| // Copyright 2017 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ |
| #define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ |
| |
| #include <climits> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "base/numerics/checked_math.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/numerics/safe_math_shared_impl.h" |
| |
| namespace base { |
| namespace internal { |
| |
| template <typename T, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_signed<T>::value>::type* = nullptr> |
| constexpr T SaturatedNegWrapper(T value) { |
| return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported |
| ? (NegateWrapper(value) != std::numeric_limits<T>::lowest() |
| ? NegateWrapper(value) |
| : std::numeric_limits<T>::max()) |
| : ClampedNegFastOp<T>::Do(value); |
| } |
| |
| template <typename T, |
| typename std::enable_if<std::is_integral<T>::value && |
| !std::is_signed<T>::value>::type* = nullptr> |
| constexpr T SaturatedNegWrapper(T value) { |
| return T(0); |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
| constexpr T SaturatedNegWrapper(T value) { |
| return -value; |
| } |
| |
| template <typename T, |
| typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| constexpr T SaturatedAbsWrapper(T value) { |
| // The calculation below is a static identity for unsigned types, but for |
| // signed integer types it provides a non-branching, saturated absolute value. |
| // This works because SafeUnsignedAbs() returns an unsigned type, which can |
| // represent the absolute value of all negative numbers of an equal-width |
| // integer type. The call to IsValueNegative() then detects overflow in the |
| // special case of numeric_limits<T>::min(), by evaluating the bit pattern as |
| // a signed integer value. If it is the overflow case, we end up subtracting |
| // one from the unsigned result, thus saturating to numeric_limits<T>::max(). |
| return static_cast<T>(SafeUnsignedAbs(value) - |
| IsValueNegative<T>(SafeUnsignedAbs(value))); |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
| constexpr T SaturatedAbsWrapper(T value) { |
| return value < 0 ? -value : value; |
| } |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedAddOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedAddOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| if (ClampedAddFastOp<T, U>::is_supported) |
| return ClampedAddFastOp<T, U>::template Do<V>(x, y); |
| |
| static_assert(std::is_same<V, result_type>::value || |
| IsTypeInRangeForNumericType<U, V>::value, |
| "The saturation result cannot be determined from the " |
| "provided types."); |
| const V saturated = CommonMaxOrMin<V>(IsValueNegative(y)); |
| V result = {}; |
| return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result))) |
| ? result |
| : saturated; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedSubOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedSubOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| // TODO(jschuh) Make this "constexpr if" once we're C++17. |
| if (ClampedSubFastOp<T, U>::is_supported) |
| return ClampedSubFastOp<T, U>::template Do<V>(x, y); |
| |
| static_assert(std::is_same<V, result_type>::value || |
| IsTypeInRangeForNumericType<U, V>::value, |
| "The saturation result cannot be determined from the " |
| "provided types."); |
| const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y)); |
| V result = {}; |
| return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result))) |
| ? result |
| : saturated; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedMulOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedMulOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| // TODO(jschuh) Make this "constexpr if" once we're C++17. |
| if (ClampedMulFastOp<T, U>::is_supported) |
| return ClampedMulFastOp<T, U>::template Do<V>(x, y); |
| |
| V result = {}; |
| const V saturated = |
| CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y)); |
| return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result))) |
| ? result |
| : saturated; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedDivOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedDivOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| V result = {}; |
| if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result)))) |
| return result; |
| // Saturation goes to max, min, or NaN (if x is zero). |
| return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y)) |
| : SaturationDefaultLimits<V>::NaN(); |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedModOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedModOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| V result = {}; |
| return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result))) |
| ? result |
| : x; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedLshOp {}; |
| |
| // Left shift. Non-zero values saturate in the direction of the sign. A zero |
| // shifted by any value always results in zero. |
| template <typename T, typename U> |
| struct ClampedLshOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = T; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U shift) { |
| static_assert(!std::is_signed<U>::value, "Shift value must be unsigned."); |
| if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) { |
| // Shift as unsigned to avoid undefined behavior. |
| V result = static_cast<V>(as_unsigned(x) << shift); |
| // If the shift can be reversed, we know it was valid. |
| if (BASE_NUMERICS_LIKELY(result >> shift == x)) |
| return result; |
| } |
| return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedRshOp {}; |
| |
| // Right shift. Negative values saturate to -1. Positive or 0 saturates to 0. |
| template <typename T, typename U> |
| struct ClampedRshOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = T; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U shift) { |
| static_assert(!std::is_signed<U>::value, "Shift value must be unsigned."); |
| // Signed right shift is odd, because it saturates to -1 or 0. |
| const V saturated = as_unsigned(V(0)) - IsValueNegative(x); |
| return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value) |
| ? saturated_cast<V>(x >> shift) |
| : saturated; |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedAndOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedAndOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename std::make_unsigned< |
| typename MaxExponentPromotion<T, U>::type>::type; |
| template <typename V> |
| static constexpr V Do(T x, U y) { |
| return static_cast<result_type>(x) & static_cast<result_type>(y); |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedOrOp {}; |
| |
| // For simplicity we promote to unsigned integers. |
| template <typename T, typename U> |
| struct ClampedOrOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename std::make_unsigned< |
| typename MaxExponentPromotion<T, U>::type>::type; |
| template <typename V> |
| static constexpr V Do(T x, U y) { |
| return static_cast<result_type>(x) | static_cast<result_type>(y); |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedXorOp {}; |
| |
| // For simplicity we support only unsigned integers. |
| template <typename T, typename U> |
| struct ClampedXorOp<T, |
| U, |
| typename std::enable_if<std::is_integral<T>::value && |
| std::is_integral<U>::value>::type> { |
| using result_type = typename std::make_unsigned< |
| typename MaxExponentPromotion<T, U>::type>::type; |
| template <typename V> |
| static constexpr V Do(T x, U y) { |
| return static_cast<result_type>(x) ^ static_cast<result_type>(y); |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedMaxOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedMaxOp< |
| T, |
| U, |
| typename std::enable_if<std::is_arithmetic<T>::value && |
| std::is_arithmetic<U>::value>::type> { |
| using result_type = typename MaxExponentPromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x) |
| : saturated_cast<V>(y); |
| } |
| }; |
| |
| template <typename T, typename U, class Enable = void> |
| struct ClampedMinOp {}; |
| |
| template <typename T, typename U> |
| struct ClampedMinOp< |
| T, |
| U, |
| typename std::enable_if<std::is_arithmetic<T>::value && |
| std::is_arithmetic<U>::value>::type> { |
| using result_type = typename LowestValuePromotion<T, U>::type; |
| template <typename V = result_type> |
| static constexpr V Do(T x, U y) { |
| return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x) |
| : saturated_cast<V>(y); |
| } |
| }; |
| |
| // This is just boilerplate that wraps the standard floating point arithmetic. |
| // A macro isn't the nicest solution, but it beats rewriting these repeatedly. |
| #define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ |
| template <typename T, typename U> \ |
| struct Clamped##NAME##Op< \ |
| T, U, \ |
| typename std::enable_if<std::is_floating_point<T>::value || \ |
| std::is_floating_point<U>::value>::type> { \ |
| using result_type = typename MaxExponentPromotion<T, U>::type; \ |
| template <typename V = result_type> \ |
| static constexpr V Do(T x, U y) { \ |
| return saturated_cast<V>(x OP y); \ |
| } \ |
| }; |
| |
| BASE_FLOAT_ARITHMETIC_OPS(Add, +) |
| BASE_FLOAT_ARITHMETIC_OPS(Sub, -) |
| BASE_FLOAT_ARITHMETIC_OPS(Mul, *) |
| BASE_FLOAT_ARITHMETIC_OPS(Div, /) |
| |
| #undef BASE_FLOAT_ARITHMETIC_OPS |
| |
| } // namespace internal |
| } // namespace base |
| |
| #endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ |