blob: 599e8f2e75d25e63f1e73cade2c07e57173aac1f [file] [log] [blame]
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "path_builder.h"
#include <cmath>
namespace impeller {
PathBuilder::PathBuilder() = default;
PathBuilder::~PathBuilder() = default;
Path PathBuilder::CopyPath(FillType fill) const {
auto path = prototype_.Clone();
path.SetFillType(fill);
return path;
}
Path PathBuilder::TakePath(FillType fill) {
auto path = std::move(prototype_);
path.SetFillType(fill);
path.SetConvexity(convexity_);
if (!did_compute_bounds_) {
path.ComputeBounds();
}
did_compute_bounds_ = false;
return path;
}
void PathBuilder::Reserve(size_t point_size, size_t verb_size) {
prototype_.points_.reserve(point_size);
prototype_.points_.reserve(verb_size);
}
PathBuilder& PathBuilder::MoveTo(Point point, bool relative) {
current_ = relative ? current_ + point : point;
subpath_start_ = current_;
prototype_.AddContourComponent(current_);
return *this;
}
PathBuilder& PathBuilder::Close() {
LineTo(subpath_start_);
prototype_.SetContourClosed(true);
prototype_.AddContourComponent(current_);
return *this;
}
PathBuilder& PathBuilder::LineTo(Point point, bool relative) {
point = relative ? current_ + point : point;
prototype_.AddLinearComponent(current_, point);
current_ = point;
return *this;
}
PathBuilder& PathBuilder::HorizontalLineTo(Scalar x, bool relative) {
Point endpoint =
relative ? Point{current_.x + x, current_.y} : Point{x, current_.y};
prototype_.AddLinearComponent(current_, endpoint);
current_ = endpoint;
return *this;
}
PathBuilder& PathBuilder::VerticalLineTo(Scalar y, bool relative) {
Point endpoint =
relative ? Point{current_.x, current_.y + y} : Point{current_.x, y};
prototype_.AddLinearComponent(current_, endpoint);
current_ = endpoint;
return *this;
}
PathBuilder& PathBuilder::QuadraticCurveTo(Point controlPoint,
Point point,
bool relative) {
point = relative ? current_ + point : point;
controlPoint = relative ? current_ + controlPoint : controlPoint;
prototype_.AddQuadraticComponent(current_, controlPoint, point);
current_ = point;
return *this;
}
PathBuilder& PathBuilder::SetConvexity(Convexity value) {
convexity_ = value;
return *this;
}
PathBuilder& PathBuilder::CubicCurveTo(Point controlPoint1,
Point controlPoint2,
Point point,
bool relative) {
controlPoint1 = relative ? current_ + controlPoint1 : controlPoint1;
controlPoint2 = relative ? current_ + controlPoint2 : controlPoint2;
point = relative ? current_ + point : point;
prototype_.AddCubicComponent(current_, controlPoint1, controlPoint2, point);
current_ = point;
return *this;
}
PathBuilder& PathBuilder::AddQuadraticCurve(Point p1, Point cp, Point p2) {
MoveTo(p1);
prototype_.AddQuadraticComponent(p1, cp, p2);
return *this;
}
PathBuilder& PathBuilder::AddCubicCurve(Point p1,
Point cp1,
Point cp2,
Point p2) {
MoveTo(p1);
prototype_.AddCubicComponent(p1, cp1, cp2, p2);
return *this;
}
PathBuilder& PathBuilder::AddRect(Rect rect) {
auto origin = rect.GetOrigin();
auto size = rect.GetSize();
auto tl = origin;
auto bl = origin + Point{0.0, size.height};
auto br = origin + size;
auto tr = origin + Point{size.width, 0.0};
MoveTo(tl);
LineTo(tr);
LineTo(br);
LineTo(bl);
Close();
return *this;
}
PathBuilder& PathBuilder::AddCircle(const Point& c, Scalar r) {
return AddOval(Rect::MakeXYWH(c.x - r, c.y - r, 2.0f * r, 2.0f * r));
}
PathBuilder& PathBuilder::AddRoundedRect(Rect rect, Scalar radius) {
return radius <= 0.0 ? AddRect(rect)
: AddRoundedRect(rect, RoundingRadii(radius));
}
PathBuilder& PathBuilder::AddRoundedRect(Rect rect, Size radii) {
return radii.width <= 0 || radii.height <= 0
? AddRect(rect)
: AddRoundedRect(rect, RoundingRadii(radii));
}
PathBuilder& PathBuilder::AddRoundedRect(Rect rect, RoundingRadii radii) {
if (radii.AreAllZero()) {
return AddRect(rect);
}
auto rect_origin = rect.GetOrigin();
auto rect_size = rect.GetSize();
current_ = rect_origin + Point{radii.top_left.x, 0.0};
MoveTo({rect_origin.x + radii.top_left.x, rect_origin.y});
//----------------------------------------------------------------------------
// Top line.
//
prototype_.AddLinearComponent(
{rect_origin.x + radii.top_left.x, rect_origin.y},
{rect_origin.x + rect_size.width - radii.top_right.x, rect_origin.y});
//----------------------------------------------------------------------------
// Top right arc.
//
AddRoundedRectTopRight(rect, radii);
//----------------------------------------------------------------------------
// Right line.
//
prototype_.AddLinearComponent(
{rect_origin.x + rect_size.width, rect_origin.y + radii.top_right.y},
{rect_origin.x + rect_size.width,
rect_origin.y + rect_size.height - radii.bottom_right.y});
//----------------------------------------------------------------------------
// Bottom right arc.
//
AddRoundedRectBottomRight(rect, radii);
//----------------------------------------------------------------------------
// Bottom line.
//
prototype_.AddLinearComponent(
{rect_origin.x + rect_size.width - radii.bottom_right.x,
rect_origin.y + rect_size.height},
{rect_origin.x + radii.bottom_left.x, rect_origin.y + rect_size.height});
//----------------------------------------------------------------------------
// Bottom left arc.
//
AddRoundedRectBottomLeft(rect, radii);
//----------------------------------------------------------------------------
// Left line.
//
prototype_.AddLinearComponent(
{rect_origin.x, rect_origin.y + rect_size.height - radii.bottom_left.y},
{rect_origin.x, rect_origin.y + radii.top_left.y});
//----------------------------------------------------------------------------
// Top left arc.
//
AddRoundedRectTopLeft(rect, radii);
Close();
return *this;
}
PathBuilder& PathBuilder::AddRoundedRectTopLeft(Rect rect,
RoundingRadii radii) {
const auto magic_top_left = radii.top_left * kArcApproximationMagic;
const auto corner = rect.GetOrigin();
prototype_.AddCubicComponent(
{corner.x, corner.y + radii.top_left.y},
{corner.x, corner.y + radii.top_left.y - magic_top_left.y},
{corner.x + radii.top_left.x - magic_top_left.x, corner.y},
{corner.x + radii.top_left.x, corner.y});
return *this;
}
PathBuilder& PathBuilder::AddRoundedRectTopRight(Rect rect,
RoundingRadii radii) {
const auto magic_top_right = radii.top_right * kArcApproximationMagic;
const auto corner = rect.GetOrigin() + Point{rect.GetWidth(), 0};
prototype_.AddCubicComponent(
{corner.x - radii.top_right.x, corner.y},
{corner.x - radii.top_right.x + magic_top_right.x, corner.y},
{corner.x, corner.y + radii.top_right.y - magic_top_right.y},
{corner.x, corner.y + radii.top_right.y});
return *this;
}
PathBuilder& PathBuilder::AddRoundedRectBottomRight(Rect rect,
RoundingRadii radii) {
const auto magic_bottom_right = radii.bottom_right * kArcApproximationMagic;
const auto corner = rect.GetOrigin() + rect.GetSize();
prototype_.AddCubicComponent(
{corner.x, corner.y - radii.bottom_right.y},
{corner.x, corner.y - radii.bottom_right.y + magic_bottom_right.y},
{corner.x - radii.bottom_right.x + magic_bottom_right.x, corner.y},
{corner.x - radii.bottom_right.x, corner.y});
return *this;
}
PathBuilder& PathBuilder::AddRoundedRectBottomLeft(Rect rect,
RoundingRadii radii) {
const auto magic_bottom_left = radii.bottom_left * kArcApproximationMagic;
const auto corner = rect.GetOrigin() + Point{0, rect.GetHeight()};
prototype_.AddCubicComponent(
{corner.x + radii.bottom_left.x, corner.y},
{corner.x + radii.bottom_left.x - magic_bottom_left.x, corner.y},
{corner.x, corner.y - radii.bottom_left.y + magic_bottom_left.y},
{corner.x, corner.y - radii.bottom_left.y});
return *this;
}
PathBuilder& PathBuilder::AddArc(const Rect& oval_bounds,
Radians start,
Radians sweep,
bool use_center) {
if (sweep.radians < 0) {
start.radians += sweep.radians;
sweep.radians *= -1;
}
sweep.radians = std::min(k2Pi, sweep.radians);
start.radians = std::fmod(start.radians, k2Pi);
const Point center = oval_bounds.GetCenter();
const Point radius = center - oval_bounds.GetOrigin();
Vector2 p1_unit(std::cos(start.radians), std::sin(start.radians));
if (use_center) {
MoveTo(center);
LineTo(center + p1_unit * radius);
} else {
MoveTo(center + p1_unit * radius);
}
while (sweep.radians > 0) {
Vector2 p2_unit;
Scalar quadrant_angle;
if (sweep.radians < kPiOver2) {
quadrant_angle = sweep.radians;
p2_unit = Vector2(std::cos(start.radians + quadrant_angle),
std::sin(start.radians + quadrant_angle));
} else {
quadrant_angle = kPiOver2;
p2_unit = Vector2(-p1_unit.y, p1_unit.x);
}
Vector2 arc_cp_lengths =
(quadrant_angle / kPiOver2) * kArcApproximationMagic * radius;
Point p1 = center + p1_unit * radius;
Point p2 = center + p2_unit * radius;
Point cp1 = p1 + Vector2(-p1_unit.y, p1_unit.x) * arc_cp_lengths;
Point cp2 = p2 + Vector2(p2_unit.y, -p2_unit.x) * arc_cp_lengths;
prototype_.AddCubicComponent(p1, cp1, cp2, p2);
current_ = p2;
start.radians += quadrant_angle;
sweep.radians -= quadrant_angle;
p1_unit = p2_unit;
}
if (use_center) {
Close();
}
return *this;
}
PathBuilder& PathBuilder::AddOval(const Rect& container) {
const Point c = container.GetCenter();
const Point r = c - container.GetOrigin();
const Point m = r * kArcApproximationMagic;
MoveTo({c.x, c.y - r.y});
//----------------------------------------------------------------------------
// Top right arc.
//
prototype_.AddCubicComponent({c.x, c.y - r.y}, // p1
{c.x + m.x, c.y - r.y}, // cp1
{c.x + r.x, c.y - m.y}, // cp2
{c.x + r.x, c.y} // p2
);
//----------------------------------------------------------------------------
// Bottom right arc.
//
prototype_.AddCubicComponent({c.x + r.x, c.y}, // p1
{c.x + r.x, c.y + m.y}, // cp1
{c.x + m.x, c.y + r.y}, // cp2
{c.x, c.y + r.y} // p2
);
//----------------------------------------------------------------------------
// Bottom left arc.
//
prototype_.AddCubicComponent({c.x, c.y + r.y}, // p1
{c.x - m.x, c.y + r.y}, // cp1
{c.x - r.x, c.y + m.y}, // cp2
{c.x - r.x, c.y} // p2
);
//----------------------------------------------------------------------------
// Top left arc.
//
prototype_.AddCubicComponent({c.x - r.x, c.y}, // p1
{c.x - r.x, c.y - m.y}, // cp1
{c.x - m.x, c.y - r.y}, // cp2
{c.x, c.y - r.y} // p2
);
Close();
return *this;
}
PathBuilder& PathBuilder::AddLine(const Point& p1, const Point& p2) {
MoveTo(p1);
prototype_.AddLinearComponent(p1, p2);
return *this;
}
const Path& PathBuilder::GetCurrentPath() const {
return prototype_;
}
PathBuilder& PathBuilder::AddPath(const Path& path) {
auto linear = [&](size_t index, const LinearPathComponent& l) {
prototype_.AddLinearComponent(l.p1, l.p2);
};
auto quadratic = [&](size_t index, const QuadraticPathComponent& q) {
prototype_.AddQuadraticComponent(q.p1, q.cp, q.p2);
};
auto cubic = [&](size_t index, const CubicPathComponent& c) {
prototype_.AddCubicComponent(c.p1, c.cp1, c.cp2, c.p2);
};
auto move = [&](size_t index, const ContourComponent& m) {
prototype_.AddContourComponent(m.destination);
};
path.EnumerateComponents(linear, quadratic, cubic, move);
return *this;
}
PathBuilder& PathBuilder::Shift(Point offset) {
prototype_.Shift(offset);
return *this;
}
PathBuilder& PathBuilder::SetBounds(Rect bounds) {
prototype_.SetBounds(bounds);
did_compute_bounds_ = true;
return *this;
}
} // namespace impeller