blob: cd8cf4aa90c46e7167682715b3a8f91618dfbd97 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/trace_event/trace_event_impl.h"
#include <algorithm>
#include <cmath>
#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/leak_annotations.h"
#include "base/format_macros.h"
#include "base/json/string_escape.h"
#include "base/lazy_instance.h"
#include "base/location.h"
#include "base/memory/singleton.h"
#include "base/process/process_metrics.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/cancellation_flag.h"
#include "base/synchronization/waitable_event.h"
#include "base/sys_info.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/thread_task_runner_handle.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/threading/worker_pool.h"
#include "base/time/time.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/memory_dump_provider.h"
#include "base/trace_event/process_memory_dump.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_synthetic_delay.h"
#if defined(OS_WIN)
#include "base/trace_event/trace_event_etw_export_win.h"
#include "base/trace_event/trace_event_win.h"
#endif
class DeleteTraceLogForTesting {
public:
static void Delete() {
Singleton<base::trace_event::TraceLog,
LeakySingletonTraits<base::trace_event::TraceLog>>::OnExit(0);
}
};
// The thread buckets for the sampling profiler.
BASE_EXPORT TRACE_EVENT_API_ATOMIC_WORD g_trace_state[3];
namespace base {
namespace trace_event {
namespace {
// The overhead of TraceEvent above this threshold will be reported in the
// trace.
const int kOverheadReportThresholdInMicroseconds = 50;
// Controls the number of trace events we will buffer in-memory
// before throwing them away.
const size_t kTraceBufferChunkSize = TraceBufferChunk::kTraceBufferChunkSize;
const size_t kTraceEventVectorBigBufferChunks =
512000000 / kTraceBufferChunkSize;
const size_t kTraceEventVectorBufferChunks = 256000 / kTraceBufferChunkSize;
const size_t kTraceEventRingBufferChunks = kTraceEventVectorBufferChunks / 4;
const size_t kTraceEventBufferSizeInBytes = 100 * 1024;
// Can store results for 30 seconds with 1 ms sampling interval.
const size_t kMonitorTraceEventBufferChunks = 30000 / kTraceBufferChunkSize;
// ECHO_TO_CONSOLE needs a small buffer to hold the unfinished COMPLETE events.
const size_t kEchoToConsoleTraceEventBufferChunks = 256;
const int kThreadFlushTimeoutMs = 3000;
#if !defined(OS_NACL)
// These categories will cause deadlock when ECHO_TO_CONSOLE. crbug.com/325575.
const char kEchoToConsoleCategoryFilter[] = "-ipc,-task";
#endif
#define MAX_CATEGORY_GROUPS 100
// Parallel arrays g_category_groups and g_category_group_enabled are separate
// so that a pointer to a member of g_category_group_enabled can be easily
// converted to an index into g_category_groups. This allows macros to deal
// only with char enabled pointers from g_category_group_enabled, and we can
// convert internally to determine the category name from the char enabled
// pointer.
const char* g_category_groups[MAX_CATEGORY_GROUPS] = {
"toplevel",
"tracing already shutdown",
"tracing categories exhausted; must increase MAX_CATEGORY_GROUPS",
"__metadata",
// For reporting trace_event overhead. For thread local event buffers only.
"trace_event_overhead"};
// The enabled flag is char instead of bool so that the API can be used from C.
unsigned char g_category_group_enabled[MAX_CATEGORY_GROUPS] = { 0 };
// Indexes here have to match the g_category_groups array indexes above.
const int g_category_already_shutdown = 1;
const int g_category_categories_exhausted = 2;
const int g_category_metadata = 3;
const int g_category_trace_event_overhead = 4;
const int g_num_builtin_categories = 5;
// Skip default categories.
base::subtle::AtomicWord g_category_index = g_num_builtin_categories;
// The name of the current thread. This is used to decide if the current
// thread name has changed. We combine all the seen thread names into the
// output name for the thread.
LazyInstance<ThreadLocalPointer<const char> >::Leaky
g_current_thread_name = LAZY_INSTANCE_INITIALIZER;
ThreadTicks ThreadNow() {
return ThreadTicks::IsSupported() ? ThreadTicks::Now() : ThreadTicks();
}
class TraceBufferRingBuffer : public TraceBuffer {
public:
TraceBufferRingBuffer(size_t max_chunks)
: max_chunks_(max_chunks),
recyclable_chunks_queue_(new size_t[queue_capacity()]),
queue_head_(0),
queue_tail_(max_chunks),
current_iteration_index_(0),
current_chunk_seq_(1) {
chunks_.reserve(max_chunks);
for (size_t i = 0; i < max_chunks; ++i)
recyclable_chunks_queue_[i] = i;
}
scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) override {
// Because the number of threads is much less than the number of chunks,
// the queue should never be empty.
DCHECK(!QueueIsEmpty());
*index = recyclable_chunks_queue_[queue_head_];
queue_head_ = NextQueueIndex(queue_head_);
current_iteration_index_ = queue_head_;
if (*index >= chunks_.size())
chunks_.resize(*index + 1);
TraceBufferChunk* chunk = chunks_[*index];
chunks_[*index] = NULL; // Put NULL in the slot of a in-flight chunk.
if (chunk)
chunk->Reset(current_chunk_seq_++);
else
chunk = new TraceBufferChunk(current_chunk_seq_++);
return scoped_ptr<TraceBufferChunk>(chunk);
}
void ReturnChunk(size_t index, scoped_ptr<TraceBufferChunk> chunk) override {
// When this method is called, the queue should not be full because it
// can contain all chunks including the one to be returned.
DCHECK(!QueueIsFull());
DCHECK(chunk);
DCHECK_LT(index, chunks_.size());
DCHECK(!chunks_[index]);
chunks_[index] = chunk.release();
recyclable_chunks_queue_[queue_tail_] = index;
queue_tail_ = NextQueueIndex(queue_tail_);
}
bool IsFull() const override { return false; }
size_t Size() const override {
// This is approximate because not all of the chunks are full.
return chunks_.size() * kTraceBufferChunkSize;
}
size_t Capacity() const override {
return max_chunks_ * kTraceBufferChunkSize;
}
TraceEvent* GetEventByHandle(TraceEventHandle handle) override {
if (handle.chunk_index >= chunks_.size())
return NULL;
TraceBufferChunk* chunk = chunks_[handle.chunk_index];
if (!chunk || chunk->seq() != handle.chunk_seq)
return NULL;
return chunk->GetEventAt(handle.event_index);
}
const TraceBufferChunk* NextChunk() override {
if (chunks_.empty())
return NULL;
while (current_iteration_index_ != queue_tail_) {
size_t chunk_index = recyclable_chunks_queue_[current_iteration_index_];
current_iteration_index_ = NextQueueIndex(current_iteration_index_);
if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
continue;
DCHECK(chunks_[chunk_index]);
return chunks_[chunk_index];
}
return NULL;
}
scoped_ptr<TraceBuffer> CloneForIteration() const override {
scoped_ptr<ClonedTraceBuffer> cloned_buffer(new ClonedTraceBuffer());
for (size_t queue_index = queue_head_; queue_index != queue_tail_;
queue_index = NextQueueIndex(queue_index)) {
size_t chunk_index = recyclable_chunks_queue_[queue_index];
if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
continue;
TraceBufferChunk* chunk = chunks_[chunk_index];
cloned_buffer->chunks_.push_back(chunk ? chunk->Clone().release() : NULL);
}
return cloned_buffer.Pass();
}
void EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) override {
overhead->Add("TraceBufferRingBuffer", sizeof(*this));
for (size_t queue_index = queue_head_; queue_index != queue_tail_;
queue_index = NextQueueIndex(queue_index)) {
size_t chunk_index = recyclable_chunks_queue_[queue_index];
if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
continue;
chunks_[chunk_index]->EstimateTraceMemoryOverhead(overhead);
}
}
private:
class ClonedTraceBuffer : public TraceBuffer {
public:
ClonedTraceBuffer() : current_iteration_index_(0) {}
// The only implemented method.
const TraceBufferChunk* NextChunk() override {
return current_iteration_index_ < chunks_.size() ?
chunks_[current_iteration_index_++] : NULL;
}
scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) override {
NOTIMPLEMENTED();
return scoped_ptr<TraceBufferChunk>();
}
void ReturnChunk(size_t index, scoped_ptr<TraceBufferChunk>) override {
NOTIMPLEMENTED();
}
bool IsFull() const override { return false; }
size_t Size() const override { return 0; }
size_t Capacity() const override { return 0; }
TraceEvent* GetEventByHandle(TraceEventHandle handle) override {
return NULL;
}
scoped_ptr<TraceBuffer> CloneForIteration() const override {
NOTIMPLEMENTED();
return scoped_ptr<TraceBuffer>();
}
void EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) override {
NOTIMPLEMENTED();
}
size_t current_iteration_index_;
ScopedVector<TraceBufferChunk> chunks_;
};
bool QueueIsEmpty() const {
return queue_head_ == queue_tail_;
}
size_t QueueSize() const {
return queue_tail_ > queue_head_ ? queue_tail_ - queue_head_ :
queue_tail_ + queue_capacity() - queue_head_;
}
bool QueueIsFull() const {
return QueueSize() == queue_capacity() - 1;
}
size_t queue_capacity() const {
// One extra space to help distinguish full state and empty state.
return max_chunks_ + 1;
}
size_t NextQueueIndex(size_t index) const {
index++;
if (index >= queue_capacity())
index = 0;
return index;
}
size_t max_chunks_;
ScopedVector<TraceBufferChunk> chunks_;
scoped_ptr<size_t[]> recyclable_chunks_queue_;
size_t queue_head_;
size_t queue_tail_;
size_t current_iteration_index_;
uint32 current_chunk_seq_;
DISALLOW_COPY_AND_ASSIGN(TraceBufferRingBuffer);
};
class TraceBufferVector : public TraceBuffer {
public:
TraceBufferVector(size_t max_chunks)
: in_flight_chunk_count_(0),
current_iteration_index_(0),
max_chunks_(max_chunks) {
chunks_.reserve(max_chunks_);
}
scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) override {
// This function may be called when adding normal events or indirectly from
// AddMetadataEventsWhileLocked(). We can not DECHECK(!IsFull()) because we
// have to add the metadata events and flush thread-local buffers even if
// the buffer is full.
*index = chunks_.size();
chunks_.push_back(NULL); // Put NULL in the slot of a in-flight chunk.
++in_flight_chunk_count_;
// + 1 because zero chunk_seq is not allowed.
return scoped_ptr<TraceBufferChunk>(
new TraceBufferChunk(static_cast<uint32>(*index) + 1));
}
void ReturnChunk(size_t index, scoped_ptr<TraceBufferChunk> chunk) override {
DCHECK_GT(in_flight_chunk_count_, 0u);
DCHECK_LT(index, chunks_.size());
DCHECK(!chunks_[index]);
--in_flight_chunk_count_;
chunks_[index] = chunk.release();
}
bool IsFull() const override { return chunks_.size() >= max_chunks_; }
size_t Size() const override {
// This is approximate because not all of the chunks are full.
return chunks_.size() * kTraceBufferChunkSize;
}
size_t Capacity() const override {
return max_chunks_ * kTraceBufferChunkSize;
}
TraceEvent* GetEventByHandle(TraceEventHandle handle) override {
if (handle.chunk_index >= chunks_.size())
return NULL;
TraceBufferChunk* chunk = chunks_[handle.chunk_index];
if (!chunk || chunk->seq() != handle.chunk_seq)
return NULL;
return chunk->GetEventAt(handle.event_index);
}
const TraceBufferChunk* NextChunk() override {
while (current_iteration_index_ < chunks_.size()) {
// Skip in-flight chunks.
const TraceBufferChunk* chunk = chunks_[current_iteration_index_++];
if (chunk)
return chunk;
}
return NULL;
}
scoped_ptr<TraceBuffer> CloneForIteration() const override {
NOTIMPLEMENTED();
return scoped_ptr<TraceBuffer>();
}
void EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) override {
const size_t chunks_ptr_vector_allocated_size =
sizeof(*this) + max_chunks_ * sizeof(decltype(chunks_)::value_type);
const size_t chunks_ptr_vector_resident_size =
sizeof(*this) + chunks_.size() * sizeof(decltype(chunks_)::value_type);
overhead->Add("TraceBufferVector", chunks_ptr_vector_allocated_size,
chunks_ptr_vector_resident_size);
for (size_t i = 0; i < chunks_.size(); ++i) {
TraceBufferChunk* chunk = chunks_[i];
// Skip the in-flight (nullptr) chunks. They will be accounted by the
// per-thread-local dumpers, see ThreadLocalEventBuffer::OnMemoryDump.
if (chunk)
chunk->EstimateTraceMemoryOverhead(overhead);
}
}
private:
size_t in_flight_chunk_count_;
size_t current_iteration_index_;
size_t max_chunks_;
ScopedVector<TraceBufferChunk> chunks_;
DISALLOW_COPY_AND_ASSIGN(TraceBufferVector);
};
template <typename T>
void InitializeMetadataEvent(TraceEvent* trace_event,
int thread_id,
const char* metadata_name, const char* arg_name,
const T& value) {
if (!trace_event)
return;
int num_args = 1;
unsigned char arg_type;
unsigned long long arg_value;
::trace_event_internal::SetTraceValue(value, &arg_type, &arg_value);
trace_event->Initialize(thread_id,
TraceTicks(), ThreadTicks(),
TRACE_EVENT_PHASE_METADATA,
&g_category_group_enabled[g_category_metadata],
metadata_name, ::trace_event_internal::kNoEventId,
num_args, &arg_name, &arg_type, &arg_value, NULL,
TRACE_EVENT_FLAG_NONE);
}
class AutoThreadLocalBoolean {
public:
explicit AutoThreadLocalBoolean(ThreadLocalBoolean* thread_local_boolean)
: thread_local_boolean_(thread_local_boolean) {
DCHECK(!thread_local_boolean_->Get());
thread_local_boolean_->Set(true);
}
~AutoThreadLocalBoolean() {
thread_local_boolean_->Set(false);
}
private:
ThreadLocalBoolean* thread_local_boolean_;
DISALLOW_COPY_AND_ASSIGN(AutoThreadLocalBoolean);
};
} // namespace
TraceBufferChunk::TraceBufferChunk(uint32 seq) : next_free_(0), seq_(seq) {
}
TraceBufferChunk::~TraceBufferChunk() {
}
void TraceBufferChunk::Reset(uint32 new_seq) {
for (size_t i = 0; i < next_free_; ++i)
chunk_[i].Reset();
next_free_ = 0;
seq_ = new_seq;
cached_overhead_estimate_when_full_.reset();
}
TraceEvent* TraceBufferChunk::AddTraceEvent(size_t* event_index) {
DCHECK(!IsFull());
*event_index = next_free_++;
return &chunk_[*event_index];
}
scoped_ptr<TraceBufferChunk> TraceBufferChunk::Clone() const {
scoped_ptr<TraceBufferChunk> cloned_chunk(new TraceBufferChunk(seq_));
cloned_chunk->next_free_ = next_free_;
for (size_t i = 0; i < next_free_; ++i)
cloned_chunk->chunk_[i].CopyFrom(chunk_[i]);
return cloned_chunk.Pass();
}
void TraceBufferChunk::EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) {
if (cached_overhead_estimate_when_full_) {
DCHECK(IsFull());
overhead->Update(*cached_overhead_estimate_when_full_);
return;
}
// Cache the memory overhead estimate only if the chunk is full.
TraceEventMemoryOverhead* estimate = overhead;
if (IsFull()) {
cached_overhead_estimate_when_full_.reset(new TraceEventMemoryOverhead);
estimate = cached_overhead_estimate_when_full_.get();
}
estimate->Add("TraceBufferChunk", sizeof(*this));
for (size_t i = 0; i < next_free_; ++i)
chunk_[i].EstimateTraceMemoryOverhead(estimate);
if (IsFull()) {
estimate->AddSelf();
overhead->Update(*estimate);
}
}
// A helper class that allows the lock to be acquired in the middle of the scope
// and unlocks at the end of scope if locked.
class TraceLog::OptionalAutoLock {
public:
explicit OptionalAutoLock(Lock* lock) : lock_(lock), locked_(false) {}
~OptionalAutoLock() {
if (locked_)
lock_->Release();
}
void EnsureAcquired() {
if (!locked_) {
lock_->Acquire();
locked_ = true;
}
}
private:
Lock* lock_;
bool locked_;
DISALLOW_COPY_AND_ASSIGN(OptionalAutoLock);
};
// Use this function instead of TraceEventHandle constructor to keep the
// overhead of ScopedTracer (trace_event.h) constructor minimum.
void MakeHandle(uint32 chunk_seq, size_t chunk_index, size_t event_index,
TraceEventHandle* handle) {
DCHECK(chunk_seq);
DCHECK(chunk_index < (1u << 16));
DCHECK(event_index < (1u << 16));
handle->chunk_seq = chunk_seq;
handle->chunk_index = static_cast<uint16>(chunk_index);
handle->event_index = static_cast<uint16>(event_index);
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceEvent
//
////////////////////////////////////////////////////////////////////////////////
namespace {
size_t GetAllocLength(const char* str) { return str ? strlen(str) + 1 : 0; }
// Copies |*member| into |*buffer|, sets |*member| to point to this new
// location, and then advances |*buffer| by the amount written.
void CopyTraceEventParameter(char** buffer,
const char** member,
const char* end) {
if (*member) {
size_t written = strlcpy(*buffer, *member, end - *buffer) + 1;
DCHECK_LE(static_cast<int>(written), end - *buffer);
*member = *buffer;
*buffer += written;
}
}
} // namespace
TraceEvent::TraceEvent()
: duration_(TimeDelta::FromInternalValue(-1)),
id_(0u),
category_group_enabled_(NULL),
name_(NULL),
thread_id_(0),
phase_(TRACE_EVENT_PHASE_BEGIN),
flags_(0) {
for (int i = 0; i < kTraceMaxNumArgs; ++i)
arg_names_[i] = NULL;
memset(arg_values_, 0, sizeof(arg_values_));
}
TraceEvent::~TraceEvent() {
}
void TraceEvent::CopyFrom(const TraceEvent& other) {
timestamp_ = other.timestamp_;
thread_timestamp_ = other.thread_timestamp_;
duration_ = other.duration_;
id_ = other.id_;
category_group_enabled_ = other.category_group_enabled_;
name_ = other.name_;
thread_id_ = other.thread_id_;
phase_ = other.phase_;
flags_ = other.flags_;
parameter_copy_storage_ = other.parameter_copy_storage_;
for (int i = 0; i < kTraceMaxNumArgs; ++i) {
arg_names_[i] = other.arg_names_[i];
arg_types_[i] = other.arg_types_[i];
arg_values_[i] = other.arg_values_[i];
convertable_values_[i] = other.convertable_values_[i];
}
}
void TraceEvent::Initialize(
int thread_id,
TraceTicks timestamp,
ThreadTicks thread_timestamp,
char phase,
const unsigned char* category_group_enabled,
const char* name,
unsigned long long id,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const unsigned long long* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned int flags) {
timestamp_ = timestamp;
thread_timestamp_ = thread_timestamp;
duration_ = TimeDelta::FromInternalValue(-1);
id_ = id;
category_group_enabled_ = category_group_enabled;
name_ = name;
thread_id_ = thread_id;
phase_ = phase;
flags_ = flags;
// Clamp num_args since it may have been set by a third_party library.
num_args = (num_args > kTraceMaxNumArgs) ? kTraceMaxNumArgs : num_args;
int i = 0;
for (; i < num_args; ++i) {
arg_names_[i] = arg_names[i];
arg_types_[i] = arg_types[i];
if (arg_types[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i] = convertable_values[i];
else
arg_values_[i].as_uint = arg_values[i];
}
for (; i < kTraceMaxNumArgs; ++i) {
arg_names_[i] = NULL;
arg_values_[i].as_uint = 0u;
convertable_values_[i] = NULL;
arg_types_[i] = TRACE_VALUE_TYPE_UINT;
}
bool copy = !!(flags & TRACE_EVENT_FLAG_COPY);
size_t alloc_size = 0;
if (copy) {
alloc_size += GetAllocLength(name);
for (i = 0; i < num_args; ++i) {
alloc_size += GetAllocLength(arg_names_[i]);
if (arg_types_[i] == TRACE_VALUE_TYPE_STRING)
arg_types_[i] = TRACE_VALUE_TYPE_COPY_STRING;
}
}
bool arg_is_copy[kTraceMaxNumArgs];
for (i = 0; i < num_args; ++i) {
// No copying of convertable types, we retain ownership.
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
continue;
// We only take a copy of arg_vals if they are of type COPY_STRING.
arg_is_copy[i] = (arg_types_[i] == TRACE_VALUE_TYPE_COPY_STRING);
if (arg_is_copy[i])
alloc_size += GetAllocLength(arg_values_[i].as_string);
}
if (alloc_size) {
parameter_copy_storage_ = new RefCountedString;
parameter_copy_storage_->data().resize(alloc_size);
char* ptr = string_as_array(&parameter_copy_storage_->data());
const char* end = ptr + alloc_size;
if (copy) {
CopyTraceEventParameter(&ptr, &name_, end);
for (i = 0; i < num_args; ++i) {
CopyTraceEventParameter(&ptr, &arg_names_[i], end);
}
}
for (i = 0; i < num_args; ++i) {
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
continue;
if (arg_is_copy[i])
CopyTraceEventParameter(&ptr, &arg_values_[i].as_string, end);
}
DCHECK_EQ(end, ptr) << "Overrun by " << ptr - end;
}
}
void TraceEvent::Reset() {
// Only reset fields that won't be initialized in Initialize(), or that may
// hold references to other objects.
duration_ = TimeDelta::FromInternalValue(-1);
parameter_copy_storage_ = NULL;
for (int i = 0; i < kTraceMaxNumArgs; ++i)
convertable_values_[i] = NULL;
cached_memory_overhead_estimate_.reset();
}
void TraceEvent::UpdateDuration(const TraceTicks& now,
const ThreadTicks& thread_now) {
DCHECK_EQ(duration_.ToInternalValue(), -1);
duration_ = now - timestamp_;
thread_duration_ = thread_now - thread_timestamp_;
}
void TraceEvent::EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) {
if (!cached_memory_overhead_estimate_) {
cached_memory_overhead_estimate_.reset(new TraceEventMemoryOverhead);
cached_memory_overhead_estimate_->Add("TraceEvent", sizeof(*this));
// TODO(primiano): parameter_copy_storage_ is refcounted and, in theory,
// could be shared by several events and we might overcount. In practice
// this is unlikely but it's worth checking.
if (parameter_copy_storage_) {
cached_memory_overhead_estimate_->AddRefCountedString(
*parameter_copy_storage_.get());
}
for (size_t i = 0; i < kTraceMaxNumArgs; ++i) {
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE) {
convertable_values_[i]->EstimateTraceMemoryOverhead(
cached_memory_overhead_estimate_.get());
}
}
cached_memory_overhead_estimate_->AddSelf();
}
overhead->Update(*cached_memory_overhead_estimate_);
}
// static
void TraceEvent::AppendValueAsJSON(unsigned char type,
TraceEvent::TraceValue value,
std::string* out) {
switch (type) {
case TRACE_VALUE_TYPE_BOOL:
*out += value.as_bool ? "true" : "false";
break;
case TRACE_VALUE_TYPE_UINT:
StringAppendF(out, "%" PRIu64, static_cast<uint64>(value.as_uint));
break;
case TRACE_VALUE_TYPE_INT:
StringAppendF(out, "%" PRId64, static_cast<int64>(value.as_int));
break;
case TRACE_VALUE_TYPE_DOUBLE: {
// FIXME: base/json/json_writer.cc is using the same code,
// should be made into a common method.
std::string real;
double val = value.as_double;
if (std::isfinite(val)) {
real = DoubleToString(val);
// Ensure that the number has a .0 if there's no decimal or 'e'. This
// makes sure that when we read the JSON back, it's interpreted as a
// real rather than an int.
if (real.find('.') == std::string::npos &&
real.find('e') == std::string::npos &&
real.find('E') == std::string::npos) {
real.append(".0");
}
// The JSON spec requires that non-integer values in the range (-1,1)
// have a zero before the decimal point - ".52" is not valid, "0.52" is.
if (real[0] == '.') {
real.insert(0, "0");
} else if (real.length() > 1 && real[0] == '-' && real[1] == '.') {
// "-.1" bad "-0.1" good
real.insert(1, "0");
}
} else if (std::isnan(val)){
// The JSON spec doesn't allow NaN and Infinity (since these are
// objects in EcmaScript). Use strings instead.
real = "\"NaN\"";
} else if (val < 0) {
real = "\"-Infinity\"";
} else {
real = "\"Infinity\"";
}
StringAppendF(out, "%s", real.c_str());
break;
}
case TRACE_VALUE_TYPE_POINTER:
// JSON only supports double and int numbers.
// So as not to lose bits from a 64-bit pointer, output as a hex string.
StringAppendF(out, "\"0x%" PRIx64 "\"", static_cast<uint64>(
reinterpret_cast<intptr_t>(
value.as_pointer)));
break;
case TRACE_VALUE_TYPE_STRING:
case TRACE_VALUE_TYPE_COPY_STRING:
EscapeJSONString(value.as_string ? value.as_string : "NULL", true, out);
break;
default:
NOTREACHED() << "Don't know how to print this value";
break;
}
}
void TraceEvent::AppendAsJSON(
std::string* out,
const ArgumentFilterPredicate& argument_filter_predicate) const {
int64 time_int64 = timestamp_.ToInternalValue();
int process_id = TraceLog::GetInstance()->process_id();
const char* category_group_name =
TraceLog::GetCategoryGroupName(category_group_enabled_);
// Category group checked at category creation time.
DCHECK(!strchr(name_, '"'));
StringAppendF(out, "{\"pid\":%i,\"tid\":%i,\"ts\":%" PRId64
","
"\"ph\":\"%c\",\"cat\":\"%s\",\"name\":\"%s\",\"args\":",
process_id, thread_id_, time_int64, phase_, category_group_name,
name_);
// Output argument names and values, stop at first NULL argument name.
bool strip_args = arg_names_[0] && !argument_filter_predicate.is_null() &&
!argument_filter_predicate.Run(category_group_name, name_);
if (strip_args) {
*out += "\"__stripped__\"";
} else {
*out += "{";
for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
if (i > 0)
*out += ",";
*out += "\"";
*out += arg_names_[i];
*out += "\":";
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i]->AppendAsTraceFormat(out);
else
AppendValueAsJSON(arg_types_[i], arg_values_[i], out);
}
*out += "}";
}
if (phase_ == TRACE_EVENT_PHASE_COMPLETE) {
int64 duration = duration_.ToInternalValue();
if (duration != -1)
StringAppendF(out, ",\"dur\":%" PRId64, duration);
if (!thread_timestamp_.is_null()) {
int64 thread_duration = thread_duration_.ToInternalValue();
if (thread_duration != -1)
StringAppendF(out, ",\"tdur\":%" PRId64, thread_duration);
}
}
// Output tts if thread_timestamp is valid.
if (!thread_timestamp_.is_null()) {
int64 thread_time_int64 = thread_timestamp_.ToInternalValue();
StringAppendF(out, ",\"tts\":%" PRId64, thread_time_int64);
}
// Output async tts marker field if flag is set.
if (flags_ & TRACE_EVENT_FLAG_ASYNC_TTS) {
StringAppendF(out, ", \"use_async_tts\":1");
}
// If id_ is set, print it out as a hex string so we don't loose any
// bits (it might be a 64-bit pointer).
if (flags_ & TRACE_EVENT_FLAG_HAS_ID)
StringAppendF(out, ",\"id\":\"0x%" PRIx64 "\"", static_cast<uint64>(id_));
if (flags_ & TRACE_EVENT_FLAG_BIND_TO_ENCLOSING)
StringAppendF(out, ",\"bp\":\"e\"");
// Instant events also output their scope.
if (phase_ == TRACE_EVENT_PHASE_INSTANT) {
char scope = '?';
switch (flags_ & TRACE_EVENT_FLAG_SCOPE_MASK) {
case TRACE_EVENT_SCOPE_GLOBAL:
scope = TRACE_EVENT_SCOPE_NAME_GLOBAL;
break;
case TRACE_EVENT_SCOPE_PROCESS:
scope = TRACE_EVENT_SCOPE_NAME_PROCESS;
break;
case TRACE_EVENT_SCOPE_THREAD:
scope = TRACE_EVENT_SCOPE_NAME_THREAD;
break;
}
StringAppendF(out, ",\"s\":\"%c\"", scope);
}
*out += "}";
}
void TraceEvent::AppendPrettyPrinted(std::ostringstream* out) const {
*out << name_ << "[";
*out << TraceLog::GetCategoryGroupName(category_group_enabled_);
*out << "]";
if (arg_names_[0]) {
*out << ", {";
for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
if (i > 0)
*out << ", ";
*out << arg_names_[i] << ":";
std::string value_as_text;
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i]->AppendAsTraceFormat(&value_as_text);
else
AppendValueAsJSON(arg_types_[i], arg_values_[i], &value_as_text);
*out << value_as_text;
}
*out << "}";
}
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceResultBuffer
//
////////////////////////////////////////////////////////////////////////////////
TraceResultBuffer::OutputCallback
TraceResultBuffer::SimpleOutput::GetCallback() {
return Bind(&SimpleOutput::Append, Unretained(this));
}
void TraceResultBuffer::SimpleOutput::Append(
const std::string& json_trace_output) {
json_output += json_trace_output;
}
TraceResultBuffer::TraceResultBuffer() : append_comma_(false) {
}
TraceResultBuffer::~TraceResultBuffer() {
}
void TraceResultBuffer::SetOutputCallback(
const OutputCallback& json_chunk_callback) {
output_callback_ = json_chunk_callback;
}
void TraceResultBuffer::Start() {
append_comma_ = false;
output_callback_.Run("[");
}
void TraceResultBuffer::AddFragment(const std::string& trace_fragment) {
if (append_comma_)
output_callback_.Run(",");
append_comma_ = true;
output_callback_.Run(trace_fragment);
}
void TraceResultBuffer::Finish() {
output_callback_.Run("]");
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceSamplingThread
//
////////////////////////////////////////////////////////////////////////////////
class TraceBucketData;
typedef base::Callback<void(TraceBucketData*)> TraceSampleCallback;
class TraceBucketData {
public:
TraceBucketData(base::subtle::AtomicWord* bucket,
const char* name,
TraceSampleCallback callback);
~TraceBucketData();
TRACE_EVENT_API_ATOMIC_WORD* bucket;
const char* bucket_name;
TraceSampleCallback callback;
};
// This object must be created on the IO thread.
class TraceSamplingThread : public PlatformThread::Delegate {
public:
TraceSamplingThread();
~TraceSamplingThread() override;
// Implementation of PlatformThread::Delegate:
void ThreadMain() override;
static void DefaultSamplingCallback(TraceBucketData* bucekt_data);
void Stop();
void WaitSamplingEventForTesting();
private:
friend class TraceLog;
void GetSamples();
// Not thread-safe. Once the ThreadMain has been called, this can no longer
// be called.
void RegisterSampleBucket(TRACE_EVENT_API_ATOMIC_WORD* bucket,
const char* const name,
TraceSampleCallback callback);
// Splits a combined "category\0name" into the two component parts.
static void ExtractCategoryAndName(const char* combined,
const char** category,
const char** name);
std::vector<TraceBucketData> sample_buckets_;
bool thread_running_;
CancellationFlag cancellation_flag_;
WaitableEvent waitable_event_for_testing_;
};
TraceSamplingThread::TraceSamplingThread()
: thread_running_(false),
waitable_event_for_testing_(false, false) {
}
TraceSamplingThread::~TraceSamplingThread() {
}
void TraceSamplingThread::ThreadMain() {
PlatformThread::SetName("Sampling Thread");
thread_running_ = true;
const int kSamplingFrequencyMicroseconds = 1000;
while (!cancellation_flag_.IsSet()) {
PlatformThread::Sleep(
TimeDelta::FromMicroseconds(kSamplingFrequencyMicroseconds));
GetSamples();
waitable_event_for_testing_.Signal();
}
}
// static
void TraceSamplingThread::DefaultSamplingCallback(
TraceBucketData* bucket_data) {
TRACE_EVENT_API_ATOMIC_WORD category_and_name =
TRACE_EVENT_API_ATOMIC_LOAD(*bucket_data->bucket);
if (!category_and_name)
return;
const char* const combined =
reinterpret_cast<const char* const>(category_and_name);
const char* category_group;
const char* name;
ExtractCategoryAndName(combined, &category_group, &name);
TRACE_EVENT_API_ADD_TRACE_EVENT(TRACE_EVENT_PHASE_SAMPLE,
TraceLog::GetCategoryGroupEnabled(category_group),
name, 0, 0, NULL, NULL, NULL, NULL, 0);
}
void TraceSamplingThread::GetSamples() {
for (size_t i = 0; i < sample_buckets_.size(); ++i) {
TraceBucketData* bucket_data = &sample_buckets_[i];
bucket_data->callback.Run(bucket_data);
}
}
void TraceSamplingThread::RegisterSampleBucket(
TRACE_EVENT_API_ATOMIC_WORD* bucket,
const char* const name,
TraceSampleCallback callback) {
// Access to sample_buckets_ doesn't cause races with the sampling thread
// that uses the sample_buckets_, because it is guaranteed that
// RegisterSampleBucket is called before the sampling thread is created.
DCHECK(!thread_running_);
sample_buckets_.push_back(TraceBucketData(bucket, name, callback));
}
// static
void TraceSamplingThread::ExtractCategoryAndName(const char* combined,
const char** category,
const char** name) {
*category = combined;
*name = &combined[strlen(combined) + 1];
}
void TraceSamplingThread::Stop() {
cancellation_flag_.Set();
}
void TraceSamplingThread::WaitSamplingEventForTesting() {
waitable_event_for_testing_.Wait();
}
TraceBucketData::TraceBucketData(base::subtle::AtomicWord* bucket,
const char* name,
TraceSampleCallback callback)
: bucket(bucket),
bucket_name(name),
callback(callback) {
}
TraceBucketData::~TraceBucketData() {
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceLog
//
////////////////////////////////////////////////////////////////////////////////
class TraceLog::ThreadLocalEventBuffer
: public MessageLoop::DestructionObserver,
public MemoryDumpProvider {
public:
ThreadLocalEventBuffer(TraceLog* trace_log);
~ThreadLocalEventBuffer() override;
TraceEvent* AddTraceEvent(TraceEventHandle* handle);
void ReportOverhead(const TraceTicks& event_timestamp,
const ThreadTicks& event_thread_timestamp);
TraceEvent* GetEventByHandle(TraceEventHandle handle) {
if (!chunk_ || handle.chunk_seq != chunk_->seq() ||
handle.chunk_index != chunk_index_)
return NULL;
return chunk_->GetEventAt(handle.event_index);
}
int generation() const { return generation_; }
private:
// MessageLoop::DestructionObserver
void WillDestroyCurrentMessageLoop() override;
// MemoryDumpProvider implementation.
bool OnMemoryDump(ProcessMemoryDump* pmd) override;
void FlushWhileLocked();
void CheckThisIsCurrentBuffer() const {
DCHECK(trace_log_->thread_local_event_buffer_.Get() == this);
}
// Since TraceLog is a leaky singleton, trace_log_ will always be valid
// as long as the thread exists.
TraceLog* trace_log_;
scoped_ptr<TraceBufferChunk> chunk_;
size_t chunk_index_;
int event_count_;
TimeDelta overhead_;
int generation_;
DISALLOW_COPY_AND_ASSIGN(ThreadLocalEventBuffer);
};
TraceLog::ThreadLocalEventBuffer::ThreadLocalEventBuffer(TraceLog* trace_log)
: trace_log_(trace_log),
chunk_index_(0),
event_count_(0),
generation_(trace_log->generation()) {
// ThreadLocalEventBuffer is created only if the thread has a message loop, so
// the following message_loop won't be NULL.
MessageLoop* message_loop = MessageLoop::current();
message_loop->AddDestructionObserver(this);
// This is to report the local memory usage when memory-infra is enabled.
MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, ThreadTaskRunnerHandle::Get());
AutoLock lock(trace_log->lock_);
trace_log->thread_message_loops_.insert(message_loop);
}
TraceLog::ThreadLocalEventBuffer::~ThreadLocalEventBuffer() {
CheckThisIsCurrentBuffer();
MessageLoop::current()->RemoveDestructionObserver(this);
MemoryDumpManager::GetInstance()->UnregisterDumpProvider(this);
// Zero event_count_ happens in either of the following cases:
// - no event generated for the thread;
// - the thread has no message loop;
// - trace_event_overhead is disabled.
if (event_count_) {
InitializeMetadataEvent(AddTraceEvent(NULL),
static_cast<int>(base::PlatformThread::CurrentId()),
"overhead", "average_overhead",
overhead_.InMillisecondsF() / event_count_);
}
{
AutoLock lock(trace_log_->lock_);
FlushWhileLocked();
trace_log_->thread_message_loops_.erase(MessageLoop::current());
}
trace_log_->thread_local_event_buffer_.Set(NULL);
}
TraceEvent* TraceLog::ThreadLocalEventBuffer::AddTraceEvent(
TraceEventHandle* handle) {
CheckThisIsCurrentBuffer();
if (chunk_ && chunk_->IsFull()) {
AutoLock lock(trace_log_->lock_);
FlushWhileLocked();
chunk_.reset();
}
if (!chunk_) {
AutoLock lock(trace_log_->lock_);
chunk_ = trace_log_->logged_events_->GetChunk(&chunk_index_);
trace_log_->CheckIfBufferIsFullWhileLocked();
}
if (!chunk_)
return NULL;
size_t event_index;
TraceEvent* trace_event = chunk_->AddTraceEvent(&event_index);
if (trace_event && handle)
MakeHandle(chunk_->seq(), chunk_index_, event_index, handle);
return trace_event;
}
void TraceLog::ThreadLocalEventBuffer::ReportOverhead(
const TraceTicks& event_timestamp,
const ThreadTicks& event_thread_timestamp) {
if (!g_category_group_enabled[g_category_trace_event_overhead])
return;
CheckThisIsCurrentBuffer();
event_count_++;
ThreadTicks thread_now = ThreadNow();
TraceTicks now = trace_log_->OffsetNow();
TimeDelta overhead = now - event_timestamp;
if (overhead.InMicroseconds() >= kOverheadReportThresholdInMicroseconds) {
TraceEvent* trace_event = AddTraceEvent(NULL);
if (trace_event) {
trace_event->Initialize(
static_cast<int>(PlatformThread::CurrentId()),
event_timestamp, event_thread_timestamp,
TRACE_EVENT_PHASE_COMPLETE,
&g_category_group_enabled[g_category_trace_event_overhead],
"overhead", 0, 0, NULL, NULL, NULL, NULL, 0);
trace_event->UpdateDuration(now, thread_now);
}
}
overhead_ += overhead;
}
void TraceLog::ThreadLocalEventBuffer::WillDestroyCurrentMessageLoop() {
delete this;
}
bool TraceLog::ThreadLocalEventBuffer::OnMemoryDump(ProcessMemoryDump* pmd) {
if (!chunk_)
return true;
std::string dump_base_name = StringPrintf(
"tracing/thread_%d", static_cast<int>(PlatformThread::CurrentId()));
TraceEventMemoryOverhead overhead;
chunk_->EstimateTraceMemoryOverhead(&overhead);
overhead.DumpInto(dump_base_name.c_str(), pmd);
return true;
}
void TraceLog::ThreadLocalEventBuffer::FlushWhileLocked() {
if (!chunk_)
return;
trace_log_->lock_.AssertAcquired();
if (trace_log_->CheckGeneration(generation_)) {
// Return the chunk to the buffer only if the generation matches.
trace_log_->logged_events_->ReturnChunk(chunk_index_, chunk_.Pass());
}
// Otherwise this method may be called from the destructor, or TraceLog will
// find the generation mismatch and delete this buffer soon.
}
TraceLogStatus::TraceLogStatus() : event_capacity(0), event_count(0) {
}
TraceLogStatus::~TraceLogStatus() {
}
// static
TraceLog* TraceLog::GetInstance() {
return Singleton<TraceLog, LeakySingletonTraits<TraceLog> >::get();
}
TraceLog::TraceLog()
: mode_(DISABLED),
num_traces_recorded_(0),
event_callback_(0),
dispatching_to_observer_list_(false),
process_sort_index_(0),
process_id_hash_(0),
process_id_(0),
watch_category_(0),
trace_options_(kInternalRecordUntilFull),
sampling_thread_handle_(0),
trace_config_(TraceConfig()),
event_callback_trace_config_(TraceConfig()),
thread_shared_chunk_index_(0),
generation_(0),
use_worker_thread_(false) {
// Trace is enabled or disabled on one thread while other threads are
// accessing the enabled flag. We don't care whether edge-case events are
// traced or not, so we allow races on the enabled flag to keep the trace
// macros fast.
// TODO(jbates): ANNOTATE_BENIGN_RACE_SIZED crashes windows TSAN bots:
// ANNOTATE_BENIGN_RACE_SIZED(g_category_group_enabled,
// sizeof(g_category_group_enabled),
// "trace_event category enabled");
for (int i = 0; i < MAX_CATEGORY_GROUPS; ++i) {
ANNOTATE_BENIGN_RACE(&g_category_group_enabled[i],
"trace_event category enabled");
}
#if defined(OS_NACL) // NaCl shouldn't expose the process id.
SetProcessID(0);
#else
SetProcessID(static_cast<int>(GetCurrentProcId()));
// NaCl also shouldn't access the command line.
if (CommandLine::InitializedForCurrentProcess() &&
CommandLine::ForCurrentProcess()->HasSwitch(switches::kTraceToConsole)) {
std::string filter = CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
switches::kTraceToConsole);
if (filter.empty()) {
filter = kEchoToConsoleCategoryFilter;
} else {
filter.append(",");
filter.append(kEchoToConsoleCategoryFilter);
}
LOG(ERROR) << "Start " << switches::kTraceToConsole
<< " with CategoryFilter '" << filter << "'.";
SetEnabled(TraceConfig(filter, ECHO_TO_CONSOLE), RECORDING_MODE);
}
#endif
logged_events_.reset(CreateTraceBuffer());
MemoryDumpManager::GetInstance()->RegisterDumpProvider(this);
}
TraceLog::~TraceLog() {
}
void TraceLog::InitializeThreadLocalEventBufferIfSupported() {
// A ThreadLocalEventBuffer needs the message loop
// - to know when the thread exits;
// - to handle the final flush.
// For a thread without a message loop or the message loop may be blocked, the
// trace events will be added into the main buffer directly.
if (thread_blocks_message_loop_.Get() || !MessageLoop::current())
return;
auto thread_local_event_buffer = thread_local_event_buffer_.Get();
if (thread_local_event_buffer &&
!CheckGeneration(thread_local_event_buffer->generation())) {
delete thread_local_event_buffer;
thread_local_event_buffer = NULL;
}
if (!thread_local_event_buffer) {
thread_local_event_buffer = new ThreadLocalEventBuffer(this);
thread_local_event_buffer_.Set(thread_local_event_buffer);
}
}
bool TraceLog::OnMemoryDump(ProcessMemoryDump* pmd) {
TraceEventMemoryOverhead overhead;
overhead.Add("TraceLog", sizeof(*this));
{
AutoLock lock(lock_);
if (logged_events_)
logged_events_->EstimateTraceMemoryOverhead(&overhead);
}
overhead.AddSelf();
overhead.DumpInto("tracing/main_trace_log", pmd);
return true;
}
const unsigned char* TraceLog::GetCategoryGroupEnabled(
const char* category_group) {
TraceLog* tracelog = GetInstance();
if (!tracelog) {
DCHECK(!g_category_group_enabled[g_category_already_shutdown]);
return &g_category_group_enabled[g_category_already_shutdown];
}
return tracelog->GetCategoryGroupEnabledInternal(category_group);
}
const char* TraceLog::GetCategoryGroupName(
const unsigned char* category_group_enabled) {
// Calculate the index of the category group by finding
// category_group_enabled in g_category_group_enabled array.
uintptr_t category_begin =
reinterpret_cast<uintptr_t>(g_category_group_enabled);
uintptr_t category_ptr = reinterpret_cast<uintptr_t>(category_group_enabled);
DCHECK(category_ptr >= category_begin &&
category_ptr < reinterpret_cast<uintptr_t>(
g_category_group_enabled + MAX_CATEGORY_GROUPS)) <<
"out of bounds category pointer";
uintptr_t category_index =
(category_ptr - category_begin) / sizeof(g_category_group_enabled[0]);
return g_category_groups[category_index];
}
void TraceLog::UpdateCategoryGroupEnabledFlag(size_t category_index) {
unsigned char enabled_flag = 0;
const char* category_group = g_category_groups[category_index];
if (mode_ == RECORDING_MODE &&
trace_config_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_RECORDING;
else if (mode_ == MONITORING_MODE &&
trace_config_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_MONITORING;
if (event_callback_ &&
event_callback_trace_config_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_EVENT_CALLBACK;
#if defined(OS_WIN)
if (base::trace_event::TraceEventETWExport::IsCategoryGroupEnabled(
category_group)) {
enabled_flag |= ENABLED_FOR_ETW_EXPORT;
}
#endif
g_category_group_enabled[category_index] = enabled_flag;
}
void TraceLog::UpdateCategoryGroupEnabledFlags() {
size_t category_index = base::subtle::NoBarrier_Load(&g_category_index);
for (size_t i = 0; i < category_index; i++)
UpdateCategoryGroupEnabledFlag(i);
}
void TraceLog::UpdateSyntheticDelaysFromTraceConfig() {
ResetTraceEventSyntheticDelays();
const TraceConfig::StringList& delays =
trace_config_.GetSyntheticDelayValues();
TraceConfig::StringList::const_iterator ci;
for (ci = delays.begin(); ci != delays.end(); ++ci) {
StringTokenizer tokens(*ci, ";");
if (!tokens.GetNext())
continue;
TraceEventSyntheticDelay* delay =
TraceEventSyntheticDelay::Lookup(tokens.token());
while (tokens.GetNext()) {
std::string token = tokens.token();
char* duration_end;
double target_duration = strtod(token.c_str(), &duration_end);
if (duration_end != token.c_str()) {
delay->SetTargetDuration(TimeDelta::FromMicroseconds(
static_cast<int64>(target_duration * 1e6)));
} else if (token == "static") {
delay->SetMode(TraceEventSyntheticDelay::STATIC);
} else if (token == "oneshot") {
delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT);
} else if (token == "alternating") {
delay->SetMode(TraceEventSyntheticDelay::ALTERNATING);
}
}
}
}
const unsigned char* TraceLog::GetCategoryGroupEnabledInternal(
const char* category_group) {
DCHECK(!strchr(category_group, '"')) <<
"Category groups may not contain double quote";
// The g_category_groups is append only, avoid using a lock for the fast path.
size_t current_category_index = base::subtle::Acquire_Load(&g_category_index);
// Search for pre-existing category group.
for (size_t i = 0; i < current_category_index; ++i) {
if (strcmp(g_category_groups[i], category_group) == 0) {
return &g_category_group_enabled[i];
}
}
unsigned char* category_group_enabled = NULL;
// This is the slow path: the lock is not held in the case above, so more
// than one thread could have reached here trying to add the same category.
// Only hold to lock when actually appending a new category, and
// check the categories groups again.
AutoLock lock(lock_);
size_t category_index = base::subtle::Acquire_Load(&g_category_index);
for (size_t i = 0; i < category_index; ++i) {
if (strcmp(g_category_groups[i], category_group) == 0) {
return &g_category_group_enabled[i];
}
}
// Create a new category group.
DCHECK(category_index < MAX_CATEGORY_GROUPS) <<
"must increase MAX_CATEGORY_GROUPS";
if (category_index < MAX_CATEGORY_GROUPS) {
// Don't hold on to the category_group pointer, so that we can create
// category groups with strings not known at compile time (this is
// required by SetWatchEvent).
const char* new_group = strdup(category_group);
ANNOTATE_LEAKING_OBJECT_PTR(new_group);
g_category_groups[category_index] = new_group;
DCHECK(!g_category_group_enabled[category_index]);
// Note that if both included and excluded patterns in the
// TraceConfig are empty, we exclude nothing,
// thereby enabling this category group.
UpdateCategoryGroupEnabledFlag(category_index);
category_group_enabled = &g_category_group_enabled[category_index];
// Update the max index now.
base::subtle::Release_Store(&g_category_index, category_index + 1);
} else {
category_group_enabled =
&g_category_group_enabled[g_category_categories_exhausted];
}
return category_group_enabled;
}
void TraceLog::GetKnownCategoryGroups(
std::vector<std::string>* category_groups) {
AutoLock lock(lock_);
category_groups->push_back(
g_category_groups[g_category_trace_event_overhead]);
size_t category_index = base::subtle::NoBarrier_Load(&g_category_index);
for (size_t i = g_num_builtin_categories; i < category_index; i++)
category_groups->push_back(g_category_groups[i]);
}
void TraceLog::SetEnabled(const TraceConfig& trace_config, Mode mode) {
std::vector<EnabledStateObserver*> observer_list;
{
AutoLock lock(lock_);
// Can't enable tracing when Flush() is in progress.
DCHECK(!flush_task_runner_);
InternalTraceOptions new_options =
GetInternalOptionsFromTraceConfig(trace_config);
InternalTraceOptions old_options = trace_options();
if (IsEnabled()) {
if (new_options != old_options) {
DLOG(ERROR) << "Attempting to re-enable tracing with a different "
<< "set of options.";
}
if (mode != mode_) {
DLOG(ERROR) << "Attempting to re-enable tracing with a different mode.";
}
trace_config_.Merge(trace_config);
UpdateCategoryGroupEnabledFlags();
return;
}
if (dispatching_to_observer_list_) {
DLOG(ERROR) <<
"Cannot manipulate TraceLog::Enabled state from an observer.";
return;
}
mode_ = mode;
if (new_options != old_options) {
subtle::NoBarrier_Store(&trace_options_, new_options);
UseNextTraceBuffer();
}
num_traces_recorded_++;
trace_config_ = TraceConfig(trace_config);
UpdateCategoryGroupEnabledFlags();
UpdateSyntheticDelaysFromTraceConfig();
if (new_options & kInternalEnableSampling) {
sampling_thread_.reset(new TraceSamplingThread);
sampling_thread_->RegisterSampleBucket(
&g_trace_state[0],
"bucket0",
Bind(&TraceSamplingThread::DefaultSamplingCallback));
sampling_thread_->RegisterSampleBucket(
&g_trace_state[1],
"bucket1",
Bind(&TraceSamplingThread::DefaultSamplingCallback));
sampling_thread_->RegisterSampleBucket(
&g_trace_state[2],
"bucket2",
Bind(&TraceSamplingThread::DefaultSamplingCallback));
if (!PlatformThread::Create(
0, sampling_thread_.get(), &sampling_thread_handle_)) {
DCHECK(false) << "failed to create thread";
}
}
dispatching_to_observer_list_ = true;
observer_list = enabled_state_observer_list_;
}
// Notify observers outside the lock in case they trigger trace events.
for (size_t i = 0; i < observer_list.size(); ++i)
observer_list[i]->OnTraceLogEnabled();
{
AutoLock lock(lock_);
dispatching_to_observer_list_ = false;
}
}
void TraceLog::SetArgumentFilterPredicate(
const TraceEvent::ArgumentFilterPredicate& argument_filter_predicate) {
AutoLock lock(lock_);
DCHECK(!argument_filter_predicate.is_null());
DCHECK(argument_filter_predicate_.is_null());
argument_filter_predicate_ = argument_filter_predicate;
}
TraceLog::InternalTraceOptions TraceLog::GetInternalOptionsFromTraceConfig(
const TraceConfig& config) {
InternalTraceOptions ret =
config.IsSamplingEnabled() ? kInternalEnableSampling : kInternalNone;
if (config.IsArgumentFilterEnabled())
ret |= kInternalEnableArgumentFilter;
switch (config.GetTraceRecordMode()) {
case RECORD_UNTIL_FULL:
return ret | kInternalRecordUntilFull;
case RECORD_CONTINUOUSLY:
return ret | kInternalRecordContinuously;
case ECHO_TO_CONSOLE:
return ret | kInternalEchoToConsole;
case RECORD_AS_MUCH_AS_POSSIBLE:
return ret | kInternalRecordAsMuchAsPossible;
}
NOTREACHED();
return kInternalNone;
}
TraceConfig TraceLog::GetCurrentTraceConfig() const {
AutoLock lock(lock_);
return trace_config_;
}
void TraceLog::SetDisabled() {
AutoLock lock(lock_);
SetDisabledWhileLocked();
}
void TraceLog::SetDisabledWhileLocked() {
lock_.AssertAcquired();
if (!IsEnabled())
return;
if (dispatching_to_observer_list_) {
DLOG(ERROR)
<< "Cannot manipulate TraceLog::Enabled state from an observer.";
return;
}
mode_ = DISABLED;
if (sampling_thread_.get()) {
// Stop the sampling thread.
sampling_thread_->Stop();
lock_.Release();
PlatformThread::Join(sampling_thread_handle_);
lock_.Acquire();
sampling_thread_handle_ = PlatformThreadHandle();
sampling_thread_.reset();
}
trace_config_.Clear();
subtle::NoBarrier_Store(&watch_category_, 0);
watch_event_name_ = "";
UpdateCategoryGroupEnabledFlags();
AddMetadataEventsWhileLocked();
dispatching_to_observer_list_ = true;
std::vector<EnabledStateObserver*> observer_list =
enabled_state_observer_list_;
{
// Dispatch to observers outside the lock in case the observer triggers a
// trace event.
AutoUnlock unlock(lock_);
for (size_t i = 0; i < observer_list.size(); ++i)
observer_list[i]->OnTraceLogDisabled();
}
dispatching_to_observer_list_ = false;
}
int TraceLog::GetNumTracesRecorded() {
AutoLock lock(lock_);
if (!IsEnabled())
return -1;
return num_traces_recorded_;
}
void TraceLog::AddEnabledStateObserver(EnabledStateObserver* listener) {
enabled_state_observer_list_.push_back(listener);
}
void TraceLog::RemoveEnabledStateObserver(EnabledStateObserver* listener) {
std::vector<EnabledStateObserver*>::iterator it =
std::find(enabled_state_observer_list_.begin(),
enabled_state_observer_list_.end(),
listener);
if (it != enabled_state_observer_list_.end())
enabled_state_observer_list_.erase(it);
}
bool TraceLog::HasEnabledStateObserver(EnabledStateObserver* listener) const {
std::vector<EnabledStateObserver*>::const_iterator it =
std::find(enabled_state_observer_list_.begin(),
enabled_state_observer_list_.end(),
listener);
return it != enabled_state_observer_list_.end();
}
TraceLogStatus TraceLog::GetStatus() const {
AutoLock lock(lock_);
TraceLogStatus result;
result.event_capacity = logged_events_->Capacity();
result.event_count = logged_events_->Size();
return result;
}
bool TraceLog::BufferIsFull() const {
AutoLock lock(lock_);
return logged_events_->IsFull();
}
TraceBuffer* TraceLog::CreateTraceBuffer() {
InternalTraceOptions options = trace_options();
if (options & kInternalRecordContinuously)
return new TraceBufferRingBuffer(kTraceEventRingBufferChunks);
else if ((options & kInternalEnableSampling) && mode_ == MONITORING_MODE)
return new TraceBufferRingBuffer(kMonitorTraceEventBufferChunks);
else if (options & kInternalEchoToConsole)
return new TraceBufferRingBuffer(kEchoToConsoleTraceEventBufferChunks);
else if (options & kInternalRecordAsMuchAsPossible)
return CreateTraceBufferVectorOfSize(kTraceEventVectorBigBufferChunks);
return CreateTraceBufferVectorOfSize(kTraceEventVectorBufferChunks);
}
TraceBuffer* TraceLog::CreateTraceBufferVectorOfSize(size_t max_chunks) {
return new TraceBufferVector(max_chunks);
}
TraceEvent* TraceLog::AddEventToThreadSharedChunkWhileLocked(
TraceEventHandle* handle, bool check_buffer_is_full) {
lock_.AssertAcquired();
if (thread_shared_chunk_ && thread_shared_chunk_->IsFull()) {
logged_events_->ReturnChunk(thread_shared_chunk_index_,
thread_shared_chunk_.Pass());
}
if (!thread_shared_chunk_) {
thread_shared_chunk_ = logged_events_->GetChunk(
&thread_shared_chunk_index_);
if (check_buffer_is_full)
CheckIfBufferIsFullWhileLocked();
}
if (!thread_shared_chunk_)
return NULL;
size_t event_index;
TraceEvent* trace_event = thread_shared_chunk_->AddTraceEvent(&event_index);
if (trace_event && handle) {
MakeHandle(thread_shared_chunk_->seq(), thread_shared_chunk_index_,
event_index, handle);
}
return trace_event;
}
void TraceLog::CheckIfBufferIsFullWhileLocked() {
lock_.AssertAcquired();
if (logged_events_->IsFull()) {
if (buffer_limit_reached_timestamp_.is_null()) {
buffer_limit_reached_timestamp_ = OffsetNow();
}
SetDisabledWhileLocked();
}
}
void TraceLog::SetEventCallbackEnabled(const TraceConfig& trace_config,
EventCallback cb) {
AutoLock lock(lock_);
subtle::NoBarrier_Store(&event_callback_,
reinterpret_cast<subtle::AtomicWord>(cb));
event_callback_trace_config_ = trace_config;
UpdateCategoryGroupEnabledFlags();
};
void TraceLog::SetEventCallbackDisabled() {
AutoLock lock(lock_);
subtle::NoBarrier_Store(&event_callback_, 0);
UpdateCategoryGroupEnabledFlags();
}
// Flush() works as the following:
// 1. Flush() is called in thread A whose task runner is saved in
// flush_task_runner_;
// 2. If thread_message_loops_ is not empty, thread A posts task to each message
// loop to flush the thread local buffers; otherwise finish the flush;
// 3. FlushCurrentThread() deletes the thread local event buffer:
// - The last batch of events of the thread are flushed into the main buffer;
// - The message loop will be removed from thread_message_loops_;
// If this is the last message loop, finish the flush;
// 4. If any thread hasn't finish its flush in time, finish the flush.
void TraceLog::Flush(const TraceLog::OutputCallback& cb,
bool use_worker_thread) {
FlushInternal(cb, use_worker_thread, false);
}
void TraceLog::CancelTracing(const OutputCallback& cb) {
SetDisabled();
FlushInternal(cb, false, true);
}
void TraceLog::FlushInternal(const TraceLog::OutputCallback& cb,
bool use_worker_thread,
bool discard_events) {
use_worker_thread_ = use_worker_thread;
if (IsEnabled()) {
// Can't flush when tracing is enabled because otherwise PostTask would
// - generate more trace events;
// - deschedule the calling thread on some platforms causing inaccurate
// timing of the trace events.
scoped_refptr<RefCountedString> empty_result = new RefCountedString;
if (!cb.is_null())
cb.Run(empty_result, false);
LOG(WARNING) << "Ignored TraceLog::Flush called when tracing is enabled";
return;
}
int generation = this->generation();
// Copy of thread_message_loops_ to be used without locking.
std::vector<scoped_refptr<SingleThreadTaskRunner> >
thread_message_loop_task_runners;
{
AutoLock lock(lock_);
DCHECK(!flush_task_runner_);
flush_task_runner_ = ThreadTaskRunnerHandle::IsSet()
? ThreadTaskRunnerHandle::Get()
: nullptr;
DCHECK_IMPLIES(thread_message_loops_.size(), flush_task_runner_);
flush_output_callback_ = cb;
if (thread_shared_chunk_) {
logged_events_->ReturnChunk(thread_shared_chunk_index_,
thread_shared_chunk_.Pass());
}
if (thread_message_loops_.size()) {
for (hash_set<MessageLoop*>::const_iterator it =
thread_message_loops_.begin();
it != thread_message_loops_.end(); ++it) {
thread_message_loop_task_runners.push_back((*it)->task_runner());
}
}
}
if (thread_message_loop_task_runners.size()) {
for (size_t i = 0; i < thread_message_loop_task_runners.size(); ++i) {
thread_message_loop_task_runners[i]->PostTask(
FROM_HERE, Bind(&TraceLog::FlushCurrentThread, Unretained(this),
generation, discard_events));
}
flush_task_runner_->PostDelayedTask(
FROM_HERE, Bind(&TraceLog::OnFlushTimeout, Unretained(this), generation,
discard_events),
TimeDelta::FromMilliseconds(kThreadFlushTimeoutMs));
return;
}
FinishFlush(generation, discard_events);
}
// Usually it runs on a different thread.
void TraceLog::ConvertTraceEventsToTraceFormat(
scoped_ptr<TraceBuffer> logged_events,
const OutputCallback& flush_output_callback,
const TraceEvent::ArgumentFilterPredicate& argument_filter_predicate) {
if (flush_output_callback.is_null())
return;
// The callback need to be called at least once even if there is no events
// to let the caller know the completion of flush.
scoped_refptr<RefCountedString> json_events_str_ptr = new RefCountedString();
while (const TraceBufferChunk* chunk = logged_events->NextChunk()) {
for (size_t j = 0; j < chunk->size(); ++j) {
size_t size = json_events_str_ptr->size();
if (size > kTraceEventBufferSizeInBytes) {
flush_output_callback.Run(json_events_str_ptr, true);
json_events_str_ptr = new RefCountedString();
} else if (size) {
json_events_str_ptr->data().append(",\n");
}
chunk->GetEventAt(j)->AppendAsJSON(&(json_events_str_ptr->data()),
argument_filter_predicate);
}
}
flush_output_callback.Run(json_events_str_ptr, false);
}
void TraceLog::FinishFlush(int generation, bool discard_events) {
scoped_ptr<TraceBuffer> previous_logged_events;
OutputCallback flush_output_callback;
TraceEvent::ArgumentFilterPredicate argument_filter_predicate;
if (!CheckGeneration(generation))
return;
{
AutoLock lock(lock_);
previous_logged_events.swap(logged_events_);
UseNextTraceBuffer();
thread_message_loops_.clear();
flush_task_runner_ = NULL;
flush_output_callback = flush_output_callback_;
flush_output_callback_.Reset();
if (trace_options() & kInternalEnableArgumentFilter) {
CHECK(!argument_filter_predicate_.is_null());
argument_filter_predicate = argument_filter_predicate_;
}
}
if (discard_events) {
if (!flush_output_callback.is_null()) {
scoped_refptr<RefCountedString> empty_result = new RefCountedString;
flush_output_callback.Run(empty_result, false);
}
return;
}
if (use_worker_thread_ &&
WorkerPool::PostTask(
FROM_HERE, Bind(&TraceLog::ConvertTraceEventsToTraceFormat,
Passed(&previous_logged_events),
flush_output_callback, argument_filter_predicate),
true)) {
return;
}
ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(),
flush_output_callback,
argument_filter_predicate);
}
// Run in each thread holding a local event buffer.
void TraceLog::FlushCurrentThread(int generation, bool discard_events) {
{
AutoLock lock(lock_);
if (!CheckGeneration(generation) || !flush_task_runner_) {
// This is late. The corresponding flush has finished.
return;
}
}
// This will flush the thread local buffer.
delete thread_local_event_buffer_.Get();
AutoLock lock(lock_);
if (!CheckGeneration(generation) || !flush_task_runner_ ||
thread_message_loops_.size())
return;
flush_task_runner_->PostTask(
FROM_HERE, Bind(&TraceLog::FinishFlush, Unretained(this), generation,
discard_events));
}
void TraceLog::OnFlushTimeout(int generation, bool discard_events) {
{
AutoLock lock(lock_);
if (!CheckGeneration(generation) || !flush_task_runner_) {
// Flush has finished before timeout.
return;
}
LOG(WARNING) <<
"The following threads haven't finished flush in time. "
"If this happens stably for some thread, please call "
"TraceLog::GetInstance()->SetCurrentThreadBlocksMessageLoop() from "
"the thread to avoid its trace events from being lost.";
for (hash_set<MessageLoop*>::const_iterator it =
thread_message_loops_.begin();
it != thread_message_loops_.end(); ++it) {
LOG(WARNING) << "Thread: " << (*it)->thread_name();
}
}
FinishFlush(generation, discard_events);
}
void TraceLog::FlushButLeaveBufferIntact(
const TraceLog::OutputCallback& flush_output_callback) {
scoped_ptr<TraceBuffer> previous_logged_events;
TraceEvent::ArgumentFilterPredicate argument_filter_predicate;
{
AutoLock lock(lock_);
AddMetadataEventsWhileLocked();
if (thread_shared_chunk_) {
// Return the chunk to the main buffer to flush the sampling data.
logged_events_->ReturnChunk(thread_shared_chunk_index_,
thread_shared_chunk_.Pass());
}
previous_logged_events = logged_events_->CloneForIteration().Pass();
if (trace_options() & kInternalEnableArgumentFilter) {
CHECK(!argument_filter_predicate_.is_null());
argument_filter_predicate = argument_filter_predicate_;
}
} // release lock
ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(),
flush_output_callback,
argument_filter_predicate);
}
void TraceLog::UseNextTraceBuffer() {
logged_events_.reset(CreateTraceBuffer());
subtle::NoBarrier_AtomicIncrement(&generation_, 1);
thread_shared_chunk_.reset();
thread_shared_chunk_index_ = 0;
}
TraceEventHandle TraceLog::AddTraceEvent(
char phase,
const unsigned char* category_group_enabled,
const char* name,
unsigned long long id,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const unsigned long long* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned int flags) {
int thread_id = static_cast<int>(base::PlatformThread::CurrentId());
base::TraceTicks now = base::TraceTicks::Now();
return AddTraceEventWithThreadIdAndTimestamp(phase, category_group_enabled,
name, id, thread_id, now,
num_args, arg_names,
arg_types, arg_values,
convertable_values, flags);
}
TraceEventHandle TraceLog::AddTraceEventWithThreadIdAndTimestamp(
char phase,
const unsigned char* category_group_enabled,
const char* name,
unsigned long long id,
int thread_id,
const TraceTicks& timestamp,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const unsigned long long* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned int flags) {
TraceEventHandle handle = { 0, 0, 0 };
if (!*category_group_enabled)
return handle;
// Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
// ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
// GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
if (thread_is_in_trace_event_.Get())
return handle;
AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_);
DCHECK(name);
DCHECK(!timestamp.is_null());
if (flags & TRACE_EVENT_FLAG_MANGLE_ID)
id = MangleEventId(id);
TraceTicks offset_event_timestamp = OffsetTimestamp(timestamp);
TraceTicks now = flags & TRACE_EVENT_FLAG_EXPLICIT_TIMESTAMP ?
OffsetNow() : offset_event_timestamp;
ThreadTicks thread_now = ThreadNow();
// |thread_local_event_buffer_| can be null if the current thread doesn't have
// a message loop or the message loop is blocked.
InitializeThreadLocalEventBufferIfSupported();
auto thread_local_event_buffer = thread_local_event_buffer_.Get();
// Check and update the current thread name only if the event is for the
// current thread to avoid locks in most cases.
if (thread_id == static_cast<int>(PlatformThread::CurrentId())) {
const char* new_name = ThreadIdNameManager::GetInstance()->
GetName(thread_id);
// Check if the thread name has been set or changed since the previous
// call (if any), but don't bother if the new name is empty. Note this will
// not detect a thread name change within the same char* buffer address: we
// favor common case performance over corner case correctness.
if (new_name != g_current_thread_name.Get().Get() &&
new_name && *new_name) {
g_current_thread_name.Get().Set(new_name);
AutoLock thread_info_lock(thread_info_lock_);
hash_map<int, std::string>::iterator existing_name =
thread_names_.find(thread_id);
if (existing_name == thread_names_.end()) {
// This is a new thread id, and a new name.
thread_names_[thread_id] = new_name;
} else {
// This is a thread id that we've seen before, but potentially with a
// new name.
std::vector<StringPiece> existing_names =
base::SplitStringPiece(existing_name->second, ",",
base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
bool found = std::find(existing_names.begin(),
existing_names.end(),
new_name) != existing_names.end();
if (!found) {
if (existing_names.size())
existing_name->second.push_back(',');
existing_name->second.append(new_name);
}
}
}
}
#if defined(OS_WIN)
// This is done sooner rather than later, to avoid creating the event and
// acquiring the lock, which is not needed for ETW as it's already threadsafe.
if (*category_group_enabled & ENABLED_FOR_ETW_EXPORT)
TraceEventETWExport::AddEvent(phase, category_group_enabled, name, id,
num_args, arg_names, arg_types, arg_values,
convertable_values);
#endif // OS_WIN
std::string console_message;
if (*category_group_enabled &
(ENABLED_FOR_RECORDING | ENABLED_FOR_MONITORING)) {
OptionalAutoLock lock(&lock_);
TraceEvent* trace_event = NULL;
if (thread_local_event_buffer) {
trace_event = thread_local_event_buffer->AddTraceEvent(&handle);
} else {
lock.EnsureAcquired();
trace_event = AddEventToThreadSharedChunkWhileLocked(&handle, true);
}
if (trace_event) {
trace_event->Initialize(thread_id, offset_event_timestamp, thread_now,
phase, category_group_enabled, name, id,
num_args, arg_names, arg_types, arg_values,
convertable_values, flags);
#if defined(OS_ANDROID)
trace_event->SendToATrace();
#endif
}
if (trace_options() & kInternalEchoToConsole) {
console_message = EventToConsoleMessage(
phase == TRACE_EVENT_PHASE_COMPLETE ? TRACE_EVENT_PHASE_BEGIN : phase,
timestamp, trace_event);
}
}
if (console_message.size())
LOG(ERROR) << console_message;
if (reinterpret_cast<const unsigned char*>(subtle::NoBarrier_Load(
&watch_category_)) == category_group_enabled) {
bool event_name_matches;
WatchEventCallback watch_event_callback_copy;
{
AutoLock lock(lock_);
event_name_matches = watch_event_name_ == name;
watch_event_callback_copy = watch_event_callback_;
}
if (event_name_matches) {
if (!watch_event_callback_copy.is_null())
watch_event_callback_copy.Run();
}
}
if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) {
EventCallback event_callback = reinterpret_cast<EventCallback>(
subtle::NoBarrier_Load(&event_callback_));
if (event_callback) {
event_callback(offset_event_timestamp,
phase == TRACE_EVENT_PHASE_COMPLETE ?
TRACE_EVENT_PHASE_BEGIN : phase,
category_group_enabled, name, id,
num_args, arg_names, arg_types, arg_values,
flags);
}
}
if (thread_local_event_buffer)
thread_local_event_buffer->ReportOverhead(now, thread_now);
return handle;
}
// May be called when a COMPELETE event ends and the unfinished event has been
// recycled (phase == TRACE_EVENT_PHASE_END and trace_event == NULL).
std::string TraceLog::EventToConsoleMessage(unsigned char phase,
const TraceTicks& timestamp,
TraceEvent* trace_event) {
AutoLock thread_info_lock(thread_info_lock_);
// The caller should translate TRACE_EVENT_PHASE_COMPLETE to
// TRACE_EVENT_PHASE_BEGIN or TRACE_EVENT_END.
DCHECK(phase != TRACE_EVENT_PHASE_COMPLETE);
TimeDelta duration;
int thread_id = trace_event ?
trace_event->thread_id() : PlatformThread::CurrentId();
if (phase == TRACE_EVENT_PHASE_END) {
duration = timestamp - thread_event_start_times_[thread_id].top();
thread_event_start_times_[thread_id].pop();
}
std::string thread_name = thread_names_[thread_id];
if (thread_colors_.find(thread_name) == thread_colors_.end())
thread_colors_[thread_name] = (thread_colors_.size() % 6) + 1;
std::ostringstream log;
log << base::StringPrintf("%s: \x1b[0;3%dm",
thread_name.c_str(),
thread_colors_[thread_name]);
size_t depth = 0;
if (thread_event_start_times_.find(thread_id) !=
thread_event_start_times_.end())
depth = thread_event_start_times_[thread_id].size();
for (size_t i = 0; i < depth; ++i)
log << "| ";
if (trace_event)
trace_event->AppendPrettyPrinted(&log);
if (phase == TRACE_EVENT_PHASE_END)
log << base::StringPrintf(" (%.3f ms)", duration.InMillisecondsF());
log << "\x1b[0;m";
if (phase == TRACE_EVENT_PHASE_BEGIN)
thread_event_start_times_[thread_id].push(timestamp);
return log.str();
}
void TraceLog::AddTraceEventEtw(char phase,
const char* name,
const void* id,
const char* extra) {
#if defined(OS_WIN)
TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}
void TraceLog::AddTraceEventEtw(char phase,
const char* name,
const void* id,
const std::string& extra) {
#if defined(OS_WIN)
TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}
void TraceLog::UpdateTraceEventDuration(
const unsigned char* category_group_enabled,
const char* name,
TraceEventHandle handle) {
// Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
// ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
// GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
if (thread_is_in_trace_event_.Get())
return;
AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_);
ThreadTicks thread_now = ThreadNow();
TraceTicks now = OffsetNow();
std::string console_message;
if (*category_group_enabled & ENABLED_FOR_RECORDING) {
OptionalAutoLock lock(&lock_);
TraceEvent* trace_event = GetEventByHandleInternal(handle, &lock);
if (trace_event) {
DCHECK(trace_event->phase() == TRACE_EVENT_PHASE_COMPLETE);
trace_event->UpdateDuration(now, thread_now);
#if defined(OS_ANDROID)
trace_event->SendToATrace();
#endif
}
if (trace_options() & kInternalEchoToConsole) {
console_message = EventToConsoleMessage(TRACE_EVENT_PHASE_END,
now, trace_event);
}
}
if (console_message.size())
LOG(ERROR) << console_message;
if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) {
EventCallback event_callback = reinterpret_cast<EventCallback>(
subtle::NoBarrier_Load(&event_callback_));
if (event_callback) {
event_callback(now, TRACE_EVENT_PHASE_END, category_group_enabled, name,
trace_event_internal::kNoEventId, 0, NULL, NULL, NULL,
TRACE_EVENT_FLAG_NONE);
}
}
}
void TraceLog::SetWatchEvent(const std::string& category_name,
const std::string& event_name,
const WatchEventCallback& callback) {
const unsigned char* category = GetCategoryGroupEnabled(
category_name.c_str());
AutoLock lock(lock_);
subtle::NoBarrier_Store(&watch_category_,
reinterpret_cast<subtle::AtomicWord>(category));
watch_event_name_ = event_name;
watch_event_callback_ = callback;
}
void TraceLog::CancelWatchEvent() {
AutoLock lock(lock_);
subtle::NoBarrier_Store(&watch_category_, 0);
watch_event_name_ = "";
watch_event_callback_.Reset();
}
uint64 TraceLog::MangleEventId(uint64 id) {
return id ^ process_id_hash_;
}
void TraceLog::AddMetadataEventsWhileLocked() {
lock_.AssertAcquired();
#if !defined(OS_NACL) // NaCl shouldn't expose the process id.
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
0,
"num_cpus", "number",
base::SysInfo::NumberOfProcessors());
#endif
int current_thread_id = static_cast<int>(base::PlatformThread::CurrentId());
if (process_sort_index_ != 0) {
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
current_thread_id,
"process_sort_index", "sort_index",
process_sort_index_);
}
if (process_name_.size()) {
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
current_thread_id,
"process_name", "name",
process_name_);
}
if (process_labels_.size() > 0) {
std::vector<std::string> labels;
for(base::hash_map<int, std::string>::iterator it = process_labels_.begin();
it != process_labels_.end();
it++) {
labels.push_back(it->second);
}
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
current_thread_id,
"process_labels", "labels",
base::JoinString(labels, ","));
}
// Thread sort indices.
for(hash_map<int, int>::iterator it = thread_sort_indices_.begin();
it != thread_sort_indices_.end();
it++) {
if (it->second == 0)
continue;
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
it->first,
"thread_sort_index", "sort_index",
it->second);
}
// Thread names.
AutoLock thread_info_lock(thread_info_lock_);
for(hash_map<int, std::string>::iterator it = thread_names_.begin();
it != thread_names_.end();
it++) {
if (it->second.empty())
continue;
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
it->first,
"thread_name", "name",
it->second);
}
// If buffer is full, add a metadata record to report this.
if (!buffer_limit_reached_timestamp_.is_null()) {
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
current_thread_id,
"trace_buffer_overflowed",
"overflowed_at_ts",
buffer_limit_reached_timestamp_);
}
}
void TraceLog::WaitSamplingEventForTesting() {
if (!sampling_thread_)
return;
sampling_thread_->WaitSamplingEventForTesting();
}
void TraceLog::DeleteForTesting() {
DeleteTraceLogForTesting::Delete();
}
TraceEvent* TraceLog::GetEventByHandle(TraceEventHandle handle) {
return GetEventByHandleInternal(handle, NULL);
}
TraceEvent* TraceLog::GetEventByHandleInternal(TraceEventHandle handle,
OptionalAutoLock* lock) {
if (!handle.chunk_seq)
return NULL;
if (thread_local_event_buffer_.Get()) {
TraceEvent* trace_event =
thread_local_event_buffer_.Get()->GetEventByHandle(handle);
if (trace_event)
return trace_event;
}
// The event has been out-of-control of the thread local buffer.
// Try to get the event from the main buffer with a lock.
if (lock)
lock->EnsureAcquired();
if (thread_shared_chunk_ &&
handle.chunk_index == thread_shared_chunk_index_) {
return handle.chunk_seq == thread_shared_chunk_->seq() ?
thread_shared_chunk_->GetEventAt(handle.event_index) : NULL;
}
return logged_events_->GetEventByHandle(handle);
}
void TraceLog::SetProcessID(int process_id) {
process_id_ = process_id;
// Create a FNV hash from the process ID for XORing.
// See http://isthe.com/chongo/tech/comp/fnv/ for algorithm details.
unsigned long long offset_basis = 14695981039346656037ull;
unsigned long long fnv_prime = 1099511628211ull;
unsigned long long pid = static_cast<unsigned long long>(process_id_);
process_id_hash_ = (offset_basis ^ pid) * fnv_prime;
}
void TraceLog::SetProcessSortIndex(int sort_index) {
AutoLock lock(lock_);
process_sort_index_ = sort_index;
}
void TraceLog::SetProcessName(const std::string& process_name) {
AutoLock lock(lock_);
process_name_ = process_name;
}
void TraceLog::UpdateProcessLabel(
int label_id, const std::string& current_label) {
if(!current_label.length())
return RemoveProcessLabel(label_id);
AutoLock lock(lock_);
process_labels_[label_id] = current_label;
}
void TraceLog::RemoveProcessLabel(int label_id) {
AutoLock lock(lock_);
base::hash_map<int, std::string>::iterator it = process_labels_.find(
label_id);
if (it == process_labels_.end())
return;
process_labels_.erase(it);
}
void TraceLog::SetThreadSortIndex(PlatformThreadId thread_id, int sort_index) {
AutoLock lock(lock_);
thread_sort_indices_[static_cast<int>(thread_id)] = sort_index;
}
void TraceLog::SetTimeOffset(TimeDelta offset) {
time_offset_ = offset;
}
size_t TraceLog::GetObserverCountForTest() const {
return enabled_state_observer_list_.size();
}
void TraceLog::SetCurrentThreadBlocksMessageLoop() {
thread_blocks_message_loop_.Set(true);
if (thread_local_event_buffer_.Get()) {
// This will flush the thread local buffer.
delete thread_local_event_buffer_.Get();
}
}
void ConvertableToTraceFormat::EstimateTraceMemoryOverhead(
TraceEventMemoryOverhead* overhead) {
overhead->Add("ConvertableToTraceFormat(Unknown)", sizeof(*this));
}
} // namespace trace_event
} // namespace base
namespace trace_event_internal {
ScopedTraceBinaryEfficient::ScopedTraceBinaryEfficient(
const char* category_group, const char* name) {
// The single atom works because for now the category_group can only be "gpu".
DCHECK_EQ(strcmp(category_group, "gpu"), 0);
static TRACE_EVENT_API_ATOMIC_WORD atomic = 0;
INTERNAL_TRACE_EVENT_GET_CATEGORY_INFO_CUSTOM_VARIABLES(
category_group, atomic, category_group_enabled_);
name_ = name;
if (*category_group_enabled_) {
event_handle_ =
TRACE_EVENT_API_ADD_TRACE_EVENT_WITH_THREAD_ID_AND_TIMESTAMP(
TRACE_EVENT_PHASE_COMPLETE, category_group_enabled_, name,
trace_event_internal::kNoEventId,
static_cast<int>(base::PlatformThread::CurrentId()),
base::TraceTicks::Now(), 0, NULL, NULL, NULL, NULL,
TRACE_EVENT_FLAG_NONE);
}
}
ScopedTraceBinaryEfficient::~ScopedTraceBinaryEfficient() {
if (*category_group_enabled_) {
TRACE_EVENT_API_UPDATE_TRACE_EVENT_DURATION(category_group_enabled_,
name_, event_handle_);
}
}
} // namespace trace_event_internal