blob: c14a15129a3a2e91f99a72ffb7433330e9a3e5e0 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <vector>
#include "base/containers/small_map.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/stringprintf.h"
#include "gpu/perftests/measurements.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d_f.h"
#include "ui/gl/gl_bindings.h"
#include "ui/gl/gl_context.h"
#include "ui/gl/gl_enums.h"
#include "ui/gl/gl_surface.h"
#include "ui/gl/gl_version_info.h"
#include "ui/gl/gpu_timing.h"
#include "ui/gl/scoped_make_current.h"
namespace gpu {
namespace {
const int kUploadPerfWarmupRuns = 5;
const int kUploadPerfTestRuns = 30;
#define SHADER(Src) #Src
// clang-format off
const char kVertexShader[] =
SHADER(
uniform vec2 translation;
attribute vec2 a_position;
attribute vec2 a_texCoord;
varying vec2 v_texCoord;
void main() {
gl_Position = vec4(
translation.x + a_position.x, translation.y + a_position.y, 0.0, 1.0);
v_texCoord = a_texCoord;
}
);
const char kShaderDefaultFloatPrecision[] =
SHADER(
precision mediump float;
);
const char kFragmentShader[] =
SHADER(
uniform sampler2D a_texture;
varying vec2 v_texCoord;
void main() {
gl_FragColor = texture2D(a_texture, v_texCoord);
}
);
// clang-format on
void CheckNoGlError(const std::string& msg) {
CHECK_EQ(static_cast<GLenum>(GL_NO_ERROR), glGetError()) << " " << msg;
}
// Utility function to compile a shader from a string.
GLuint LoadShader(const GLenum type, const char* const src) {
GLuint shader = 0;
shader = glCreateShader(type);
CHECK_NE(0u, shader);
glShaderSource(shader, 1, &src, NULL);
glCompileShader(shader);
GLint compiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
if (compiled == 0) {
GLint len = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &len);
if (len > 1) {
scoped_ptr<char> error_log(new char[len]);
glGetShaderInfoLog(shader, len, NULL, error_log.get());
LOG(ERROR) << "Error compiling shader: " << error_log.get();
}
}
CHECK_NE(0, compiled);
return shader;
}
int GLFormatBytePerPixel(GLenum format) {
DCHECK(format == GL_RGBA || format == GL_LUMINANCE || format == GL_RED_EXT);
return format == GL_RGBA ? 4 : 1;
}
GLenum GLFormatToInternalFormat(GLenum format) {
return format == GL_RED ? GL_R8 : format;
}
GLenum GLFormatToStorageFormat(GLenum format) {
switch (format) {
case GL_RGBA:
return GL_RGBA8;
case GL_LUMINANCE:
return GL_LUMINANCE8;
case GL_RED:
return GL_R8;
default:
NOTREACHED();
}
return 0;
}
void GenerateTextureData(const gfx::Size& size,
int bytes_per_pixel,
const int seed,
std::vector<uint8>* const pixels) {
// Row bytes has to be multiple of 4 (GL_PACK_ALIGNMENT defaults to 4).
int stride = ((size.width() * bytes_per_pixel) + 3) & ~0x3;
pixels->resize(size.height() * stride);
for (int y = 0; y < size.height(); ++y) {
for (int x = 0; x < size.width(); ++x) {
for (int channel = 0; channel < bytes_per_pixel; ++channel) {
int index = y * stride + x * bytes_per_pixel;
pixels->at(index) = (index + (seed << 2)) % (0x20 << channel);
}
}
}
}
// Compare a buffer containing pixels in a specified format to GL_RGBA buffer
// where the former buffer have been uploaded as a texture and drawn on the
// RGBA buffer.
bool CompareBufferToRGBABuffer(GLenum format,
const gfx::Size& size,
const std::vector<uint8>& pixels,
const std::vector<uint8>& rgba) {
int bytes_per_pixel = GLFormatBytePerPixel(format);
int pixels_stride = ((size.width() * bytes_per_pixel) + 3) & ~0x3;
int rgba_stride = size.width() * GLFormatBytePerPixel(GL_RGBA);
for (int y = 0; y < size.height(); ++y) {
for (int x = 0; x < size.width(); ++x) {
int rgba_index = y * rgba_stride + x * GLFormatBytePerPixel(GL_RGBA);
int pixels_index = y * pixels_stride + x * bytes_per_pixel;
uint8 expected[4] = {0};
switch (format) {
case GL_LUMINANCE: // (L_t, L_t, L_t, 1)
expected[1] = pixels[pixels_index];
expected[2] = pixels[pixels_index];
case GL_RED: // (R_t, 0, 0, 1)
expected[0] = pixels[pixels_index];
expected[3] = 255;
break;
case GL_RGBA: // (R_t, G_t, B_t, A_t)
memcpy(expected, &pixels[pixels_index], 4);
break;
default:
NOTREACHED();
}
if (memcmp(&rgba[rgba_index], expected, 4)) {
return false;
}
}
}
return true;
}
// PerfTest to check costs of texture upload at different stages
// on different platforms.
class TextureUploadPerfTest : public testing::Test {
public:
TextureUploadPerfTest() : fbo_size_(1024, 1024) {}
// Overridden from testing::Test
void SetUp() override {
static bool gl_initialized = gfx::GLSurface::InitializeOneOff();
DCHECK(gl_initialized);
// Initialize an offscreen surface and a gl context.
surface_ = gfx::GLSurface::CreateOffscreenGLSurface(gfx::Size(4, 4));
gl_context_ = gfx::GLContext::CreateGLContext(NULL, // share_group
surface_.get(),
gfx::PreferIntegratedGpu);
ui::ScopedMakeCurrent smc(gl_context_.get(), surface_.get());
glGenTextures(1, &color_texture_);
glBindTexture(GL_TEXTURE_2D, color_texture_);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, fbo_size_.width(),
fbo_size_.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glGenFramebuffersEXT(1, &framebuffer_object_);
glBindFramebufferEXT(GL_FRAMEBUFFER, framebuffer_object_);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, color_texture_, 0);
DCHECK_EQ(static_cast<GLenum>(GL_FRAMEBUFFER_COMPLETE),
glCheckFramebufferStatusEXT(GL_FRAMEBUFFER));
glViewport(0, 0, fbo_size_.width(), fbo_size_.height());
gpu_timing_client_ = gl_context_->CreateGPUTimingClient();
if (gpu_timing_client_->IsAvailable()) {
LOG(INFO) << "Gpu timing initialized with timer type: "
<< gpu_timing_client_->GetTimerTypeName();
gpu_timing_client_->InvalidateTimerOffset();
} else {
LOG(WARNING) << "Can't initialize gpu timing";
}
// Prepare a simple program and a vertex buffer that will be
// used to draw a quad on the offscreen surface.
vertex_shader_ = LoadShader(GL_VERTEX_SHADER, kVertexShader);
bool is_gles = gfx::GetGLImplementation() == gfx::kGLImplementationEGLGLES2;
fragment_shader_ = LoadShader(
GL_FRAGMENT_SHADER,
base::StringPrintf("%s%s", is_gles ? kShaderDefaultFloatPrecision : "",
kFragmentShader).c_str());
program_object_ = glCreateProgram();
CHECK_NE(0u, program_object_);
glAttachShader(program_object_, vertex_shader_);
glAttachShader(program_object_, fragment_shader_);
glBindAttribLocation(program_object_, 0, "a_position");
glBindAttribLocation(program_object_, 1, "a_texCoord");
glLinkProgram(program_object_);
GLint linked = -1;
glGetProgramiv(program_object_, GL_LINK_STATUS, &linked);
CHECK_NE(0, linked);
glUseProgram(program_object_);
glUniform1i(sampler_location_, 0);
translation_location_ =
glGetUniformLocation(program_object_, "translation");
DCHECK_NE(-1, translation_location_);
glUniform2f(translation_location_, 0.0f, 0.0f);
sampler_location_ = glGetUniformLocation(program_object_, "a_texture");
CHECK_NE(-1, sampler_location_);
glGenBuffersARB(1, &vertex_buffer_);
CHECK_NE(0u, vertex_buffer_);
DCHECK_NE(0u, vertex_buffer_);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 4, 0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 4,
reinterpret_cast<void*>(sizeof(GLfloat) * 2));
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
CheckNoGlError("glEnableVertexAttribArray");
has_texture_storage_ =
gl_context_->GetVersionInfo()->is_es3 ||
gl_context_->HasExtension("GL_EXT_texture_storage") ||
gl_context_->HasExtension("GL_ARB_texture_storage");
}
void GenerateVertexBuffer(const gfx::Size& size) {
DCHECK_NE(0u, vertex_buffer_);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_);
// right and top are in clipspace
float right = -1.f + 2.f * size.width() / fbo_size_.width();
float top = -1.f + 2.f * size.height() / fbo_size_.height();
// Four vertexes, one per line. Each vertex has two components per
// position and two per texcoord.
// It represents a quad formed by two triangles if interpreted
// as a tristrip.
// clang-format off
GLfloat data[16] = {
-1.f, -1.f, 0.f, 0.f,
right, -1.f, 1.f, 0.f,
-1.f, top, 0.f, 1.f,
right, top, 1.f, 1.f};
// clang-format on
glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW);
CheckNoGlError("glBufferData");
}
void TearDown() override {
ui::ScopedMakeCurrent smc(gl_context_.get(), surface_.get());
glDeleteProgram(program_object_);
glDeleteShader(vertex_shader_);
glDeleteShader(fragment_shader_);
glDeleteBuffersARB(1, &vertex_buffer_);
glBindFramebufferEXT(GL_FRAMEBUFFER, 0);
glDeleteFramebuffersEXT(1, &framebuffer_object_);
glDeleteTextures(1, &color_texture_);
CheckNoGlError("glDeleteTextures");
gpu_timing_client_ = nullptr;
gl_context_ = nullptr;
surface_ = nullptr;
}
protected:
GLuint CreateGLTexture(const GLenum format,
const gfx::Size& size,
const bool specify_storage) {
GLuint texture_id = 0;
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &texture_id);
glBindTexture(GL_TEXTURE_2D, texture_id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (specify_storage) {
if (has_texture_storage_) {
glTexStorage2DEXT(GL_TEXTURE_2D, 1, GLFormatToStorageFormat(format),
size.width(), size.height());
CheckNoGlError("glTexStorage2DEXT");
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GLFormatToInternalFormat(format),
size.width(), size.height(), 0, format, GL_UNSIGNED_BYTE,
nullptr);
CheckNoGlError("glTexImage2D");
}
}
return texture_id;
}
void UploadTexture(GLuint texture_id,
const gfx::Size& size,
const std::vector<uint8>& pixels,
GLenum format,
const bool subimage) {
if (subimage) {
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, size.width(), size.height(),
format, GL_UNSIGNED_BYTE, &pixels[0]);
CheckNoGlError("glTexSubImage2D");
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GLFormatToInternalFormat(format),
size.width(), size.height(), 0, format, GL_UNSIGNED_BYTE,
&pixels[0]);
CheckNoGlError("glTexImage2D");
}
}
// Upload and draw on the offscren surface.
// Return a list of pair. Each pair describe a gl operation and the wall
// time elapsed in milliseconds.
std::vector<Measurement> UploadAndDraw(GLuint texture_id,
const gfx::Size& size,
const std::vector<uint8>& pixels,
const GLenum format,
const bool subimage) {
MeasurementTimers tex_timers(gpu_timing_client_.get());
UploadTexture(texture_id, size, pixels, format, subimage);
tex_timers.Record();
MeasurementTimers draw_timers(gpu_timing_client_.get());
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
draw_timers.Record();
MeasurementTimers finish_timers(gpu_timing_client_.get());
glFinish();
CheckNoGlError("glFinish");
finish_timers.Record();
std::vector<uint8> pixels_rendered(size.GetArea() * 4);
glReadPixels(0, 0, size.width(), size.height(), GL_RGBA, GL_UNSIGNED_BYTE,
&pixels_rendered[0]);
CheckNoGlError("glReadPixels");
EXPECT_TRUE(
CompareBufferToRGBABuffer(format, size, pixels, pixels_rendered))
<< "Format is: " << gfx::GLEnums::GetStringEnum(format);
std::vector<Measurement> measurements;
bool gpu_timer_errors =
gpu_timing_client_->IsAvailable() &&
gpu_timing_client_->CheckAndResetTimerErrors();
if (!gpu_timer_errors) {
measurements.push_back(tex_timers.GetAsMeasurement(
subimage ? "texsubimage2d" : "teximage2d"));
measurements.push_back(draw_timers.GetAsMeasurement("drawarrays"));
measurements.push_back(finish_timers.GetAsMeasurement("finish"));
}
return measurements;
}
void RunUploadAndDrawMultipleTimes(const gfx::Size& size,
const GLenum format,
const bool subimage) {
std::vector<uint8> pixels;
base::SmallMap<std::map<std::string, Measurement>>
aggregates; // indexed by name
int successful_runs = 0;
GLuint texture_id = CreateGLTexture(format, size, subimage);
for (int i = 0; i < kUploadPerfWarmupRuns + kUploadPerfTestRuns; ++i) {
GenerateTextureData(size, GLFormatBytePerPixel(format), i + 1, &pixels);
auto run = UploadAndDraw(texture_id, size, pixels, format, subimage);
if (i < kUploadPerfWarmupRuns || !run.size()) {
continue;
}
successful_runs++;
for (const Measurement& measurement : run) {
auto& aggregate = aggregates[measurement.name];
aggregate.name = measurement.name;
aggregate.Increment(measurement);
}
}
glDeleteTextures(1, &texture_id);
std::string graph_name = base::StringPrintf(
"%d_%s", size.width(), gfx::GLEnums::GetStringEnum(format).c_str());
if (subimage) {
graph_name += "_sub";
}
if (successful_runs) {
for (const auto& entry : aggregates) {
const auto m = entry.second.Divide(successful_runs);
m.PrintResult(graph_name);
}
}
perf_test::PrintResult("sample_runs", "", graph_name,
static_cast<size_t>(successful_runs), "laps", true);
}
const gfx::Size fbo_size_; // for the fbo
scoped_refptr<gfx::GLContext> gl_context_;
scoped_refptr<gfx::GLSurface> surface_;
scoped_refptr<gfx::GPUTimingClient> gpu_timing_client_;
GLuint color_texture_ = 0;
GLuint framebuffer_object_ = 0;
GLuint vertex_shader_ = 0;
GLuint fragment_shader_ = 0;
GLuint program_object_ = 0;
GLint sampler_location_ = -1;
GLint translation_location_ = -1;
GLuint vertex_buffer_ = 0;
bool has_texture_storage_ = false;
};
// Perf test that generates, uploads and draws a texture on a surface repeatedly
// and prints out aggregated measurements for all the runs.
TEST_F(TextureUploadPerfTest, upload) {
int sizes[] = {21, 128, 256, 512, 1024};
std::vector<GLenum> formats;
formats.push_back(GL_RGBA);
if (!gl_context_->GetVersionInfo()->is_es3) {
// Used by default for ResourceProvider::yuv_resource_format_.
formats.push_back(GL_LUMINANCE);
}
ui::ScopedMakeCurrent smc(gl_context_.get(), surface_.get());
const bool has_texture_rg = gl_context_->GetVersionInfo()->is_es3 ||
gl_context_->HasExtension("GL_EXT_texture_rg") ||
gl_context_->HasExtension("GL_ARB_texture_rg");
if (has_texture_rg) {
// Used as ResourceProvider::yuv_resource_format_ if
// {ARB,EXT}_texture_rg are available.
formats.push_back(GL_RED);
}
for (int side : sizes) {
ASSERT_GE(fbo_size_.width(), side);
ASSERT_GE(fbo_size_.height(), side);
gfx::Size size(side, side);
GenerateVertexBuffer(size);
for (GLenum format : formats) {
RunUploadAndDrawMultipleTimes(size, format, true); // use glTexSubImage2D
RunUploadAndDrawMultipleTimes(size, format, false); // use glTexImage2D
}
}
}
// Perf test to check if the driver is doing texture renaming.
// This test creates one GL texture_id and four different images. For
// every image it uploads it using texture_id and it draws multiple
// times. The cpu/wall time and the gpu time for all the uploads and
// draws, but before glFinish, is computed and is printed out at the end as
// "upload_and_draw". If the gpu time is >> than the cpu/wall time we expect the
// driver to do texture renaming: this means that while the gpu is drawing using
// texture_id it didn't block cpu side the texture upload using the same
// texture_id.
TEST_F(TextureUploadPerfTest, renaming) {
gfx::Size texture_size(fbo_size_.width() / 2, fbo_size_.height() / 2);
std::vector<uint8> pixels[4];
for (int i = 0; i < 4; ++i) {
GenerateTextureData(texture_size, 4, i + 1, &pixels[i]);
}
ui::ScopedMakeCurrent smc(gl_context_.get(), surface_.get());
GenerateVertexBuffer(texture_size);
gfx::Vector2dF positions[] = {gfx::Vector2dF(0.f, 0.f),
gfx::Vector2dF(1.f, 0.f),
gfx::Vector2dF(0.f, 1.f),
gfx::Vector2dF(1.f, 1.f)};
GLuint texture_id = CreateGLTexture(GL_RGBA, texture_size, true);
MeasurementTimers upload_and_draw_timers(gpu_timing_client_.get());
for (int i = 0; i < 4; ++i) {
UploadTexture(texture_id, texture_size, pixels[i % 4], GL_RGBA, true);
DCHECK_NE(-1, translation_location_);
glUniform2f(translation_location_, positions[i % 4].x(),
positions[i % 4].y());
// Draw the same quad multiple times to make sure that the time spent on the
// gpu is more than the cpu time.
for (int draw = 0; draw < 128; ++draw) {
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
}
upload_and_draw_timers.Record();
MeasurementTimers finish_timers(gpu_timing_client_.get());
glFinish();
CheckNoGlError("glFinish");
finish_timers.Record();
glDeleteTextures(1, &texture_id);
for (int i = 0; i < 4; ++i) {
std::vector<uint8> pixels_rendered(texture_size.GetArea() * 4);
glReadPixels(texture_size.width() * positions[i].x(),
texture_size.height() * positions[i].y(), texture_size.width(),
texture_size.height(), GL_RGBA, GL_UNSIGNED_BYTE,
&pixels_rendered[0]);
CheckNoGlError("glReadPixels");
ASSERT_EQ(pixels[i].size(), pixels_rendered.size());
EXPECT_EQ(pixels[i], pixels_rendered);
}
bool gpu_timer_errors = gpu_timing_client_->IsAvailable() &&
gpu_timing_client_->CheckAndResetTimerErrors();
if (!gpu_timer_errors) {
upload_and_draw_timers.GetAsMeasurement("upload_and_draw")
.PrintResult("renaming");
finish_timers.GetAsMeasurement("finish").PrintResult("renaming");
}
}
} // namespace
} // namespace gpu