|  | // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | // The original file was copied from sqlite, and was in the public domain. | 
|  |  | 
|  | /* | 
|  | * This code implements the MD5 message-digest algorithm. | 
|  | * The algorithm is due to Ron Rivest.  This code was | 
|  | * written by Colin Plumb in 1993, no copyright is claimed. | 
|  | * This code is in the public domain; do with it what you wish. | 
|  | * | 
|  | * Equivalent code is available from RSA Data Security, Inc. | 
|  | * This code has been tested against that, and is equivalent, | 
|  | * except that you don't need to include two pages of legalese | 
|  | * with every copy. | 
|  | * | 
|  | * To compute the message digest of a chunk of bytes, declare an | 
|  | * MD5Context structure, pass it to MD5Init, call MD5Update as | 
|  | * needed on buffers full of bytes, and then call MD5Final, which | 
|  | * will fill a supplied 16-byte array with the digest. | 
|  | */ | 
|  |  | 
|  | #include "base/md5.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct Context { | 
|  | uint32_t buf[4]; | 
|  | uint32_t bits[2]; | 
|  | uint8_t in[64]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Note: this code is harmless on little-endian machines. | 
|  | */ | 
|  | void byteReverse(uint8_t* buf, unsigned longs) { | 
|  | do { | 
|  | uint32_t temp = static_cast<uint32_t>( | 
|  | static_cast<unsigned>(buf[3]) << 8 | | 
|  | buf[2]) << 16 | | 
|  | (static_cast<unsigned>(buf[1]) << 8 | buf[0]); | 
|  | *reinterpret_cast<uint32_t*>(buf) = temp; | 
|  | buf += 4; | 
|  | } while (--longs); | 
|  | } | 
|  |  | 
|  | /* The four core functions - F1 is optimized somewhat */ | 
|  |  | 
|  | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
|  | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
|  | #define F2(x, y, z) F1(z, x, y) | 
|  | #define F3(x, y, z) (x ^ y ^ z) | 
|  | #define F4(x, y, z) (y ^ (x | ~z)) | 
|  |  | 
|  | /* This is the central step in the MD5 algorithm. */ | 
|  | #define MD5STEP(f, w, x, y, z, data, s) \ | 
|  | (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) | 
|  |  | 
|  | /* | 
|  | * The core of the MD5 algorithm, this alters an existing MD5 hash to | 
|  | * reflect the addition of 16 longwords of new data.  MD5Update blocks | 
|  | * the data and converts bytes into longwords for this routine. | 
|  | */ | 
|  | void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { | 
|  | uint32_t a, b, c, d; | 
|  |  | 
|  | a = buf[0]; | 
|  | b = buf[1]; | 
|  | c = buf[2]; | 
|  | d = buf[3]; | 
|  |  | 
|  | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | 
|  |  | 
|  | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | 
|  |  | 
|  | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | 
|  |  | 
|  | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | 
|  |  | 
|  | buf[0] += a; | 
|  | buf[1] += b; | 
|  | buf[2] += c; | 
|  | buf[3] += d; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | /* | 
|  | * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious | 
|  | * initialization constants. | 
|  | */ | 
|  | void MD5Init(MD5Context* context) { | 
|  | struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
|  | ctx->buf[0] = 0x67452301; | 
|  | ctx->buf[1] = 0xefcdab89; | 
|  | ctx->buf[2] = 0x98badcfe; | 
|  | ctx->buf[3] = 0x10325476; | 
|  | ctx->bits[0] = 0; | 
|  | ctx->bits[1] = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update context to reflect the concatenation of another buffer full | 
|  | * of bytes. | 
|  | */ | 
|  | void MD5Update(MD5Context* context, const StringPiece& data) { | 
|  | struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
|  | const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); | 
|  | size_t len = data.size(); | 
|  |  | 
|  | /* Update bitcount */ | 
|  |  | 
|  | uint32_t t = ctx->bits[0]; | 
|  | if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) | 
|  | ctx->bits[1]++; /* Carry from low to high */ | 
|  | ctx->bits[1] += static_cast<uint32_t>(len >> 29); | 
|  |  | 
|  | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ | 
|  |  | 
|  | /* Handle any leading odd-sized chunks */ | 
|  |  | 
|  | if (t) { | 
|  | uint8_t* p = static_cast<uint8_t*>(ctx->in + t); | 
|  |  | 
|  | t = 64 - t; | 
|  | if (len < t) { | 
|  | memcpy(p, buf, len); | 
|  | return; | 
|  | } | 
|  | memcpy(p, buf, t); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
|  | buf += t; | 
|  | len -= t; | 
|  | } | 
|  |  | 
|  | /* Process data in 64-byte chunks */ | 
|  |  | 
|  | while (len >= 64) { | 
|  | memcpy(ctx->in, buf, 64); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
|  | buf += 64; | 
|  | len -= 64; | 
|  | } | 
|  |  | 
|  | /* Handle any remaining bytes of data. */ | 
|  |  | 
|  | memcpy(ctx->in, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Final wrapup - pad to 64-byte boundary with the bit pattern | 
|  | * 1 0* (64-bit count of bits processed, MSB-first) | 
|  | */ | 
|  | void MD5Final(MD5Digest* digest, MD5Context* context) { | 
|  | struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
|  | unsigned count; | 
|  | uint8_t* p; | 
|  |  | 
|  | /* Compute number of bytes mod 64 */ | 
|  | count = (ctx->bits[0] >> 3) & 0x3F; | 
|  |  | 
|  | /* Set the first char of padding to 0x80.  This is safe since there is | 
|  | always at least one byte free */ | 
|  | p = ctx->in + count; | 
|  | *p++ = 0x80; | 
|  |  | 
|  | /* Bytes of padding needed to make 64 bytes */ | 
|  | count = 64 - 1 - count; | 
|  |  | 
|  | /* Pad out to 56 mod 64 */ | 
|  | if (count < 8) { | 
|  | /* Two lots of padding:  Pad the first block to 64 bytes */ | 
|  | memset(p, 0, count); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
|  |  | 
|  | /* Now fill the next block with 56 bytes */ | 
|  | memset(ctx->in, 0, 56); | 
|  | } else { | 
|  | /* Pad block to 56 bytes */ | 
|  | memset(p, 0, count - 8); | 
|  | } | 
|  | byteReverse(ctx->in, 14); | 
|  |  | 
|  | /* Append length in bits and transform */ | 
|  | memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], | 
|  | sizeof(ctx->bits[0])); | 
|  | memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], | 
|  | sizeof(ctx->bits[1])); | 
|  |  | 
|  | MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
|  | byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); | 
|  | memcpy(digest->a, ctx->buf, 16); | 
|  | memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ | 
|  | } | 
|  |  | 
|  | void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { | 
|  | /* MD5Final mutates the MD5Context*. Make a copy for generating the | 
|  | intermediate value. */ | 
|  | MD5Context context_copy; | 
|  | memcpy(&context_copy, context, sizeof(context_copy)); | 
|  | MD5Final(digest, &context_copy); | 
|  | } | 
|  |  | 
|  | std::string MD5DigestToBase16(const MD5Digest& digest) { | 
|  | static char const zEncode[] = "0123456789abcdef"; | 
|  |  | 
|  | std::string ret; | 
|  | ret.resize(32); | 
|  |  | 
|  | for (int i = 0, j = 0; i < 16; i++, j += 2) { | 
|  | uint8_t a = digest.a[i]; | 
|  | ret[j] = zEncode[(a >> 4) & 0xf]; | 
|  | ret[j + 1] = zEncode[a & 0xf]; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void MD5Sum(const void* data, size_t length, MD5Digest* digest) { | 
|  | MD5Context ctx; | 
|  | MD5Init(&ctx); | 
|  | MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length)); | 
|  | MD5Final(digest, &ctx); | 
|  | } | 
|  |  | 
|  | std::string MD5String(const StringPiece& str) { | 
|  | MD5Digest digest; | 
|  | MD5Sum(str.data(), str.length(), &digest); | 
|  | return MD5DigestToBase16(digest); | 
|  | } | 
|  |  | 
|  | }  // namespace base |