| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/strings/string_number_conversions.h" |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <wctype.h> |
| |
| #include <limits> |
| |
| #include "base/logging.h" |
| #include "base/scoped_clear_errno.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "base/third_party/dmg_fp/dmg_fp.h" |
| |
| namespace base { |
| |
| namespace { |
| |
| template <typename STR, typename INT, typename UINT, bool NEG> |
| struct IntToStringT { |
| // This is to avoid a compiler warning about unary minus on unsigned type. |
| // For example, say you had the following code: |
| // template <typename INT> |
| // INT abs(INT value) { return value < 0 ? -value : value; } |
| // Even though if INT is unsigned, it's impossible for value < 0, so the |
| // unary minus will never be taken, the compiler will still generate a |
| // warning. We do a little specialization dance... |
| template <typename INT2, typename UINT2, bool NEG2> |
| struct ToUnsignedT {}; |
| |
| template <typename INT2, typename UINT2> |
| struct ToUnsignedT<INT2, UINT2, false> { |
| static UINT2 ToUnsigned(INT2 value) { |
| return static_cast<UINT2>(value); |
| } |
| }; |
| |
| template <typename INT2, typename UINT2> |
| struct ToUnsignedT<INT2, UINT2, true> { |
| static UINT2 ToUnsigned(INT2 value) { |
| if (value >= 0) { |
| return value; |
| } else { |
| // Avoid integer overflow when negating INT_MIN. |
| return static_cast<UINT2>(-(value + 1)) + 1; |
| } |
| } |
| }; |
| |
| // This set of templates is very similar to the above templates, but |
| // for testing whether an integer is negative. |
| template <typename INT2, bool NEG2> |
| struct TestNegT {}; |
| template <typename INT2> |
| struct TestNegT<INT2, false> { |
| static bool TestNeg(INT2 value) { |
| // value is unsigned, and can never be negative. |
| return false; |
| } |
| }; |
| template <typename INT2> |
| struct TestNegT<INT2, true> { |
| static bool TestNeg(INT2 value) { |
| return value < 0; |
| } |
| }; |
| |
| static STR IntToString(INT value) { |
| // log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4. |
| // So round up to allocate 3 output characters per byte, plus 1 for '-'. |
| const int kOutputBufSize = 3 * sizeof(INT) + 1; |
| |
| // Allocate the whole string right away, we will right back to front, and |
| // then return the substr of what we ended up using. |
| STR outbuf(kOutputBufSize, 0); |
| |
| bool is_neg = TestNegT<INT, NEG>::TestNeg(value); |
| // Even though is_neg will never be true when INT is parameterized as |
| // unsigned, even the presence of the unary operation causes a warning. |
| UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value); |
| |
| typename STR::iterator it(outbuf.end()); |
| do { |
| --it; |
| DCHECK(it != outbuf.begin()); |
| *it = static_cast<typename STR::value_type>((res % 10) + '0'); |
| res /= 10; |
| } while (res != 0); |
| if (is_neg) { |
| --it; |
| DCHECK(it != outbuf.begin()); |
| *it = static_cast<typename STR::value_type>('-'); |
| } |
| return STR(it, outbuf.end()); |
| } |
| }; |
| |
| // Utility to convert a character to a digit in a given base |
| template<typename CHAR, int BASE, bool BASE_LTE_10> class BaseCharToDigit { |
| }; |
| |
| // Faster specialization for bases <= 10 |
| template<typename CHAR, int BASE> class BaseCharToDigit<CHAR, BASE, true> { |
| public: |
| static bool Convert(CHAR c, uint8* digit) { |
| if (c >= '0' && c < '0' + BASE) { |
| *digit = static_cast<uint8>(c - '0'); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| // Specialization for bases where 10 < base <= 36 |
| template<typename CHAR, int BASE> class BaseCharToDigit<CHAR, BASE, false> { |
| public: |
| static bool Convert(CHAR c, uint8* digit) { |
| if (c >= '0' && c <= '9') { |
| *digit = c - '0'; |
| } else if (c >= 'a' && c < 'a' + BASE - 10) { |
| *digit = c - 'a' + 10; |
| } else if (c >= 'A' && c < 'A' + BASE - 10) { |
| *digit = c - 'A' + 10; |
| } else { |
| return false; |
| } |
| return true; |
| } |
| }; |
| |
| template<int BASE, typename CHAR> bool CharToDigit(CHAR c, uint8* digit) { |
| return BaseCharToDigit<CHAR, BASE, BASE <= 10>::Convert(c, digit); |
| } |
| |
| // There is an IsUnicodeWhitespace for wchars defined in string_util.h, but it |
| // is locale independent, whereas the functions we are replacing were |
| // locale-dependent. TBD what is desired, but for the moment let's not |
| // introduce a change in behaviour. |
| template<typename CHAR> class WhitespaceHelper { |
| }; |
| |
| template<> class WhitespaceHelper<char> { |
| public: |
| static bool Invoke(char c) { |
| return 0 != isspace(static_cast<unsigned char>(c)); |
| } |
| }; |
| |
| template<> class WhitespaceHelper<char16> { |
| public: |
| static bool Invoke(char16 c) { |
| return 0 != iswspace(c); |
| } |
| }; |
| |
| template<typename CHAR> bool LocalIsWhitespace(CHAR c) { |
| return WhitespaceHelper<CHAR>::Invoke(c); |
| } |
| |
| // IteratorRangeToNumberTraits should provide: |
| // - a typedef for iterator_type, the iterator type used as input. |
| // - a typedef for value_type, the target numeric type. |
| // - static functions min, max (returning the minimum and maximum permitted |
| // values) |
| // - constant kBase, the base in which to interpret the input |
| template<typename IteratorRangeToNumberTraits> |
| class IteratorRangeToNumber { |
| public: |
| typedef IteratorRangeToNumberTraits traits; |
| typedef typename traits::iterator_type const_iterator; |
| typedef typename traits::value_type value_type; |
| |
| // Generalized iterator-range-to-number conversion. |
| // |
| static bool Invoke(const_iterator begin, |
| const_iterator end, |
| value_type* output) { |
| bool valid = true; |
| |
| while (begin != end && LocalIsWhitespace(*begin)) { |
| valid = false; |
| ++begin; |
| } |
| |
| if (begin != end && *begin == '-') { |
| if (!std::numeric_limits<value_type>::is_signed) { |
| valid = false; |
| } else if (!Negative::Invoke(begin + 1, end, output)) { |
| valid = false; |
| } |
| } else { |
| if (begin != end && *begin == '+') { |
| ++begin; |
| } |
| if (!Positive::Invoke(begin, end, output)) { |
| valid = false; |
| } |
| } |
| |
| return valid; |
| } |
| |
| private: |
| // Sign provides: |
| // - a static function, CheckBounds, that determines whether the next digit |
| // causes an overflow/underflow |
| // - a static function, Increment, that appends the next digit appropriately |
| // according to the sign of the number being parsed. |
| template<typename Sign> |
| class Base { |
| public: |
| static bool Invoke(const_iterator begin, const_iterator end, |
| typename traits::value_type* output) { |
| *output = 0; |
| |
| if (begin == end) { |
| return false; |
| } |
| |
| // Note: no performance difference was found when using template |
| // specialization to remove this check in bases other than 16 |
| if (traits::kBase == 16 && end - begin > 2 && *begin == '0' && |
| (*(begin + 1) == 'x' || *(begin + 1) == 'X')) { |
| begin += 2; |
| } |
| |
| for (const_iterator current = begin; current != end; ++current) { |
| uint8 new_digit = 0; |
| |
| if (!CharToDigit<traits::kBase>(*current, &new_digit)) { |
| return false; |
| } |
| |
| if (current != begin) { |
| if (!Sign::CheckBounds(output, new_digit)) { |
| return false; |
| } |
| *output *= traits::kBase; |
| } |
| |
| Sign::Increment(new_digit, output); |
| } |
| return true; |
| } |
| }; |
| |
| class Positive : public Base<Positive> { |
| public: |
| static bool CheckBounds(value_type* output, uint8 new_digit) { |
| if (*output > static_cast<value_type>(traits::max() / traits::kBase) || |
| (*output == static_cast<value_type>(traits::max() / traits::kBase) && |
| new_digit > traits::max() % traits::kBase)) { |
| *output = traits::max(); |
| return false; |
| } |
| return true; |
| } |
| static void Increment(uint8 increment, value_type* output) { |
| *output += increment; |
| } |
| }; |
| |
| class Negative : public Base<Negative> { |
| public: |
| static bool CheckBounds(value_type* output, uint8 new_digit) { |
| if (*output < traits::min() / traits::kBase || |
| (*output == traits::min() / traits::kBase && |
| new_digit > 0 - traits::min() % traits::kBase)) { |
| *output = traits::min(); |
| return false; |
| } |
| return true; |
| } |
| static void Increment(uint8 increment, value_type* output) { |
| *output -= increment; |
| } |
| }; |
| }; |
| |
| template<typename ITERATOR, typename VALUE, int BASE> |
| class BaseIteratorRangeToNumberTraits { |
| public: |
| typedef ITERATOR iterator_type; |
| typedef VALUE value_type; |
| static value_type min() { |
| return std::numeric_limits<value_type>::min(); |
| } |
| static value_type max() { |
| return std::numeric_limits<value_type>::max(); |
| } |
| static const int kBase = BASE; |
| }; |
| |
| template<typename ITERATOR> |
| class BaseHexIteratorRangeToIntTraits |
| : public BaseIteratorRangeToNumberTraits<ITERATOR, int, 16> { |
| }; |
| |
| template<typename ITERATOR> |
| class BaseHexIteratorRangeToUIntTraits |
| : public BaseIteratorRangeToNumberTraits<ITERATOR, uint32, 16> { |
| }; |
| |
| template<typename ITERATOR> |
| class BaseHexIteratorRangeToInt64Traits |
| : public BaseIteratorRangeToNumberTraits<ITERATOR, int64, 16> { |
| }; |
| |
| template<typename ITERATOR> |
| class BaseHexIteratorRangeToUInt64Traits |
| : public BaseIteratorRangeToNumberTraits<ITERATOR, uint64, 16> { |
| }; |
| |
| typedef BaseHexIteratorRangeToIntTraits<StringPiece::const_iterator> |
| HexIteratorRangeToIntTraits; |
| |
| typedef BaseHexIteratorRangeToUIntTraits<StringPiece::const_iterator> |
| HexIteratorRangeToUIntTraits; |
| |
| typedef BaseHexIteratorRangeToInt64Traits<StringPiece::const_iterator> |
| HexIteratorRangeToInt64Traits; |
| |
| typedef BaseHexIteratorRangeToUInt64Traits<StringPiece::const_iterator> |
| HexIteratorRangeToUInt64Traits; |
| |
| template<typename STR> |
| bool HexStringToBytesT(const STR& input, std::vector<uint8>* output) { |
| DCHECK_EQ(output->size(), 0u); |
| size_t count = input.size(); |
| if (count == 0 || (count % 2) != 0) |
| return false; |
| for (uintptr_t i = 0; i < count / 2; ++i) { |
| uint8 msb = 0; // most significant 4 bits |
| uint8 lsb = 0; // least significant 4 bits |
| if (!CharToDigit<16>(input[i * 2], &msb) || |
| !CharToDigit<16>(input[i * 2 + 1], &lsb)) |
| return false; |
| output->push_back((msb << 4) | lsb); |
| } |
| return true; |
| } |
| |
| template <typename VALUE, int BASE> |
| class StringPieceToNumberTraits |
| : public BaseIteratorRangeToNumberTraits<StringPiece::const_iterator, |
| VALUE, |
| BASE> { |
| }; |
| |
| template <typename VALUE> |
| bool StringToIntImpl(const StringPiece& input, VALUE* output) { |
| return IteratorRangeToNumber<StringPieceToNumberTraits<VALUE, 10> >::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| template <typename VALUE, int BASE> |
| class StringPiece16ToNumberTraits |
| : public BaseIteratorRangeToNumberTraits<StringPiece16::const_iterator, |
| VALUE, |
| BASE> { |
| }; |
| |
| template <typename VALUE> |
| bool String16ToIntImpl(const StringPiece16& input, VALUE* output) { |
| return IteratorRangeToNumber<StringPiece16ToNumberTraits<VALUE, 10> >::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| } // namespace |
| |
| std::string IntToString(int value) { |
| return IntToStringT<std::string, int, unsigned int, true>:: |
| IntToString(value); |
| } |
| |
| string16 IntToString16(int value) { |
| return IntToStringT<string16, int, unsigned int, true>:: |
| IntToString(value); |
| } |
| |
| std::string UintToString(unsigned int value) { |
| return IntToStringT<std::string, unsigned int, unsigned int, false>:: |
| IntToString(value); |
| } |
| |
| string16 UintToString16(unsigned int value) { |
| return IntToStringT<string16, unsigned int, unsigned int, false>:: |
| IntToString(value); |
| } |
| |
| std::string Int64ToString(int64 value) { |
| return IntToStringT<std::string, int64, uint64, true>::IntToString(value); |
| } |
| |
| string16 Int64ToString16(int64 value) { |
| return IntToStringT<string16, int64, uint64, true>::IntToString(value); |
| } |
| |
| std::string Uint64ToString(uint64 value) { |
| return IntToStringT<std::string, uint64, uint64, false>::IntToString(value); |
| } |
| |
| string16 Uint64ToString16(uint64 value) { |
| return IntToStringT<string16, uint64, uint64, false>::IntToString(value); |
| } |
| |
| std::string SizeTToString(size_t value) { |
| return IntToStringT<std::string, size_t, size_t, false>::IntToString(value); |
| } |
| |
| string16 SizeTToString16(size_t value) { |
| return IntToStringT<string16, size_t, size_t, false>::IntToString(value); |
| } |
| |
| std::string DoubleToString(double value) { |
| // According to g_fmt.cc, it is sufficient to declare a buffer of size 32. |
| char buffer[32]; |
| dmg_fp::g_fmt(buffer, value); |
| return std::string(buffer); |
| } |
| |
| bool StringToInt(const StringPiece& input, int* output) { |
| return StringToIntImpl(input, output); |
| } |
| |
| bool StringToInt(const StringPiece16& input, int* output) { |
| return String16ToIntImpl(input, output); |
| } |
| |
| bool StringToUint(const StringPiece& input, unsigned* output) { |
| return StringToIntImpl(input, output); |
| } |
| |
| bool StringToUint(const StringPiece16& input, unsigned* output) { |
| return String16ToIntImpl(input, output); |
| } |
| |
| bool StringToInt64(const StringPiece& input, int64* output) { |
| return StringToIntImpl(input, output); |
| } |
| |
| bool StringToInt64(const StringPiece16& input, int64* output) { |
| return String16ToIntImpl(input, output); |
| } |
| |
| bool StringToUint64(const StringPiece& input, uint64* output) { |
| return StringToIntImpl(input, output); |
| } |
| |
| bool StringToUint64(const StringPiece16& input, uint64* output) { |
| return String16ToIntImpl(input, output); |
| } |
| |
| bool StringToSizeT(const StringPiece& input, size_t* output) { |
| return StringToIntImpl(input, output); |
| } |
| |
| bool StringToSizeT(const StringPiece16& input, size_t* output) { |
| return String16ToIntImpl(input, output); |
| } |
| |
| bool StringToDouble(const std::string& input, double* output) { |
| // Thread-safe? It is on at least Mac, Linux, and Windows. |
| ScopedClearErrno clear_errno; |
| |
| char* endptr = NULL; |
| *output = dmg_fp::strtod(input.c_str(), &endptr); |
| |
| // Cases to return false: |
| // - If errno is ERANGE, there was an overflow or underflow. |
| // - If the input string is empty, there was nothing to parse. |
| // - If endptr does not point to the end of the string, there are either |
| // characters remaining in the string after a parsed number, or the string |
| // does not begin with a parseable number. endptr is compared to the |
| // expected end given the string's stated length to correctly catch cases |
| // where the string contains embedded NUL characters. |
| // - If the first character is a space, there was leading whitespace |
| return errno == 0 && |
| !input.empty() && |
| input.c_str() + input.length() == endptr && |
| !isspace(input[0]); |
| } |
| |
| // Note: if you need to add String16ToDouble, first ask yourself if it's |
| // really necessary. If it is, probably the best implementation here is to |
| // convert to 8-bit and then use the 8-bit version. |
| |
| // Note: if you need to add an iterator range version of StringToDouble, first |
| // ask yourself if it's really necessary. If it is, probably the best |
| // implementation here is to instantiate a string and use the string version. |
| |
| std::string HexEncode(const void* bytes, size_t size) { |
| static const char kHexChars[] = "0123456789ABCDEF"; |
| |
| // Each input byte creates two output hex characters. |
| std::string ret(size * 2, '\0'); |
| |
| for (size_t i = 0; i < size; ++i) { |
| char b = reinterpret_cast<const char*>(bytes)[i]; |
| ret[(i * 2)] = kHexChars[(b >> 4) & 0xf]; |
| ret[(i * 2) + 1] = kHexChars[b & 0xf]; |
| } |
| return ret; |
| } |
| |
| bool HexStringToInt(const StringPiece& input, int* output) { |
| return IteratorRangeToNumber<HexIteratorRangeToIntTraits>::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| bool HexStringToUInt(const StringPiece& input, uint32* output) { |
| return IteratorRangeToNumber<HexIteratorRangeToUIntTraits>::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| bool HexStringToInt64(const StringPiece& input, int64* output) { |
| return IteratorRangeToNumber<HexIteratorRangeToInt64Traits>::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| bool HexStringToUInt64(const StringPiece& input, uint64* output) { |
| return IteratorRangeToNumber<HexIteratorRangeToUInt64Traits>::Invoke( |
| input.begin(), input.end(), output); |
| } |
| |
| bool HexStringToBytes(const std::string& input, std::vector<uint8>* output) { |
| return HexStringToBytesT(input, output); |
| } |
| |
| } // namespace base |