| // Modified by Russ Cox to add "namespace re2". |
| // Also threw away all but hashword and hashword2. |
| // http://burtleburtle.net/bob/c/lookup3.c |
| |
| /* |
| ------------------------------------------------------------------------------- |
| lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| |
| These are functions for producing 32-bit hashes for hash table lookup. |
| hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| are externally useful functions. Routines to test the hash are included |
| if SELF_TEST is defined. You can use this free for any purpose. It's in |
| the public domain. It has no warranty. |
| |
| You probably want to use hashlittle(). hashlittle() and hashbig() |
| hash byte arrays. hashlittle() is is faster than hashbig() on |
| little-endian machines. Intel and AMD are little-endian machines. |
| On second thought, you probably want hashlittle2(), which is identical to |
| hashlittle() except it returns two 32-bit hashes for the price of one. |
| You could implement hashbig2() if you wanted but I haven't bothered here. |
| |
| If you want to find a hash of, say, exactly 7 integers, do |
| a = i1; b = i2; c = i3; |
| mix(a,b,c); |
| a += i4; b += i5; c += i6; |
| mix(a,b,c); |
| a += i7; |
| final(a,b,c); |
| then use c as the hash value. If you have a variable length array of |
| 4-byte integers to hash, use hashword(). If you have a byte array (like |
| a character string), use hashlittle(). If you have several byte arrays, or |
| a mix of things, see the comments above hashlittle(). |
| |
| Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| then mix those integers. This is fast (you can do a lot more thorough |
| mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| ------------------------------------------------------------------------------- |
| */ |
| |
| #include "util/util.h" |
| |
| #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
| |
| /* |
| ------------------------------------------------------------------------------- |
| mix -- mix 3 32-bit values reversibly. |
| |
| This is reversible, so any information in (a,b,c) before mix() is |
| still in (a,b,c) after mix(). |
| |
| If four pairs of (a,b,c) inputs are run through mix(), or through |
| mix() in reverse, there are at least 32 bits of the output that |
| are sometimes the same for one pair and different for another pair. |
| This was tested for: |
| * pairs that differed by one bit, by two bits, in any combination |
| of top bits of (a,b,c), or in any combination of bottom bits of |
| (a,b,c). |
| * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| is commonly produced by subtraction) look like a single 1-bit |
| difference. |
| * the base values were pseudorandom, all zero but one bit set, or |
| all zero plus a counter that starts at zero. |
| |
| Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| satisfy this are |
| 4 6 8 16 19 4 |
| 9 15 3 18 27 15 |
| 14 9 3 7 17 3 |
| Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| for "differ" defined as + with a one-bit base and a two-bit delta. I |
| used http://burtleburtle.net/bob/hash/avalanche.html to choose |
| the operations, constants, and arrangements of the variables. |
| |
| This does not achieve avalanche. There are input bits of (a,b,c) |
| that fail to affect some output bits of (a,b,c), especially of a. The |
| most thoroughly mixed value is c, but it doesn't really even achieve |
| avalanche in c. |
| |
| This allows some parallelism. Read-after-writes are good at doubling |
| the number of bits affected, so the goal of mixing pulls in the opposite |
| direction as the goal of parallelism. I did what I could. Rotates |
| seem to cost as much as shifts on every machine I could lay my hands |
| on, and rotates are much kinder to the top and bottom bits, so I used |
| rotates. |
| ------------------------------------------------------------------------------- |
| */ |
| #define mix(a,b,c) \ |
| { \ |
| a -= c; a ^= rot(c, 4); c += b; \ |
| b -= a; b ^= rot(a, 6); a += c; \ |
| c -= b; c ^= rot(b, 8); b += a; \ |
| a -= c; a ^= rot(c,16); c += b; \ |
| b -= a; b ^= rot(a,19); a += c; \ |
| c -= b; c ^= rot(b, 4); b += a; \ |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| final -- final mixing of 3 32-bit values (a,b,c) into c |
| |
| Pairs of (a,b,c) values differing in only a few bits will usually |
| produce values of c that look totally different. This was tested for |
| * pairs that differed by one bit, by two bits, in any combination |
| of top bits of (a,b,c), or in any combination of bottom bits of |
| (a,b,c). |
| * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| is commonly produced by subtraction) look like a single 1-bit |
| difference. |
| * the base values were pseudorandom, all zero but one bit set, or |
| all zero plus a counter that starts at zero. |
| |
| These constants passed: |
| 14 11 25 16 4 14 24 |
| 12 14 25 16 4 14 24 |
| and these came close: |
| 4 8 15 26 3 22 24 |
| 10 8 15 26 3 22 24 |
| 11 8 15 26 3 22 24 |
| ------------------------------------------------------------------------------- |
| */ |
| #define final(a,b,c) \ |
| { \ |
| c ^= b; c -= rot(b,14); \ |
| a ^= c; a -= rot(c,11); \ |
| b ^= a; b -= rot(a,25); \ |
| c ^= b; c -= rot(b,16); \ |
| a ^= c; a -= rot(c,4); \ |
| b ^= a; b -= rot(a,14); \ |
| c ^= b; c -= rot(b,24); \ |
| } |
| |
| namespace re2 { |
| |
| /* |
| -------------------------------------------------------------------- |
| This works on all machines. To be useful, it requires |
| -- that the key be an array of uint32_t's, and |
| -- that the length be the number of uint32_t's in the key |
| |
| The function hashword() is identical to hashlittle() on little-endian |
| machines, and identical to hashbig() on big-endian machines, |
| except that the length has to be measured in uint32_ts rather than in |
| bytes. hashlittle() is more complicated than hashword() only because |
| hashlittle() has to dance around fitting the key bytes into registers. |
| -------------------------------------------------------------------- |
| */ |
| uint32 hashword( |
| const uint32 *k, /* the key, an array of uint32_t values */ |
| size_t length, /* the length of the key, in uint32_ts */ |
| uint32 initval) /* the previous hash, or an arbitrary value */ |
| { |
| uint32_t a,b,c; |
| |
| /* Set up the internal state */ |
| a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
| |
| /*------------------------------------------------- handle most of the key */ |
| while (length > 3) |
| { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| mix(a,b,c); |
| length -= 3; |
| k += 3; |
| } |
| |
| /*------------------------------------------- handle the last 3 uint32_t's */ |
| switch(length) /* all the case statements fall through */ |
| { |
| case 3 : c+=k[2]; |
| case 2 : b+=k[1]; |
| case 1 : a+=k[0]; |
| final(a,b,c); |
| case 0: /* case 0: nothing left to add */ |
| break; |
| } |
| /*------------------------------------------------------ report the result */ |
| return c; |
| } |
| |
| |
| /* |
| -------------------------------------------------------------------- |
| hashword2() -- same as hashword(), but take two seeds and return two |
| 32-bit values. pc and pb must both be nonnull, and *pc and *pb must |
| both be initialized with seeds. If you pass in (*pb)==0, the output |
| (*pc) will be the same as the return value from hashword(). |
| -------------------------------------------------------------------- |
| */ |
| void hashword2 ( |
| const uint32 *k, /* the key, an array of uint32_t values */ |
| size_t length, /* the length of the key, in uint32_ts */ |
| uint32 *pc, /* IN: seed OUT: primary hash value */ |
| uint32 *pb) /* IN: more seed OUT: secondary hash value */ |
| { |
| uint32_t a,b,c; |
| |
| /* Set up the internal state */ |
| a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; |
| c += *pb; |
| |
| /*------------------------------------------------- handle most of the key */ |
| while (length > 3) |
| { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| mix(a,b,c); |
| length -= 3; |
| k += 3; |
| } |
| |
| /*------------------------------------------- handle the last 3 uint32_t's */ |
| switch(length) /* all the case statements fall through */ |
| { |
| case 3 : c+=k[2]; |
| case 2 : b+=k[1]; |
| case 1 : a+=k[0]; |
| final(a,b,c); |
| case 0: /* case 0: nothing left to add */ |
| break; |
| } |
| /*------------------------------------------------------ report the result */ |
| *pc=c; *pb=b; |
| } |
| |
| } // namespace re2 |