| // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <algorithm> |
| #include <limits> |
| |
| #include "base/files/file_util.h" |
| #include "base/logging.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "build/build_config.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| #if defined(OS_POSIX) |
| #include <sys/mman.h> |
| #include <unistd.h> |
| #endif |
| |
| #if defined(OS_WIN) |
| #include <new.h> |
| #endif |
| |
| using std::nothrow; |
| using std::numeric_limits; |
| |
| namespace { |
| |
| #if defined(OS_WIN) |
| // This is a permitted size but exhausts memory pretty quickly. |
| const size_t kLargePermittedAllocation = 0x7FFFE000; |
| |
| int OnNoMemory(size_t) { |
| _exit(1); |
| } |
| |
| void ExhaustMemoryWithMalloc() { |
| for (;;) { |
| // Without the |volatile|, clang optimizes away the allocation. |
| void* volatile buf = malloc(kLargePermittedAllocation); |
| if (!buf) |
| break; |
| } |
| } |
| |
| void ExhaustMemoryWithRealloc() { |
| size_t size = kLargePermittedAllocation; |
| void* buf = malloc(size); |
| if (!buf) |
| return; |
| for (;;) { |
| size += kLargePermittedAllocation; |
| void* new_buf = realloc(buf, size); |
| if (!buf) |
| break; |
| buf = new_buf; |
| } |
| } |
| #endif |
| |
| // This function acts as a compiler optimization barrier. We use it to |
| // prevent the compiler from making an expression a compile-time constant. |
| // We also use it so that the compiler doesn't discard certain return values |
| // as something we don't need (see the comment with calloc below). |
| template <typename Type> |
| NOINLINE Type HideValueFromCompiler(volatile Type value) { |
| #if defined(__GNUC__) |
| // In a GCC compatible compiler (GCC or Clang), make this compiler barrier |
| // more robust than merely using "volatile". |
| __asm__ volatile ("" : "+r" (value)); |
| #endif // __GNUC__ |
| return value; |
| } |
| |
| // Tcmalloc and Windows allocator shim support setting malloc limits. |
| // - NO_TCMALLOC (should be defined if compiled with use_allocator!="tcmalloc") |
| // - ADDRESS_SANITIZER and SYZYASAN because they have their own memory allocator |
| // - IOS does not use tcmalloc |
| // - OS_MACOSX does not use tcmalloc |
| // - Windows allocator shim defines ALLOCATOR_SHIM |
| #if (!defined(NO_TCMALLOC) || defined(ALLOCATOR_SHIM)) && \ |
| !defined(ADDRESS_SANITIZER) && !defined(OS_IOS) && !defined(OS_MACOSX) && \ |
| !defined(SYZYASAN) |
| #define MALLOC_OVERFLOW_TEST(function) function |
| #else |
| #define MALLOC_OVERFLOW_TEST(function) DISABLED_##function |
| #endif |
| |
| // TODO(jln): switch to std::numeric_limits<int>::max() when we switch to |
| // C++11. |
| const size_t kTooBigAllocSize = INT_MAX; |
| |
| // Detect runtime TCMalloc bypasses. |
| bool IsTcMallocBypassed() { |
| #if defined(OS_LINUX) |
| // This should detect a TCMalloc bypass from Valgrind. |
| char* g_slice = getenv("G_SLICE"); |
| if (g_slice && !strcmp(g_slice, "always-malloc")) |
| return true; |
| #endif |
| return false; |
| } |
| |
| bool CallocDiesOnOOM() { |
| // The sanitizers' calloc dies on OOM instead of returning NULL. |
| // The wrapper function in base/process_util_linux.cc that is used when we |
| // compile without TCMalloc will just die on OOM instead of returning NULL. |
| #if defined(ADDRESS_SANITIZER) || \ |
| defined(MEMORY_SANITIZER) || \ |
| defined(THREAD_SANITIZER) || \ |
| (defined(OS_LINUX) && defined(NO_TCMALLOC)) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| // Fake test that allow to know the state of TCMalloc by looking at bots. |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(IsTCMallocDynamicallyBypassed)) { |
| printf("Malloc is dynamically bypassed: %s\n", |
| IsTcMallocBypassed() ? "yes." : "no."); |
| } |
| |
| // The MemoryAllocationRestrictions* tests test that we can not allocate a |
| // memory range that cannot be indexed via an int. This is used to mitigate |
| // vulnerabilities in libraries that use int instead of size_t. See |
| // crbug.com/169327. |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationRestrictionsMalloc)) { |
| if (!IsTcMallocBypassed()) { |
| scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>( |
| HideValueFromCompiler(malloc(kTooBigAllocSize)))); |
| ASSERT_TRUE(!ptr); |
| } |
| } |
| |
| #if defined(GTEST_HAS_DEATH_TEST) && defined(OS_WIN) |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationMallocDeathTest)) { |
| _set_new_handler(&OnNoMemory); |
| _set_new_mode(1); |
| { |
| scoped_ptr<char, base::FreeDeleter> ptr; |
| EXPECT_DEATH(ptr.reset(static_cast<char*>( |
| HideValueFromCompiler(malloc(kTooBigAllocSize)))), |
| ""); |
| ASSERT_TRUE(!ptr); |
| } |
| _set_new_handler(NULL); |
| _set_new_mode(0); |
| } |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationExhaustDeathTest)) { |
| _set_new_handler(&OnNoMemory); |
| _set_new_mode(1); |
| { |
| ASSERT_DEATH(ExhaustMemoryWithMalloc(), ""); |
| } |
| _set_new_handler(NULL); |
| _set_new_mode(0); |
| } |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryReallocationExhaustDeathTest)) { |
| _set_new_handler(&OnNoMemory); |
| _set_new_mode(1); |
| { |
| ASSERT_DEATH(ExhaustMemoryWithRealloc(), ""); |
| } |
| _set_new_handler(NULL); |
| _set_new_mode(0); |
| } |
| #endif |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationRestrictionsCalloc)) { |
| if (!IsTcMallocBypassed()) { |
| scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>( |
| HideValueFromCompiler(calloc(kTooBigAllocSize, 1)))); |
| ASSERT_TRUE(!ptr); |
| } |
| } |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationRestrictionsRealloc)) { |
| if (!IsTcMallocBypassed()) { |
| char* orig_ptr = static_cast<char*>(malloc(1)); |
| ASSERT_TRUE(orig_ptr); |
| scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>( |
| HideValueFromCompiler(realloc(orig_ptr, kTooBigAllocSize)))); |
| ASSERT_TRUE(!ptr); |
| // If realloc() did not succeed, we need to free orig_ptr. |
| free(orig_ptr); |
| } |
| } |
| |
| typedef struct { |
| char large_array[kTooBigAllocSize]; |
| } VeryLargeStruct; |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationRestrictionsNew)) { |
| if (!IsTcMallocBypassed()) { |
| scoped_ptr<VeryLargeStruct> ptr( |
| HideValueFromCompiler(new (nothrow) VeryLargeStruct)); |
| ASSERT_TRUE(!ptr); |
| } |
| } |
| |
| #if defined(GTEST_HAS_DEATH_TEST) && defined(OS_WIN) |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationNewDeathTest)) { |
| _set_new_handler(&OnNoMemory); |
| { |
| scoped_ptr<VeryLargeStruct> ptr; |
| EXPECT_DEATH( |
| ptr.reset(HideValueFromCompiler(new (nothrow) VeryLargeStruct)), ""); |
| ASSERT_TRUE(!ptr); |
| } |
| _set_new_handler(NULL); |
| } |
| #endif |
| |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(MemoryAllocationRestrictionsNewArray)) { |
| if (!IsTcMallocBypassed()) { |
| scoped_ptr<char[]> ptr( |
| HideValueFromCompiler(new (nothrow) char[kTooBigAllocSize])); |
| ASSERT_TRUE(!ptr); |
| } |
| } |
| |
| // The tests bellow check for overflows in new[] and calloc(). |
| |
| // There are platforms where these tests are known to fail. We would like to |
| // be able to easily check the status on the bots, but marking tests as |
| // FAILS_ is too clunky. |
| void OverflowTestsSoftExpectTrue(bool overflow_detected) { |
| if (!overflow_detected) { |
| #if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_MACOSX) |
| // Sadly, on Linux, Android, and OSX we don't have a good story yet. Don't |
| // fail the test, but report. |
| printf("Platform has overflow: %s\n", |
| !overflow_detected ? "yes." : "no."); |
| #else |
| // Otherwise, fail the test. (Note: EXPECT are ok in subfunctions, ASSERT |
| // aren't). |
| EXPECT_TRUE(overflow_detected); |
| #endif |
| } |
| } |
| |
| #if defined(OS_IOS) || defined(OS_WIN) || defined(THREAD_SANITIZER) || defined(OS_MACOSX) |
| #define MAYBE_NewOverflow DISABLED_NewOverflow |
| #else |
| #define MAYBE_NewOverflow NewOverflow |
| #endif |
| // Test array[TooBig][X] and array[X][TooBig] allocations for int overflows. |
| // IOS doesn't honor nothrow, so disable the test there. |
| // Crashes on Windows Dbg builds, disable there as well. |
| // Fails on Mac 10.8 http://crbug.com/227092 |
| TEST(SecurityTest, MAYBE_NewOverflow) { |
| const size_t kArraySize = 4096; |
| // We want something "dynamic" here, so that the compiler doesn't |
| // immediately reject crazy arrays. |
| const size_t kDynamicArraySize = HideValueFromCompiler(kArraySize); |
| // numeric_limits are still not constexpr until we switch to C++11, so we |
| // use an ugly cast. |
| const size_t kMaxSizeT = ~static_cast<size_t>(0); |
| ASSERT_EQ(numeric_limits<size_t>::max(), kMaxSizeT); |
| const size_t kArraySize2 = kMaxSizeT / kArraySize + 10; |
| const size_t kDynamicArraySize2 = HideValueFromCompiler(kArraySize2); |
| { |
| scoped_ptr<char[][kArraySize]> array_pointer(new (nothrow) |
| char[kDynamicArraySize2][kArraySize]); |
| OverflowTestsSoftExpectTrue(!array_pointer); |
| } |
| // On windows, the compiler prevents static array sizes of more than |
| // 0x7fffffff (error C2148). |
| #if defined(OS_WIN) && defined(ARCH_CPU_64_BITS) |
| ALLOW_UNUSED_LOCAL(kDynamicArraySize); |
| #else |
| { |
| scoped_ptr<char[][kArraySize2]> array_pointer(new (nothrow) |
| char[kDynamicArraySize][kArraySize2]); |
| OverflowTestsSoftExpectTrue(!array_pointer); |
| } |
| #endif // !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS) |
| } |
| |
| // Call calloc(), eventually free the memory and return whether or not |
| // calloc() did succeed. |
| bool CallocReturnsNull(size_t nmemb, size_t size) { |
| scoped_ptr<char, base::FreeDeleter> array_pointer( |
| static_cast<char*>(calloc(nmemb, size))); |
| // We need the call to HideValueFromCompiler(): we have seen LLVM |
| // optimize away the call to calloc() entirely and assume the pointer to not |
| // be NULL. |
| return HideValueFromCompiler(array_pointer.get()) == NULL; |
| } |
| |
| // Test if calloc() can overflow. |
| TEST(SecurityTest, CallocOverflow) { |
| const size_t kArraySize = 4096; |
| const size_t kMaxSizeT = numeric_limits<size_t>::max(); |
| const size_t kArraySize2 = kMaxSizeT / kArraySize + 10; |
| if (!CallocDiesOnOOM()) { |
| EXPECT_TRUE(CallocReturnsNull(kArraySize, kArraySize2)); |
| EXPECT_TRUE(CallocReturnsNull(kArraySize2, kArraySize)); |
| } else { |
| // It's also ok for calloc to just terminate the process. |
| #if defined(GTEST_HAS_DEATH_TEST) |
| EXPECT_DEATH(CallocReturnsNull(kArraySize, kArraySize2), ""); |
| EXPECT_DEATH(CallocReturnsNull(kArraySize2, kArraySize), ""); |
| #endif // GTEST_HAS_DEATH_TEST |
| } |
| } |
| |
| #if defined(OS_LINUX) && defined(__x86_64__) |
| // Check if ptr1 and ptr2 are separated by less than size chars. |
| bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) { |
| ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) - |
| reinterpret_cast<char*>(std::min(ptr1, ptr2)); |
| return static_cast<size_t>(ptr_diff) <= size; |
| } |
| |
| // Check if TCMalloc uses an underlying random memory allocator. |
| TEST(SecurityTest, MALLOC_OVERFLOW_TEST(RandomMemoryAllocations)) { |
| if (IsTcMallocBypassed()) |
| return; |
| size_t kPageSize = 4096; // We support x86_64 only. |
| // Check that malloc() returns an address that is neither the kernel's |
| // un-hinted mmap area, nor the current brk() area. The first malloc() may |
| // not be at a random address because TCMalloc will first exhaust any memory |
| // that it has allocated early on, before starting the sophisticated |
| // allocators. |
| void* default_mmap_heap_address = |
| mmap(0, kPageSize, PROT_READ|PROT_WRITE, |
| MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| ASSERT_NE(default_mmap_heap_address, |
| static_cast<void*>(MAP_FAILED)); |
| ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0); |
| void* brk_heap_address = sbrk(0); |
| ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1)); |
| ASSERT_TRUE(brk_heap_address != NULL); |
| // 1 MB should get us past what TCMalloc pre-allocated before initializing |
| // the sophisticated allocators. |
| size_t kAllocSize = 1<<20; |
| scoped_ptr<char, base::FreeDeleter> ptr( |
| static_cast<char*>(malloc(kAllocSize))); |
| ASSERT_TRUE(ptr != NULL); |
| // If two pointers are separated by less than 512MB, they are considered |
| // to be in the same area. |
| // Our random pointer could be anywhere within 0x3fffffffffff (46bits), |
| // and we are checking that it's not withing 1GB (30 bits) from two |
| // addresses (brk and mmap heap). We have roughly one chance out of |
| // 2^15 to flake. |
| const size_t kAreaRadius = 1<<29; |
| bool in_default_mmap_heap = ArePointersToSameArea( |
| ptr.get(), default_mmap_heap_address, kAreaRadius); |
| EXPECT_FALSE(in_default_mmap_heap); |
| |
| bool in_default_brk_heap = ArePointersToSameArea( |
| ptr.get(), brk_heap_address, kAreaRadius); |
| EXPECT_FALSE(in_default_brk_heap); |
| |
| // In the implementation, we always mask our random addresses with |
| // kRandomMask, so we use it as an additional detection mechanism. |
| const uintptr_t kRandomMask = 0x3fffffffffffULL; |
| bool impossible_random_address = |
| reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask; |
| EXPECT_FALSE(impossible_random_address); |
| } |
| |
| #endif // defined(OS_LINUX) && defined(__x86_64__) |
| |
| } // namespace |