blob: f5ad45b67f764a5fe8ac46dd9450a92d69275242 [file] [log] [blame]
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef FLUTTER_IMPELLER_GEOMETRY_GEOMETRY_ASSERTS_H_
#define FLUTTER_IMPELLER_GEOMETRY_GEOMETRY_ASSERTS_H_
#include <array>
#include <iostream>
#include "gtest/gtest.h"
#include "impeller/geometry/matrix.h"
#include "impeller/geometry/point.h"
#include "impeller/geometry/rect.h"
#include "impeller/geometry/size.h"
#include "impeller/geometry/vector.h"
inline bool NumberNear(double a, double b) {
if (a == b) {
return true;
}
if (std::isnan(a) || std::isnan(b)) {
return false;
}
// We used to compare based on an absolute difference of 1e-3 which
// would allow up to 10 bits of mantissa difference in a float
// (leaving 14 bits of accuracy being tested). Some numbers in the tests
// will fail with a bit difference of up to 19 (a little over 4 bits) even
// though the numbers print out identically using the float ostream output
// at the default output precision. Choosing a max "units of least precision"
// of 32 allows up to 5 bits of imprecision.
static constexpr float kImpellerTestingMaxULP = 32;
// We also impose a minimum step size so that cases of comparing numbers
// very close to 0.0 don't compute a huge number of ULPs due to the ever
// increasing precision near 0. This value is approximately the step size
// of numbers going less than 1.0f.
static constexpr float kMinimumULPStep = (1.0f / (1 << 24));
auto adjust_step = [](float v) {
return (std::abs(v) < kMinimumULPStep) ? std::copysignf(kMinimumULPStep, v)
: v;
};
float step_ab = adjust_step(a - std::nexttowardf(a, b));
float step_ba = adjust_step(b - std::nexttowardf(b, a));
float ab_ulps = (a - b) / step_ab;
float ba_ulps = (b - a) / step_ba;
FML_CHECK(ab_ulps >= 0 && ba_ulps >= 0);
return (std::min(ab_ulps, ba_ulps) < kImpellerTestingMaxULP);
}
inline ::testing::AssertionResult MatrixNear(impeller::Matrix a,
impeller::Matrix b) {
auto equal = NumberNear(a.m[0], b.m[0]) //
&& NumberNear(a.m[1], b.m[1]) //
&& NumberNear(a.m[2], b.m[2]) //
&& NumberNear(a.m[3], b.m[3]) //
&& NumberNear(a.m[4], b.m[4]) //
&& NumberNear(a.m[5], b.m[5]) //
&& NumberNear(a.m[6], b.m[6]) //
&& NumberNear(a.m[7], b.m[7]) //
&& NumberNear(a.m[8], b.m[8]) //
&& NumberNear(a.m[9], b.m[9]) //
&& NumberNear(a.m[10], b.m[10]) //
&& NumberNear(a.m[11], b.m[11]) //
&& NumberNear(a.m[12], b.m[12]) //
&& NumberNear(a.m[13], b.m[13]) //
&& NumberNear(a.m[14], b.m[14]) //
&& NumberNear(a.m[15], b.m[15]);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure()
<< "Matrixes are not equal " << a << " " << b;
}
inline ::testing::AssertionResult QuaternionNear(impeller::Quaternion a,
impeller::Quaternion b) {
auto equal = NumberNear(a.x, b.x) && NumberNear(a.y, b.y) &&
NumberNear(a.z, b.z) && NumberNear(a.w, b.w);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Quaternions are not equal.";
}
inline ::testing::AssertionResult RectNear(impeller::Rect a, impeller::Rect b) {
auto equal = NumberNear(a.GetLeft(), b.GetLeft()) &&
NumberNear(a.GetTop(), b.GetTop()) &&
NumberNear(a.GetRight(), b.GetRight()) &&
NumberNear(a.GetBottom(), b.GetBottom());
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure()
<< "Rects are not equal (" << a << " " << b << ")";
}
inline ::testing::AssertionResult ColorNear(impeller::Color a,
impeller::Color b) {
auto equal = NumberNear(a.red, b.red) && NumberNear(a.green, b.green) &&
NumberNear(a.blue, b.blue) && NumberNear(a.alpha, b.alpha);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Colors are not equal.";
}
inline ::testing::AssertionResult PointNear(impeller::Point a,
impeller::Point b) {
auto equal = NumberNear(a.x, b.x) && NumberNear(a.y, b.y);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure()
<< "Points are not equal (" << a << " " << b << ").";
}
inline ::testing::AssertionResult Vector3Near(impeller::Vector3 a,
impeller::Vector3 b) {
auto equal =
NumberNear(a.x, b.x) && NumberNear(a.y, b.y) && NumberNear(a.z, b.z);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Vector3s are not equal.";
}
inline ::testing::AssertionResult Vector4Near(impeller::Vector4 a,
impeller::Vector4 b) {
auto equal = NumberNear(a.x, b.x) && NumberNear(a.y, b.y) &&
NumberNear(a.z, b.z) && NumberNear(a.w, b.w);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Vector4s are not equal.";
}
inline ::testing::AssertionResult SizeNear(impeller::Size a, impeller::Size b) {
auto equal = NumberNear(a.width, b.width) && NumberNear(a.height, b.height);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Sizes are not equal.";
}
inline ::testing::AssertionResult Array4Near(std::array<uint8_t, 4> a,
std::array<uint8_t, 4> b) {
auto equal = NumberNear(a[0], b[0]) && NumberNear(a[1], b[1]) &&
NumberNear(a[2], b[2]) && NumberNear(a[3], b[3]);
return equal ? ::testing::AssertionSuccess()
: ::testing::AssertionFailure() << "Arrays are not equal.";
}
inline ::testing::AssertionResult ColorBufferNear(
std::vector<uint8_t> a,
std::vector<impeller::Color> b) {
if (a.size() != b.size() * 4) {
return ::testing::AssertionFailure()
<< "Color buffer length does not match";
}
for (auto i = 0u; i < b.size(); i++) {
auto right = b[i].Premultiply().ToR8G8B8A8();
auto j = i * 4;
auto equal = NumberNear(a[j], right[0]) && NumberNear(a[j + 1], right[1]) &&
NumberNear(a[j + 2], right[2]) &&
NumberNear(a[j + 3], right[3]);
if (!equal) {
::testing::AssertionFailure() << "Color buffers are not equal.";
}
}
return ::testing::AssertionSuccess();
}
inline ::testing::AssertionResult ColorsNear(std::vector<impeller::Color> a,
std::vector<impeller::Color> b) {
if (a.size() != b.size()) {
return ::testing::AssertionFailure() << "Colors length does not match";
}
for (auto i = 0u; i < b.size(); i++) {
auto equal =
NumberNear(a[i].red, b[i].red) && NumberNear(a[i].green, b[i].green) &&
NumberNear(a[i].blue, b[i].blue) && NumberNear(a[i].alpha, b[i].alpha);
if (!equal) {
::testing::AssertionFailure() << "Colors are not equal.";
}
}
return ::testing::AssertionSuccess();
}
#define ASSERT_MATRIX_NEAR(a, b) ASSERT_PRED2(&::MatrixNear, a, b)
#define ASSERT_QUATERNION_NEAR(a, b) ASSERT_PRED2(&::QuaternionNear, a, b)
#define ASSERT_RECT_NEAR(a, b) ASSERT_PRED2(&::RectNear, a, b)
#define ASSERT_COLOR_NEAR(a, b) ASSERT_PRED2(&::ColorNear, a, b)
#define ASSERT_POINT_NEAR(a, b) ASSERT_PRED2(&::PointNear, a, b)
#define ASSERT_VECTOR3_NEAR(a, b) ASSERT_PRED2(&::Vector3Near, a, b)
#define ASSERT_VECTOR4_NEAR(a, b) ASSERT_PRED2(&::Vector4Near, a, b)
#define ASSERT_SIZE_NEAR(a, b) ASSERT_PRED2(&::SizeNear, a, b)
#define ASSERT_ARRAY_4_NEAR(a, b) ASSERT_PRED2(&::Array4Near, a, b)
#define ASSERT_COLOR_BUFFER_NEAR(a, b) ASSERT_PRED2(&::ColorBufferNear, a, b)
#define ASSERT_COLORS_NEAR(a, b) ASSERT_PRED2(&::ColorsNear, a, b)
#define EXPECT_MATRIX_NEAR(a, b) EXPECT_PRED2(&::MatrixNear, a, b)
#define EXPECT_QUATERNION_NEAR(a, b) EXPECT_PRED2(&::QuaternionNear, a, b)
#define EXPECT_RECT_NEAR(a, b) EXPECT_PRED2(&::RectNear, a, b)
#define EXPECT_COLOR_NEAR(a, b) EXPECT_PRED2(&::ColorNear, a, b)
#define EXPECT_POINT_NEAR(a, b) EXPECT_PRED2(&::PointNear, a, b)
#define EXPECT_VECTOR3_NEAR(a, b) EXPECT_PRED2(&::Vector3Near, a, b)
#define EXPECT_VECTOR4_NEAR(a, b) EXPECT_PRED2(&::Vector4Near, a, b)
#define EXPECT_SIZE_NEAR(a, b) EXPECT_PRED2(&::SizeNear, a, b)
#define EXPECT_ARRAY_4_NEAR(a, b) EXPECT_PRED2(&::Array4Near, a, b)
#define EXPECT_COLOR_BUFFER_NEAR(a, b) EXPECT_PRED2(&::ColorBufferNear, a, b)
#define EXPECT_COLORS_NEAR(a, b) EXPECT_PRED2(&::ColorsNear, a, b)
#endif // FLUTTER_IMPELLER_GEOMETRY_GEOMETRY_ASSERTS_H_