| // Copyright 2013 The Flutter Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Provides a smart pointer class for intrusively reference-counted objects. |
| |
| #ifndef FLUTTER_FML_MEMORY_REF_PTR_H_ |
| #define FLUTTER_FML_MEMORY_REF_PTR_H_ |
| |
| #include <cstddef> |
| #include <functional> |
| #include <utility> |
| |
| #include "flutter/fml/logging.h" |
| #include "flutter/fml/macros.h" |
| #include "flutter/fml/memory/ref_ptr_internal.h" |
| |
| namespace fml { |
| |
| // A smart pointer class for intrusively reference-counted objects (e.g., those |
| // subclassing |RefCountedThreadSafe| -- see ref_counted.h). |
| // |
| // Such objects require *adoption* to obtain the first |RefPtr|, which is |
| // accomplished using |AdoptRef| (see below). (This is due to such objects being |
| // constructed with a reference count of 1. The adoption requirement is |
| // enforced, at least in Debug builds, by assertions.) |
| // |
| // E.g., if |Foo| is an intrusively reference-counted class: |
| // |
| // // The |AdoptRef| may be put in a static factory method (e.g., if |Foo|'s |
| // // constructor is private). |
| // RefPtr<Foo> my_foo_ptr(AdoptRef(new Foo())); |
| // |
| // // Now OK, since "my Foo" has been adopted ... |
| // RefPtr<Foo> another_ptr_to_my_foo(my_foo_ptr.get()); |
| // |
| // // ... though this would preferable in this situation. |
| // RefPtr<Foo> yet_another_ptr_to_my_foo(my_foo_ptr); |
| // |
| // Unlike Chromium's |scoped_refptr|, |RefPtr| is only explicitly constructible |
| // from a plain pointer (and not assignable). It is however implicitly |
| // constructible from |nullptr|. So: |
| // |
| // RefPtr<Foo> foo(plain_ptr_to_adopted_foo); // OK. |
| // foo = plain_ptr_to_adopted_foo; // Not OK (doesn't compile). |
| // foo = RefPtr<Foo>(plain_ptr_to_adopted_foo); // OK. |
| // foo = nullptr; // OK. |
| // |
| // And if we have |void MyFunction(RefPtr<Foo> foo)|, calling it using |
| // |MyFunction(nullptr)| is also valid. |
| // |
| // Implementation note: For copy/move constructors/operator=s, we often have |
| // templated versions, so that the operation can be done on a |RefPtr<U>|, where |
| // |U| is a subclass of |T|. However, we also have non-templated versions with |
| // |U = T|, since the templated versions don't count as copy/move |
| // constructors/operator=s for the purposes of causing the default copy |
| // constructor/operator= to be deleted. E.g., if we didn't declare any |
| // non-templated versions, we'd get the default copy constructor/operator= (we'd |
| // only not get the default move constructor/operator= by virtue of having a |
| // destructor)! (In fact, it'd suffice to only declare a non-templated move |
| // constructor or move operator=, which would cause the copy |
| // constructor/operator= to be deleted, but for clarity we include explicit |
| // non-templated versions of everything.) |
| template <typename T> |
| class RefPtr final { |
| public: |
| RefPtr() : ptr_(nullptr) {} |
| RefPtr(std::nullptr_t) |
| : ptr_(nullptr) {} // NOLINT(google-explicit-constructor) |
| |
| // Explicit constructor from a plain pointer (to an object that must have |
| // already been adopted). (Note that in |T::T()|, references to |this| cannot |
| // be taken, since the object being constructed will not have been adopted |
| // yet.) |
| template <typename U> |
| explicit RefPtr(U* p) : ptr_(p) { |
| if (ptr_) { |
| ptr_->AddRef(); |
| } |
| } |
| |
| // Copy constructor. |
| RefPtr(const RefPtr<T>& r) : ptr_(r.ptr_) { |
| if (ptr_) { |
| ptr_->AddRef(); |
| } |
| } |
| |
| template <typename U> |
| RefPtr(const RefPtr<U>& r) |
| : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
| if (ptr_) { |
| ptr_->AddRef(); |
| } |
| } |
| |
| // Move constructor. |
| RefPtr(RefPtr<T>&& r) : ptr_(r.ptr_) { r.ptr_ = nullptr; } |
| |
| template <typename U> |
| RefPtr(RefPtr<U>&& r) : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
| r.ptr_ = nullptr; |
| } |
| |
| // Destructor. |
| ~RefPtr() { |
| if (ptr_) { |
| ptr_->Release(); |
| } |
| } |
| |
| T* get() const { return ptr_; } |
| |
| T& operator*() const { |
| FML_DCHECK(ptr_); |
| return *ptr_; |
| } |
| |
| T* operator->() const { |
| FML_DCHECK(ptr_); |
| return ptr_; |
| } |
| |
| // Copy assignment. |
| RefPtr<T>& operator=(const RefPtr<T>& r) { |
| // Handle self-assignment. |
| if (r.ptr_ == ptr_) { |
| return *this; |
| } |
| if (r.ptr_) { |
| r.ptr_->AddRef(); |
| } |
| T* old_ptr = ptr_; |
| ptr_ = r.ptr_; |
| if (old_ptr) { |
| old_ptr->Release(); |
| } |
| return *this; |
| } |
| |
| template <typename U> |
| RefPtr<T>& operator=(const RefPtr<U>& r) { |
| if (reinterpret_cast<T*>(r.ptr_) == ptr_) { |
| return *this; |
| } |
| if (r.ptr_) { |
| r.ptr_->AddRef(); |
| } |
| T* old_ptr = ptr_; |
| ptr_ = r.ptr_; |
| if (old_ptr) { |
| old_ptr->Release(); |
| } |
| return *this; |
| } |
| |
| // Move assignment. |
| // Note: Like |std::shared_ptr|, we support self-move and move assignment is |
| // equivalent to |RefPtr<T>(std::move(r)).swap(*this)|. |
| RefPtr<T>& operator=(RefPtr<T>&& r) { |
| RefPtr<T>(std::move(r)).swap(*this); |
| return *this; |
| } |
| |
| template <typename U> |
| RefPtr<T>& operator=(RefPtr<U>&& r) { |
| RefPtr<T>(std::move(r)).swap(*this); |
| return *this; |
| } |
| |
| void swap(RefPtr<T>& r) { |
| T* p = ptr_; |
| ptr_ = r.ptr_; |
| r.ptr_ = p; |
| } |
| |
| // Returns a new |RefPtr<T>| with the same contents as this pointer. Useful |
| // when a function takes a |RefPtr<T>&&| argument and the caller wants to |
| // retain its reference (rather than moving it). |
| RefPtr<T> Clone() const { return *this; } |
| |
| explicit operator bool() const { return !!ptr_; } |
| |
| template <typename U> |
| bool operator==(const RefPtr<U>& rhs) const { |
| return ptr_ == rhs.ptr_; |
| } |
| |
| template <typename U> |
| bool operator!=(const RefPtr<U>& rhs) const { |
| return !operator==(rhs); |
| } |
| |
| template <typename U> |
| bool operator<(const RefPtr<U>& rhs) const { |
| return ptr_ < rhs.ptr_; |
| } |
| |
| private: |
| template <typename U> |
| friend class RefPtr; |
| |
| friend RefPtr<T> AdoptRef<T>(T*); |
| |
| enum AdoptTag { ADOPT }; |
| RefPtr(T* ptr, AdoptTag) : ptr_(ptr) { FML_DCHECK(ptr_); } |
| |
| T* ptr_; |
| }; |
| |
| // Adopts a newly-created |T|. Typically used in a static factory method, like: |
| // |
| // // static |
| // RefPtr<Foo> Foo::Create() { |
| // return AdoptRef(new Foo()); |
| // } |
| template <typename T> |
| inline RefPtr<T> AdoptRef(T* ptr) { |
| #ifndef NDEBUG |
| ptr->Adopt(); |
| #endif |
| return RefPtr<T>(ptr, RefPtr<T>::ADOPT); |
| } |
| |
| // Constructs a |RefPtr<T>| from a plain pointer (to an object that must |
| // have already been adoped). Avoids having to spell out the full type name. |
| // |
| // Foo* foo = ...; |
| // auto foo_ref = Ref(foo); |
| // |
| // (|foo_ref| will be of type |RefPtr<Foo>|.) |
| template <typename T> |
| inline RefPtr<T> Ref(T* ptr) { |
| return RefPtr<T>(ptr); |
| } |
| |
| // Creates an intrusively reference counted |T|, producing a |RefPtr<T>| (and |
| // performing the required adoption). Use like: |
| // |
| // auto my_foo = MakeRefCounted<Foo>(ctor_arg1, ctor_arg2); |
| // |
| // (|my_foo| will be of type |RefPtr<Foo>|.) |
| template <typename T, typename... Args> |
| RefPtr<T> MakeRefCounted(Args&&... args) { |
| return internal::MakeRefCountedHelper<T>::MakeRefCounted( |
| std::forward<Args>(args)...); |
| } |
| |
| } // namespace fml |
| |
| // Inject custom std::hash<> function object for |RefPtr<T>|. |
| namespace std { |
| template <typename T> |
| struct hash<fml::RefPtr<T>> { |
| using argument_type = fml::RefPtr<T>; |
| using result_type = std::size_t; |
| |
| result_type operator()(const argument_type& ptr) const { |
| return std::hash<T*>()(ptr.get()); |
| } |
| }; |
| } // namespace std |
| |
| #endif // FLUTTER_FML_MEMORY_REF_PTR_H_ |