| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "url/url_canon_ip.h" |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <limits> |
| |
| #include "base/logging.h" |
| #include "url/url_canon_internal.h" |
| |
| namespace url { |
| |
| namespace { |
| |
| // Converts one of the character types that represent a numerical base to the |
| // corresponding base. |
| int BaseForType(SharedCharTypes type) { |
| switch (type) { |
| case CHAR_HEX: |
| return 16; |
| case CHAR_DEC: |
| return 10; |
| case CHAR_OCT: |
| return 8; |
| default: |
| return 0; |
| } |
| } |
| |
| template<typename CHAR, typename UCHAR> |
| bool DoFindIPv4Components(const CHAR* spec, |
| const Component& host, |
| Component components[4]) { |
| if (!host.is_nonempty()) |
| return false; |
| |
| int cur_component = 0; // Index of the component we're working on. |
| int cur_component_begin = host.begin; // Start of the current component. |
| int end = host.end(); |
| for (int i = host.begin; /* nothing */; i++) { |
| if (i >= end || spec[i] == '.') { |
| // Found the end of the current component. |
| int component_len = i - cur_component_begin; |
| components[cur_component] = Component(cur_component_begin, component_len); |
| |
| // The next component starts after the dot. |
| cur_component_begin = i + 1; |
| cur_component++; |
| |
| // Don't allow empty components (two dots in a row), except we may |
| // allow an empty component at the end (this would indicate that the |
| // input ends in a dot). We also want to error if the component is |
| // empty and it's the only component (cur_component == 1). |
| if (component_len == 0 && (i < end || cur_component == 1)) |
| return false; |
| |
| if (i >= end) |
| break; // End of the input. |
| |
| if (cur_component == 4) { |
| // Anything else after the 4th component is an error unless it is a |
| // dot that would otherwise be treated as the end of input. |
| if (spec[i] == '.' && i + 1 == end) |
| break; |
| return false; |
| } |
| } else if (static_cast<UCHAR>(spec[i]) >= 0x80 || |
| !IsIPv4Char(static_cast<unsigned char>(spec[i]))) { |
| // Invalid character for an IPv4 address. |
| return false; |
| } |
| } |
| |
| // Fill in any unused components. |
| while (cur_component < 4) |
| components[cur_component++] = Component(); |
| return true; |
| } |
| |
| // Converts an IPv4 component to a 32-bit number, while checking for overflow. |
| // |
| // Possible return values: |
| // - IPV4 - The number was valid, and did not overflow. |
| // - BROKEN - The input was numeric, but too large for a 32-bit field. |
| // - NEUTRAL - Input was not numeric. |
| // |
| // The input is assumed to be ASCII. FindIPv4Components should have stripped |
| // out any input that is greater than 7 bits. The components are assumed |
| // to be non-empty. |
| template<typename CHAR> |
| CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec, |
| const Component& component, |
| uint32_t* number) { |
| // Figure out the base |
| SharedCharTypes base; |
| int base_prefix_len = 0; // Size of the prefix for this base. |
| if (spec[component.begin] == '0') { |
| // Either hex or dec, or a standalone zero. |
| if (component.len == 1) { |
| base = CHAR_DEC; |
| } else if (spec[component.begin + 1] == 'X' || |
| spec[component.begin + 1] == 'x') { |
| base = CHAR_HEX; |
| base_prefix_len = 2; |
| } else { |
| base = CHAR_OCT; |
| base_prefix_len = 1; |
| } |
| } else { |
| base = CHAR_DEC; |
| } |
| |
| // Extend the prefix to consume all leading zeros. |
| while (base_prefix_len < component.len && |
| spec[component.begin + base_prefix_len] == '0') |
| base_prefix_len++; |
| |
| // Put the component, minus any base prefix, into a NULL-terminated buffer so |
| // we can call the standard library. Because leading zeros have already been |
| // discarded, filling the entire buffer is guaranteed to trigger the 32-bit |
| // overflow check. |
| const int kMaxComponentLen = 16; |
| char buf[kMaxComponentLen + 1]; // digits + '\0' |
| int dest_i = 0; |
| for (int i = component.begin + base_prefix_len; i < component.end(); i++) { |
| // We know the input is 7-bit, so convert to narrow (if this is the wide |
| // version of the template) by casting. |
| char input = static_cast<char>(spec[i]); |
| |
| // Validate that this character is OK for the given base. |
| if (!IsCharOfType(input, base)) |
| return CanonHostInfo::NEUTRAL; |
| |
| // Fill the buffer, if there's space remaining. This check allows us to |
| // verify that all characters are numeric, even those that don't fit. |
| if (dest_i < kMaxComponentLen) |
| buf[dest_i++] = input; |
| } |
| |
| buf[dest_i] = '\0'; |
| |
| // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal |
| // number can overflow a 64-bit number in <= 16 characters). |
| uint64_t num = _strtoui64(buf, NULL, BaseForType(base)); |
| |
| // Check for 32-bit overflow. |
| if (num > std::numeric_limits<uint32_t>::max()) |
| return CanonHostInfo::BROKEN; |
| |
| // No overflow. Success! |
| *number = static_cast<uint32_t>(num); |
| return CanonHostInfo::IPV4; |
| } |
| |
| // See declaration of IPv4AddressToNumber for documentation. |
| template<typename CHAR> |
| CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec, |
| const Component& host, |
| unsigned char address[4], |
| int* num_ipv4_components) { |
| // The identified components. Not all may exist. |
| Component components[4]; |
| if (!FindIPv4Components(spec, host, components)) |
| return CanonHostInfo::NEUTRAL; |
| |
| // Convert existing components to digits. Values up to |
| // |existing_components| will be valid. |
| uint32_t component_values[4]; |
| int existing_components = 0; |
| |
| // Set to true if one or more components are BROKEN. BROKEN is only |
| // returned if all components are IPV4 or BROKEN, so, for example, |
| // 12345678912345.de returns NEUTRAL rather than broken. |
| bool broken = false; |
| for (int i = 0; i < 4; i++) { |
| if (components[i].len <= 0) |
| continue; |
| CanonHostInfo::Family family = IPv4ComponentToNumber( |
| spec, components[i], &component_values[existing_components]); |
| |
| if (family == CanonHostInfo::BROKEN) { |
| broken = true; |
| } else if (family != CanonHostInfo::IPV4) { |
| // Stop if we hit a non-BROKEN invalid non-empty component. |
| return family; |
| } |
| |
| existing_components++; |
| } |
| |
| if (broken) |
| return CanonHostInfo::BROKEN; |
| |
| // Use that sequence of numbers to fill out the 4-component IP address. |
| |
| // First, process all components but the last, while making sure each fits |
| // within an 8-bit field. |
| for (int i = 0; i < existing_components - 1; i++) { |
| if (component_values[i] > std::numeric_limits<uint8_t>::max()) |
| return CanonHostInfo::BROKEN; |
| address[i] = static_cast<unsigned char>(component_values[i]); |
| } |
| |
| // Next, consume the last component to fill in the remaining bytes. |
| // Work around a gcc 4.9 bug. crbug.com/392872 |
| #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| #endif |
| uint32_t last_value = component_values[existing_components - 1]; |
| #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4) |
| #pragma GCC diagnostic pop |
| #endif |
| for (int i = 3; i >= existing_components - 1; i--) { |
| address[i] = static_cast<unsigned char>(last_value); |
| last_value >>= 8; |
| } |
| |
| // If the last component has residual bits, report overflow. |
| if (last_value != 0) |
| return CanonHostInfo::BROKEN; |
| |
| // Tell the caller how many components we saw. |
| *num_ipv4_components = existing_components; |
| |
| // Success! |
| return CanonHostInfo::IPV4; |
| } |
| |
| // Return true if we've made a final IPV4/BROKEN decision, false if the result |
| // is NEUTRAL, and we could use a second opinion. |
| template<typename CHAR, typename UCHAR> |
| bool DoCanonicalizeIPv4Address(const CHAR* spec, |
| const Component& host, |
| CanonOutput* output, |
| CanonHostInfo* host_info) { |
| host_info->family = IPv4AddressToNumber( |
| spec, host, host_info->address, &host_info->num_ipv4_components); |
| |
| switch (host_info->family) { |
| case CanonHostInfo::IPV4: |
| // Definitely an IPv4 address. |
| host_info->out_host.begin = output->length(); |
| AppendIPv4Address(host_info->address, output); |
| host_info->out_host.len = output->length() - host_info->out_host.begin; |
| return true; |
| case CanonHostInfo::BROKEN: |
| // Definitely broken. |
| return true; |
| default: |
| // Could be IPv6 or a hostname. |
| return false; |
| } |
| } |
| |
| // Helper class that describes the main components of an IPv6 input string. |
| // See the following examples to understand how it breaks up an input string: |
| // |
| // [Example 1]: input = "[::aa:bb]" |
| // ==> num_hex_components = 2 |
| // ==> hex_components[0] = Component(3,2) "aa" |
| // ==> hex_components[1] = Component(6,2) "bb" |
| // ==> index_of_contraction = 0 |
| // ==> ipv4_component = Component(0, -1) |
| // |
| // [Example 2]: input = "[1:2::3:4:5]" |
| // ==> num_hex_components = 5 |
| // ==> hex_components[0] = Component(1,1) "1" |
| // ==> hex_components[1] = Component(3,1) "2" |
| // ==> hex_components[2] = Component(6,1) "3" |
| // ==> hex_components[3] = Component(8,1) "4" |
| // ==> hex_components[4] = Component(10,1) "5" |
| // ==> index_of_contraction = 2 |
| // ==> ipv4_component = Component(0, -1) |
| // |
| // [Example 3]: input = "[::ffff:192.168.0.1]" |
| // ==> num_hex_components = 1 |
| // ==> hex_components[0] = Component(3,4) "ffff" |
| // ==> index_of_contraction = 0 |
| // ==> ipv4_component = Component(8, 11) "192.168.0.1" |
| // |
| // [Example 4]: input = "[1::]" |
| // ==> num_hex_components = 1 |
| // ==> hex_components[0] = Component(1,1) "1" |
| // ==> index_of_contraction = 1 |
| // ==> ipv4_component = Component(0, -1) |
| // |
| // [Example 5]: input = "[::192.168.0.1]" |
| // ==> num_hex_components = 0 |
| // ==> index_of_contraction = 0 |
| // ==> ipv4_component = Component(8, 11) "192.168.0.1" |
| // |
| struct IPv6Parsed { |
| // Zero-out the parse information. |
| void reset() { |
| num_hex_components = 0; |
| index_of_contraction = -1; |
| ipv4_component.reset(); |
| } |
| |
| // There can be up to 8 hex components (colon separated) in the literal. |
| Component hex_components[8]; |
| |
| // The count of hex components present. Ranges from [0,8]. |
| int num_hex_components; |
| |
| // The index of the hex component that the "::" contraction precedes, or |
| // -1 if there is no contraction. |
| int index_of_contraction; |
| |
| // The range of characters which are an IPv4 literal. |
| Component ipv4_component; |
| }; |
| |
| // Parse the IPv6 input string. If parsing succeeded returns true and fills |
| // |parsed| with the information. If parsing failed (because the input is |
| // invalid) returns false. |
| template<typename CHAR, typename UCHAR> |
| bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) { |
| // Zero-out the info. |
| parsed->reset(); |
| |
| if (!host.is_nonempty()) |
| return false; |
| |
| // The index for start and end of address range (no brackets). |
| int begin = host.begin; |
| int end = host.end(); |
| |
| int cur_component_begin = begin; // Start of the current component. |
| |
| // Scan through the input, searching for hex components, "::" contractions, |
| // and IPv4 components. |
| for (int i = begin; /* i <= end */; i++) { |
| bool is_colon = spec[i] == ':'; |
| bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':'; |
| |
| // We reached the end of the current component if we encounter a colon |
| // (separator between hex components, or start of a contraction), or end of |
| // input. |
| if (is_colon || i == end) { |
| int component_len = i - cur_component_begin; |
| |
| // A component should not have more than 4 hex digits. |
| if (component_len > 4) |
| return false; |
| |
| // Don't allow empty components. |
| if (component_len == 0) { |
| // The exception is when contractions appear at beginning of the |
| // input or at the end of the input. |
| if (!((is_contraction && i == begin) || (i == end && |
| parsed->index_of_contraction == parsed->num_hex_components))) |
| return false; |
| } |
| |
| // Add the hex component we just found to running list. |
| if (component_len > 0) { |
| // Can't have more than 8 components! |
| if (parsed->num_hex_components >= 8) |
| return false; |
| |
| parsed->hex_components[parsed->num_hex_components++] = |
| Component(cur_component_begin, component_len); |
| } |
| } |
| |
| if (i == end) |
| break; // Reached the end of the input, DONE. |
| |
| // We found a "::" contraction. |
| if (is_contraction) { |
| // There can be at most one contraction in the literal. |
| if (parsed->index_of_contraction != -1) |
| return false; |
| parsed->index_of_contraction = parsed->num_hex_components; |
| ++i; // Consume the colon we peeked. |
| } |
| |
| if (is_colon) { |
| // Colons are separators between components, keep track of where the |
| // current component started (after this colon). |
| cur_component_begin = i + 1; |
| } else { |
| if (static_cast<UCHAR>(spec[i]) >= 0x80) |
| return false; // Not ASCII. |
| |
| if (!IsHexChar(static_cast<unsigned char>(spec[i]))) { |
| // Regular components are hex numbers. It is also possible for |
| // a component to be an IPv4 address in dotted form. |
| if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) { |
| // Since IPv4 address can only appear at the end, assume the rest |
| // of the string is an IPv4 address. (We will parse this separately |
| // later). |
| parsed->ipv4_component = |
| Component(cur_component_begin, end - cur_component_begin); |
| break; |
| } else { |
| // The character was neither a hex digit, nor an IPv4 character. |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Verifies the parsed IPv6 information, checking that the various components |
| // add up to the right number of bits (hex components are 16 bits, while |
| // embedded IPv4 formats are 32 bits, and contractions are placeholdes for |
| // 16 or more bits). Returns true if sizes match up, false otherwise. On |
| // success writes the length of the contraction (if any) to |
| // |out_num_bytes_of_contraction|. |
| bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed, |
| int* out_num_bytes_of_contraction) { |
| // Each group of four hex digits contributes 16 bits. |
| int num_bytes_without_contraction = parsed.num_hex_components * 2; |
| |
| // If an IPv4 address was embedded at the end, it contributes 32 bits. |
| if (parsed.ipv4_component.is_valid()) |
| num_bytes_without_contraction += 4; |
| |
| // If there was a "::" contraction, its size is going to be: |
| // MAX([16bits], [128bits] - num_bytes_without_contraction). |
| int num_bytes_of_contraction = 0; |
| if (parsed.index_of_contraction != -1) { |
| num_bytes_of_contraction = 16 - num_bytes_without_contraction; |
| if (num_bytes_of_contraction < 2) |
| num_bytes_of_contraction = 2; |
| } |
| |
| // Check that the numbers add up. |
| if (num_bytes_without_contraction + num_bytes_of_contraction != 16) |
| return false; |
| |
| *out_num_bytes_of_contraction = num_bytes_of_contraction; |
| return true; |
| } |
| |
| // Converts a hex comonent into a number. This cannot fail since the caller has |
| // already verified that each character in the string was a hex digit, and |
| // that there were no more than 4 characters. |
| template <typename CHAR> |
| uint16_t IPv6HexComponentToNumber(const CHAR* spec, |
| const Component& component) { |
| DCHECK(component.len <= 4); |
| |
| // Copy the hex string into a C-string. |
| char buf[5]; |
| for (int i = 0; i < component.len; ++i) |
| buf[i] = static_cast<char>(spec[component.begin + i]); |
| buf[component.len] = '\0'; |
| |
| // Convert it to a number (overflow is not possible, since with 4 hex |
| // characters we can at most have a 16 bit number). |
| return static_cast<uint16_t>(_strtoui64(buf, NULL, 16)); |
| } |
| |
| // Converts an IPv6 address to a 128-bit number (network byte order), returning |
| // true on success. False means that the input was not a valid IPv6 address. |
| template<typename CHAR, typename UCHAR> |
| bool DoIPv6AddressToNumber(const CHAR* spec, |
| const Component& host, |
| unsigned char address[16]) { |
| // Make sure the component is bounded by '[' and ']'. |
| int end = host.end(); |
| if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']') |
| return false; |
| |
| // Exclude the square brackets. |
| Component ipv6_comp(host.begin + 1, host.len - 2); |
| |
| // Parse the IPv6 address -- identify where all the colon separated hex |
| // components are, the "::" contraction, and the embedded IPv4 address. |
| IPv6Parsed ipv6_parsed; |
| if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed)) |
| return false; |
| |
| // Do some basic size checks to make sure that the address doesn't |
| // specify more than 128 bits or fewer than 128 bits. This also resolves |
| // how may zero bytes the "::" contraction represents. |
| int num_bytes_of_contraction; |
| if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction)) |
| return false; |
| |
| int cur_index_in_address = 0; |
| |
| // Loop through each hex components, and contraction in order. |
| for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) { |
| // Append the contraction if it appears before this component. |
| if (i == ipv6_parsed.index_of_contraction) { |
| for (int j = 0; j < num_bytes_of_contraction; ++j) |
| address[cur_index_in_address++] = 0; |
| } |
| // Append the hex component's value. |
| if (i != ipv6_parsed.num_hex_components) { |
| // Get the 16-bit value for this hex component. |
| uint16_t number = IPv6HexComponentToNumber<CHAR>( |
| spec, ipv6_parsed.hex_components[i]); |
| // Append to |address|, in network byte order. |
| address[cur_index_in_address++] = (number & 0xFF00) >> 8; |
| address[cur_index_in_address++] = (number & 0x00FF); |
| } |
| } |
| |
| // If there was an IPv4 section, convert it into a 32-bit number and append |
| // it to |address|. |
| if (ipv6_parsed.ipv4_component.is_valid()) { |
| // Append the 32-bit number to |address|. |
| int ignored_num_ipv4_components; |
| if (CanonHostInfo::IPV4 != |
| IPv4AddressToNumber(spec, |
| ipv6_parsed.ipv4_component, |
| &address[cur_index_in_address], |
| &ignored_num_ipv4_components)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Searches for the longest sequence of zeros in |address|, and writes the |
| // range into |contraction_range|. The run of zeros must be at least 16 bits, |
| // and if there is a tie the first is chosen. |
| void ChooseIPv6ContractionRange(const unsigned char address[16], |
| Component* contraction_range) { |
| // The longest run of zeros in |address| seen so far. |
| Component max_range; |
| |
| // The current run of zeros in |address| being iterated over. |
| Component cur_range; |
| |
| for (int i = 0; i < 16; i += 2) { |
| // Test for 16 bits worth of zero. |
| bool is_zero = (address[i] == 0 && address[i + 1] == 0); |
| |
| if (is_zero) { |
| // Add the zero to the current range (or start a new one). |
| if (!cur_range.is_valid()) |
| cur_range = Component(i, 0); |
| cur_range.len += 2; |
| } |
| |
| if (!is_zero || i == 14) { |
| // Just completed a run of zeros. If the run is greater than 16 bits, |
| // it is a candidate for the contraction. |
| if (cur_range.len > 2 && cur_range.len > max_range.len) { |
| max_range = cur_range; |
| } |
| cur_range.reset(); |
| } |
| } |
| *contraction_range = max_range; |
| } |
| |
| // Return true if we've made a final IPV6/BROKEN decision, false if the result |
| // is NEUTRAL, and we could use a second opinion. |
| template<typename CHAR, typename UCHAR> |
| bool DoCanonicalizeIPv6Address(const CHAR* spec, |
| const Component& host, |
| CanonOutput* output, |
| CanonHostInfo* host_info) { |
| // Turn the IP address into a 128 bit number. |
| if (!IPv6AddressToNumber(spec, host, host_info->address)) { |
| // If it's not an IPv6 address, scan for characters that should *only* |
| // exist in an IPv6 address. |
| for (int i = host.begin; i < host.end(); i++) { |
| switch (spec[i]) { |
| case '[': |
| case ']': |
| case ':': |
| host_info->family = CanonHostInfo::BROKEN; |
| return true; |
| } |
| } |
| |
| // No invalid characters. Could still be IPv4 or a hostname. |
| host_info->family = CanonHostInfo::NEUTRAL; |
| return false; |
| } |
| |
| host_info->out_host.begin = output->length(); |
| output->push_back('['); |
| AppendIPv6Address(host_info->address, output); |
| output->push_back(']'); |
| host_info->out_host.len = output->length() - host_info->out_host.begin; |
| |
| host_info->family = CanonHostInfo::IPV6; |
| return true; |
| } |
| |
| } // namespace |
| |
| void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) { |
| for (int i = 0; i < 4; i++) { |
| char str[16]; |
| _itoa_s(address[i], str, 10); |
| |
| for (int ch = 0; str[ch] != 0; ch++) |
| output->push_back(str[ch]); |
| |
| if (i != 3) |
| output->push_back('.'); |
| } |
| } |
| |
| void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) { |
| // We will output the address according to the rules in: |
| // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4 |
| |
| // Start by finding where to place the "::" contraction (if any). |
| Component contraction_range; |
| ChooseIPv6ContractionRange(address, &contraction_range); |
| |
| for (int i = 0; i <= 14;) { |
| // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive. |
| DCHECK(i % 2 == 0); |
| if (i == contraction_range.begin && contraction_range.len > 0) { |
| // Jump over the contraction. |
| if (i == 0) |
| output->push_back(':'); |
| output->push_back(':'); |
| i = contraction_range.end(); |
| } else { |
| // Consume the next 16 bits from |address|. |
| int x = address[i] << 8 | address[i + 1]; |
| |
| i += 2; |
| |
| // Stringify the 16 bit number (at most requires 4 hex digits). |
| char str[5]; |
| _itoa_s(x, str, 16); |
| for (int ch = 0; str[ch] != 0; ++ch) |
| output->push_back(str[ch]); |
| |
| // Put a colon after each number, except the last. |
| if (i < 16) |
| output->push_back(':'); |
| } |
| } |
| } |
| |
| bool FindIPv4Components(const char* spec, |
| const Component& host, |
| Component components[4]) { |
| return DoFindIPv4Components<char, unsigned char>(spec, host, components); |
| } |
| |
| bool FindIPv4Components(const base::char16* spec, |
| const Component& host, |
| Component components[4]) { |
| return DoFindIPv4Components<base::char16, base::char16>( |
| spec, host, components); |
| } |
| |
| void CanonicalizeIPAddress(const char* spec, |
| const Component& host, |
| CanonOutput* output, |
| CanonHostInfo* host_info) { |
| if (DoCanonicalizeIPv4Address<char, unsigned char>( |
| spec, host, output, host_info)) |
| return; |
| if (DoCanonicalizeIPv6Address<char, unsigned char>( |
| spec, host, output, host_info)) |
| return; |
| } |
| |
| void CanonicalizeIPAddress(const base::char16* spec, |
| const Component& host, |
| CanonOutput* output, |
| CanonHostInfo* host_info) { |
| if (DoCanonicalizeIPv4Address<base::char16, base::char16>( |
| spec, host, output, host_info)) |
| return; |
| if (DoCanonicalizeIPv6Address<base::char16, base::char16>( |
| spec, host, output, host_info)) |
| return; |
| } |
| |
| CanonHostInfo::Family IPv4AddressToNumber(const char* spec, |
| const Component& host, |
| unsigned char address[4], |
| int* num_ipv4_components) { |
| return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components); |
| } |
| |
| CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec, |
| const Component& host, |
| unsigned char address[4], |
| int* num_ipv4_components) { |
| return DoIPv4AddressToNumber<base::char16>( |
| spec, host, address, num_ipv4_components); |
| } |
| |
| bool IPv6AddressToNumber(const char* spec, |
| const Component& host, |
| unsigned char address[16]) { |
| return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address); |
| } |
| |
| bool IPv6AddressToNumber(const base::char16* spec, |
| const Component& host, |
| unsigned char address[16]) { |
| return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address); |
| } |
| |
| } // namespace url |