplePointers = false;
int _handlingPointer;
List<Node>_children = [];
ActionController _actions;
/// The [ActionController] associated with this node.
///
/// myNode.actions.run(myAction);
ActionController get actions {
if (_actions == null) {
_actions = new ActionController();
if (_spriteBox != null) _spriteBox._actionControllers = null;
}
return _actions;
}
List<Constraint> _constraints;
List<Constraint> get constraints {
return _constraints;
}
set constraints(List<Constraint> constraints) {
_constraints = constraints;
if (_spriteBox != null) _spriteBox._constrainedNodes = null;
}
void applyConstraints(double dt) {
if (_constraints == null) return;
for (Constraint constraint in _constraints) {
constraint.constrain(this, dt);
}
}
// Constructors
/// Creates a new [Node] without any transformation.
///
/// var myNode = new Node();
Node() {
}
// Property setters and getters
/// The [SpriteBox] this node is added to, or null if it's not currently added to a [SpriteBox].
///
/// For most applications it's not necessary to access the [SpriteBox] directly.
///
/// // Get the transformMode of the sprite box
/// var transformMode = myNode.spriteBox.transformMode;
SpriteBox get spriteBox => _spriteBox;
/// The parent of this node, or null if it doesn't have a parent.
///
/// // Hide the parent
/// myNode.parent.visible = false;
Node get parent => _parent;
/// The rotation of this node in degrees.
///
/// myNode.rotation = 45.0;
double get rotation => _rotation;
void set rotation(double rotation) {
assert(rotation != null);
_rotation = rotation;
invalidateTransformMatrix();
}
/// The position of this node relative to its parent.
///
/// myNode.position = new Point(42.0, 42.0);
Point get position => _position;
void set position(Point position) {
assert(position != null);
_position = position;
invalidateTransformMatrix();
}
/// The skew along the x-axis of this node in degrees.
///
/// myNode.skewX = 45.0;
double get skewX => _skewX;
void set skewX (double skewX) {
assert(skewX != null);
_skewX = skewX;
invalidateTransformMatrix();
}
/// The skew along the y-axis of this node in degrees.
///
/// myNode.skewY = 45.0;
double get skewY => _skewY;
void set skewY (double skewY) {
assert(skewY != null);
_skewY = skewY;
invalidateTransformMatrix();
}
/// The draw order of this node compared to its parent and its siblings.
///
/// By default nodes are drawn in the order that they have been added to a parent. To override this behavior the
/// [zPosition] property can be used. A higher value of this property will force the node to be drawn in front of
/// siblings that have a lower value. If a negative value is used the node will be drawn behind its parent.
///
/// nodeInFront.zPosition = 1.0;
/// nodeBehind.zPosition = -1.0;
double get zPosition => _zPosition;
void set zPosition(double zPosition) {
assert(zPosition != null);
_zPosition = zPosition;
if (_parent != null) {
_parent._childrenNeedSorting = true;
}
}
/// The scale of this node relative its parent.
///
/// The [scale] property is only valid if [scaleX] and [scaleY] are equal values.
///
/// myNode.scale = 5.0;
double get scale {
assert(_scaleX == _scaleY);
return _scaleX;
}
void set scale(double scale) {
assert(scale != null);
_scaleX = _scaleY = scale;
invalidateTransformMatrix();
}
/// The horizontal scale of this node relative its parent.
///
/// myNode.scaleX = 5.0;
double get scaleX => _scaleX;
void set scaleX(double scaleX) {
assert(scaleX != null);
_scaleX = scaleX;
invalidateTransformMatrix();
}
/// The vertical scale of this node relative its parent.
///
/// myNode.scaleY = 5.0;
double get scaleY => _scaleY;
void set scaleY(double scaleY) {
assert(scaleY != null);
_scaleY = scaleY;
invalidateTransformMatrix();
}
/// A list of the children of this node.
///
/// This list should only be modified by using the [addChild] and [removeChild] methods.
///
/// // Iterate over a nodes children
/// for (Node child in myNode.children) {
/// // Do something with the child
/// }
List<Node> get children {
_sortChildren();
return _children;
}
// Adding and removing children
/// Adds a child to this node.
///
/// The same node cannot be added to multiple nodes.
///
/// addChild(new Sprite(myImage));
void addChild(Node child) {
assert(child != null);
assert(child._parent == null);
_childrenNeedSorting = true;
_children.add(child);
child._parent = this;
child._spriteBox = this._spriteBox;
_childrenLastAddedOrder += 1;
child._addedOrder = _childrenLastAddedOrder;
if (_spriteBox != null) _spriteBox._registerNode(child);
}
/// Removes a child from this node.
///
/// removeChild(myChildNode);
void removeChild(Node child) {
assert(child != null);
if (_children.remove(child)) {
child._parent = null;
child._spriteBox = null;
if (_spriteBox != null) _spriteBox._deregisterNode(child);
}
}
/// Removes this node from its parent node.
///
/// removeFromParent();
void removeFromParent() {
assert(_parent != null);
_parent.removeChild(this);
}
/// Removes all children of this node.
///
/// removeAllChildren();
void removeAllChildren() {
for (Node child in _children) {
child._parent = null;
child._spriteBox = null;
}
_children = [];
_childrenNeedSorting = false;
if (_spriteBox != null) _spriteBox._deregisterNode(null);
}
void _sortChildren() {
// Sort children primarily by zPosition, secondarily by added order
if (_childrenNeedSorting) {
_children.sort((Node a, Node b) {
if (a._zPosition == b._zPosition) {
return a._addedOrder - b._addedOrder;
}
else if (a._zPosition > b._zPosition) {
return 1;
}
else {
return -1;
}
});
_childrenNeedSorting = false;
}
}
// Calculating the transformation matrix
/// The transformMatrix describes the transformation from the node's parent.
///
/// You cannot set the transformMatrix directly, instead use the position, rotation and scale properties.
///
/// Matrix4 matrix = myNode.transformMatrix;
Matrix4 get transformMatrix {
if (_transformMatrix == null) {
_transformMatrix = computeTransformMatrix();
}
return _transformMatrix;
}
/// Computes the transformation matrix of this node. This method can be
/// overriden if a custom matrix is required. There is usually no reason to
/// call this method directly.
Matrix4 computeTransformMatrix() {
double cx, sx, cy, sy;
if (_rotation == 0.0) {
cx = 1.0;
sx = 0.0;
cy = 1.0;
sy = 0.0;
}
else {
double radiansX = convertDegrees2Radians(_rotation);
double radiansY = convertDegrees2Radians(_rotation);
cx = math.cos(radiansX);
sx = math.sin(radiansX);
cy = math.cos(radiansY);
sy = math.sin(radiansY);
}
// Create transformation matrix for scale, position and rotation
Matrix4 matrix = new Matrix4(cy * _scaleX, sy * _scaleX, 0.0, 0.0,
-sx * _scaleY, cx * _scaleY, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
_position.x, _position.y, 0.0, 1.0);
if (_skewX != 0.0 || _skewY != 0.0) {
// Needs skew transform
Matrix4 skew = new Matrix4(1.0, math.tan(radians(_skewX)), 0.0, 0.0,
math.tan(radians(_skewY)), 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
matrix.multiply(skew);
}
return matrix;
}
/// Invalidates the current transform matrix. If the [computeTransformMatrix]
/// method is overidden, this method should be called whenever a property
/// changes that affects the matrix.
void invalidateTransformMatrix() {
_transformMatrix = null;
_invalidateToBoxTransformMatrix();
}
void _invalidateToBoxTransformMatrix () {
_transformMatrixNodeToBox = null;
_transformMatrixBoxToNode = null;
for (Node child in children) {
child._invalidateToBoxTransformMatrix();
}
}
// Transforms to other nodes
Matrix4 _nodeToBoxMatrix() {
assert(_spriteBox != null);
if (_transformMatrixNodeToBox != null) {
return _transformMatrixNodeToBox;
}
if (_parent == null) {
// Base case, we are at the top
assert(this == _spriteBox.rootNode);
_transformMatrixNodeToBox = new Matrix4.copy(_spriteBox.transformMatrix).multiply(transformMatrix);
}
else {
_transformMatrixNodeToBox = new Matrix4.copy(_parent._nodeToBoxMatrix()).multiply(transformMatrix);
}
return _transformMatrixNodeToBox;
}
Matrix4 _boxToNodeMatrix() {
assert(_spriteBox != null);
if (_transformMatrixBoxToNode != null) {
return _transformMatrixBoxToNode;
}
_transformMatrixBoxToNode = new Matrix4.copy(_nodeToBoxMatrix());
_transformMatrixBoxToNode.invert();
return _transformMatrixBoxToNode;
}
/// Converts a point from the coordinate system of the [SpriteBox] to the local coordinate system of the node.
///
/// This method is particularly useful when handling pointer events and need the pointers position in a local
/// coordinate space.
///
/// Point localPoint = myNode.convertPointToNodeSpace(pointInBoxCoordinates);
Point convertPointToNodeSpace(Point boxPoint) {
assert(boxPoint != null);
assert(_spriteBox != null);
Vector4 v =_boxToNodeMatrix().transform(new Vector4(boxPoint.x, boxPoint.y, 0.0, 1.0));
return new Point(v[0], v[1]);
}
/// Converts a point from the local coordinate system of the node to the coordinate system of the [SpriteBox].
///
/// Point pointInBoxCoordinates = myNode.convertPointToBoxSpace(localPoint);
Point convertPointToBoxSpace(Point nodePoint) {
assert(nodePoint != null);
assert(_spriteBox != null);
Vector4 v =_nodeToBoxMatrix().transform(new Vector4(nodePoint.x, nodePoint.y, 0.0, 1.0));
return new Point(v[0], v[1]);
}
/// Converts a [point] from another [node]s coordinate system into the local coordinate system of this node.
///
/// Point pointInNodeASpace = nodeA.convertPointFromNode(pointInNodeBSpace, nodeB);
Point convertPointFromNode(Point point, Node node) {
assert(node != null);
assert(point != null);
assert(_spriteBox != null);
assert(_spriteBox == node._spriteBox);
Point boxPoint = node.convertPointToBoxSpace(point);
Point localPoint = convertPointToNodeSpace(boxPoint);
return localPoint;
}
// Hit test
/// Returns true if the [point] is inside the node, the [point] is in the local coordinate system of the node.
///
/// myNode.isPointInside(localPoint);
///
/// [NodeWithSize] provides a basic bounding box check for this method, if you require a more detailed check this
/// method can be overridden.
///
/// bool isPointInside (Point nodePoint) {
/// double minX = -size.width * pivot.x;
/// double minY = -size.height * pivot.y;
/// double maxX = minX + size.width;
/// double maxY = minY + size.height;
/// return (nodePoint.x >= minX && nodePoint.x < maxX &&
/// nodePoint.y >= minY && nodePoint.y < maxY);
/// }
bool isPointInside(Point point) {
assert(point != null);
return false;
}
// Rendering
void _visit(PaintingCanvas canvas, Matrix4 totalMatrix) {
assert(canvas != null);
if (!visible) return;
_prePaint(canvas, totalMatrix);
_visitChildren(canvas, totalMatrix);
_postPaint(canvas, totalMatrix);
}
void _prePaint(PaintingCanvas canvas, Matrix4 matrix) {
_savedTotalMatrix = new Matrix4.copy(matrix);
// Get the transformation matrix and apply transform
matrix.multiply(transformMatrix);
}
/// Paints this node to the canvas.
///
/// Subclasses, such as [Sprite], override this method to do the actual painting of the node. To do custom
/// drawing override this method and make calls to the [canvas] object. All drawing is done in the node's local
/// coordinate system, relative to the node's position. If you want to make the drawing relative to the node's
/// bounding box's origin, override [NodeWithSize] and call the applyTransformForPivot method before making calls for
/// drawing.
///
/// void paint(PaintingCanvas canvas) {
/// canvas.save();
/// applyTransformForPivot(canvas);
///
/// // Do painting here
///
/// canvas.restore();
/// }
void paint(PaintingCanvas canvas) {
}
void _visitChildren(PaintingCanvas canvas, Matrix4 totalMatrix) {
// Sort children if needed
_sortChildren();
int i = 0;
// Visit children behind this node
while (i < _children.length) {
Node child = _children[i];
if (child.zPosition >= 0.0) break;
child._visit(canvas, totalMatrix);
i++;
}
// Paint this node
canvas.setMatrix(totalMatrix.storage);
paint(canvas);
// Visit children in front of this node
while (i < _children.length) {
Node child = _children[i];
child._visit(canvas, totalMatrix);
i++;
}
}
void _postPaint(PaintingCanvas canvas, Matrix4 totalMatrix) {
totalMatrix.setFrom(_savedTotalMatrix);
}
// Receiving update calls
/// Called before a frame is drawn.
///
/// Override this method to do any updates to the node or node tree before it's drawn to screen.
///
/// // Make the node rotate at a fixed speed
/// void update(double dt) {
/// rotation = rotation * 10.0 * dt;
/// }
void update(double dt) {
}
/// Called whenever the [SpriteBox] is modified or resized, or if the device is rotated.
///
/// Override this method to do any updates that may be necessary to correctly display the node or node tree with the
/// new layout of the [SpriteBox].
///
/// void spriteBoxPerformedLayout() {
/// // Move some stuff around here
/// }
void spriteBoxPerformedLayout() {
}
// Handling user interaction
/// The node will receive user interactions, such as pointer (touch or mouse) events.
///
/// class MyCustomNode extends NodeWithSize {
/// userInteractionEnabled = true;
/// }
bool get userInteractionEnabled => _userInteractionEnabled;
void set userInteractionEnabled(bool userInteractionEnabled) {
_userInteractionEnabled = userInteractionEnabled;
if (_spriteBox != null) _spriteBox._eventTargets = null;
}
/// Handles an event, such as a pointer (touch or mouse) event.
///
/// Override this method to handle events. The node will only receive events if the [userInteractionEnabled] property
/// is set to true and the [isPointInside] method returns true for the position of the pointer down event (default
/// behavior provided by [NodeWithSize]). Unless [handleMultiplePointers] is set to true, the node will only receive
/// events for the first pointer that is down.
///
/// Return true if the node has consumed the event, if an event is consumed it will not be passed on to nodes behind
/// the current node.
///
/// // MyTouchySprite gets transparent when we touch it
/// class MyTouchySprite extends Sprite {
///
/// MyTouchySprite(Image img) : super (img) {
/// userInteractionEnabled = true;
/// }
///
/// bool handleEvent(SpriteBoxEvent event) {
/// if (event.type == 'pointerdown) {
/// opacity = 0.5;
/// }
/// else if (event.type == 'pointerup') {
/// opacity = 1.0;
/// }
/// return true;
/// }
/// }
bool handleEvent(SpriteBoxEvent event) {
return false;
}
}