| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/time/time.h" |
| |
| #include <CoreFoundation/CFDate.h> |
| #include <CoreFoundation/CFTimeZone.h> |
| #include <mach/mach.h> |
| #include <mach/mach_time.h> |
| #include <stdint.h> |
| #include <sys/sysctl.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <time.h> |
| |
| #include "base/basictypes.h" |
| #include "base/logging.h" |
| #include "base/mac/mach_logging.h" |
| #include "base/mac/scoped_cftyperef.h" |
| #include "base/mac/scoped_mach_port.h" |
| #include "base/numerics/safe_conversions.h" |
| |
| namespace { |
| |
| int64_t ComputeCurrentTicks() { |
| #if defined(OS_IOS) |
| // On iOS mach_absolute_time stops while the device is sleeping. Instead use |
| // now - KERN_BOOTTIME to get a time difference that is not impacted by clock |
| // changes. KERN_BOOTTIME will be updated by the system whenever the system |
| // clock change. |
| struct timeval boottime; |
| int mib[2] = {CTL_KERN, KERN_BOOTTIME}; |
| size_t size = sizeof(boottime); |
| int kr = sysctl(mib, arraysize(mib), &boottime, &size, NULL, 0); |
| DCHECK_EQ(KERN_SUCCESS, kr); |
| base::TimeDelta time_difference = base::Time::Now() - |
| (base::Time::FromTimeT(boottime.tv_sec) + |
| base::TimeDelta::FromMicroseconds(boottime.tv_usec)); |
| return time_difference.InMicroseconds(); |
| #else |
| static mach_timebase_info_data_t timebase_info; |
| if (timebase_info.denom == 0) { |
| // Zero-initialization of statics guarantees that denom will be 0 before |
| // calling mach_timebase_info. mach_timebase_info will never set denom to |
| // 0 as that would be invalid, so the zero-check can be used to determine |
| // whether mach_timebase_info has already been called. This is |
| // recommended by Apple's QA1398. |
| kern_return_t kr = mach_timebase_info(&timebase_info); |
| MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; |
| } |
| |
| // mach_absolute_time is it when it comes to ticks on the Mac. Other calls |
| // with less precision (such as TickCount) just call through to |
| // mach_absolute_time. |
| |
| // timebase_info converts absolute time tick units into nanoseconds. Convert |
| // to microseconds up front to stave off overflows. |
| base::CheckedNumeric<uint64_t> result( |
| mach_absolute_time() / base::Time::kNanosecondsPerMicrosecond); |
| result *= timebase_info.numer; |
| result /= timebase_info.denom; |
| |
| // Don't bother with the rollover handling that the Windows version does. |
| // With numer and denom = 1 (the expected case), the 64-bit absolute time |
| // reported in nanoseconds is enough to last nearly 585 years. |
| return base::checked_cast<int64_t>(result.ValueOrDie()); |
| #endif // defined(OS_IOS) |
| } |
| |
| int64_t ComputeThreadTicks() { |
| #if defined(OS_IOS) |
| NOTREACHED(); |
| return 0; |
| #else |
| base::mac::ScopedMachSendRight thread(mach_thread_self()); |
| mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; |
| thread_basic_info_data_t thread_info_data; |
| |
| if (thread.get() == MACH_PORT_NULL) { |
| DLOG(ERROR) << "Failed to get mach_thread_self()"; |
| return 0; |
| } |
| |
| kern_return_t kr = thread_info( |
| thread, |
| THREAD_BASIC_INFO, |
| reinterpret_cast<thread_info_t>(&thread_info_data), |
| &thread_info_count); |
| MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; |
| |
| base::CheckedNumeric<int64_t> absolute_micros( |
| thread_info_data.user_time.seconds); |
| absolute_micros *= base::Time::kMicrosecondsPerSecond; |
| absolute_micros += thread_info_data.user_time.microseconds; |
| return absolute_micros.ValueOrDie(); |
| #endif // defined(OS_IOS) |
| } |
| |
| } // namespace |
| |
| namespace base { |
| |
| // The Time routines in this file use Mach and CoreFoundation APIs, since the |
| // POSIX definition of time_t in Mac OS X wraps around after 2038--and |
| // there are already cookie expiration dates, etc., past that time out in |
| // the field. Using CFDate prevents that problem, and using mach_absolute_time |
| // for TimeTicks gives us nice high-resolution interval timing. |
| |
| // Time ----------------------------------------------------------------------- |
| |
| // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC. |
| // The UNIX epoch is 1970-01-01 00:00:00 UTC. |
| // Windows uses a Gregorian epoch of 1601. We need to match this internally |
| // so that our time representations match across all platforms. See bug 14734. |
| // irb(main):010:0> Time.at(0).getutc() |
| // => Thu Jan 01 00:00:00 UTC 1970 |
| // irb(main):011:0> Time.at(-11644473600).getutc() |
| // => Mon Jan 01 00:00:00 UTC 1601 |
| static const int64 kWindowsEpochDeltaSeconds = INT64_C(11644473600); |
| |
| // static |
| const int64 Time::kWindowsEpochDeltaMicroseconds = |
| kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; |
| |
| // Some functions in time.cc use time_t directly, so we provide an offset |
| // to convert from time_t (Unix epoch) and internal (Windows epoch). |
| // static |
| const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; |
| |
| // static |
| Time Time::Now() { |
| return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); |
| } |
| |
| // static |
| Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { |
| COMPILE_ASSERT(std::numeric_limits<CFAbsoluteTime>::has_infinity, |
| numeric_limits_infinity_is_undefined_when_not_has_infinity); |
| if (t == 0) |
| return Time(); // Consider 0 as a null Time. |
| if (t == std::numeric_limits<CFAbsoluteTime>::infinity()) |
| return Max(); |
| return Time(static_cast<int64>( |
| (t + kCFAbsoluteTimeIntervalSince1970) * kMicrosecondsPerSecond) + |
| kWindowsEpochDeltaMicroseconds); |
| } |
| |
| CFAbsoluteTime Time::ToCFAbsoluteTime() const { |
| COMPILE_ASSERT(std::numeric_limits<CFAbsoluteTime>::has_infinity, |
| numeric_limits_infinity_is_undefined_when_not_has_infinity); |
| if (is_null()) |
| return 0; // Consider 0 as a null Time. |
| if (is_max()) |
| return std::numeric_limits<CFAbsoluteTime>::infinity(); |
| return (static_cast<CFAbsoluteTime>(us_ - kWindowsEpochDeltaMicroseconds) / |
| kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; |
| } |
| |
| // static |
| Time Time::NowFromSystemTime() { |
| // Just use Now() because Now() returns the system time. |
| return Now(); |
| } |
| |
| // static |
| Time Time::FromExploded(bool is_local, const Exploded& exploded) { |
| CFGregorianDate date; |
| date.second = exploded.second + |
| exploded.millisecond / static_cast<double>(kMillisecondsPerSecond); |
| date.minute = exploded.minute; |
| date.hour = exploded.hour; |
| date.day = exploded.day_of_month; |
| date.month = exploded.month; |
| date.year = exploded.year; |
| |
| base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( |
| is_local ? CFTimeZoneCopySystem() : NULL); |
| CFAbsoluteTime seconds = CFGregorianDateGetAbsoluteTime(date, time_zone) + |
| kCFAbsoluteTimeIntervalSince1970; |
| return Time(static_cast<int64>(seconds * kMicrosecondsPerSecond) + |
| kWindowsEpochDeltaMicroseconds); |
| } |
| |
| void Time::Explode(bool is_local, Exploded* exploded) const { |
| // Avoid rounding issues, by only putting the integral number of seconds |
| // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). |
| int64 microsecond = us_ % kMicrosecondsPerSecond; |
| if (microsecond < 0) |
| microsecond += kMicrosecondsPerSecond; |
| CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) - |
| kWindowsEpochDeltaSeconds - |
| kCFAbsoluteTimeIntervalSince1970; |
| |
| base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( |
| is_local ? CFTimeZoneCopySystem() : NULL); |
| CFGregorianDate date = CFAbsoluteTimeGetGregorianDate(seconds, time_zone); |
| // 1 = Monday, ..., 7 = Sunday. |
| int cf_day_of_week = CFAbsoluteTimeGetDayOfWeek(seconds, time_zone); |
| |
| exploded->year = date.year; |
| exploded->month = date.month; |
| exploded->day_of_week = cf_day_of_week % 7; |
| exploded->day_of_month = date.day; |
| exploded->hour = date.hour; |
| exploded->minute = date.minute; |
| // Make sure seconds are rounded down towards -infinity. |
| exploded->second = floor(date.second); |
| // Calculate milliseconds ourselves, since we rounded the |seconds|, making |
| // sure to round towards -infinity. |
| exploded->millisecond = |
| (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : |
| (microsecond - kMicrosecondsPerMillisecond + 1) / |
| kMicrosecondsPerMillisecond; |
| } |
| |
| // TimeTicks ------------------------------------------------------------------ |
| |
| // static |
| TimeTicks TimeTicks::Now() { |
| return TimeTicks(ComputeCurrentTicks()); |
| } |
| |
| // static |
| bool TimeTicks::IsHighResolution() { |
| return true; |
| } |
| |
| // static |
| ThreadTicks ThreadTicks::Now() { |
| return ThreadTicks(ComputeThreadTicks()); |
| } |
| |
| // static |
| TraceTicks TraceTicks::Now() { |
| return TraceTicks(ComputeCurrentTicks()); |
| } |
| |
| } // namespace base |