blob: e91d9799803a21c6d1c4a21446a249480631c4f9 [file] [log] [blame]
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "impeller/entity/geometry/line_geometry.h"
namespace impeller {
LineGeometry::LineGeometry(Point p0, Point p1, Scalar width, Cap cap)
: p0_(p0), p1_(p1), width_(width), cap_(cap) {
FML_DCHECK(width >= 0);
}
Scalar LineGeometry::ComputePixelHalfWidth(const Matrix& transform,
Scalar width) {
auto determinant = transform.GetDeterminant();
if (determinant == 0) {
return 0.0f;
}
Scalar min_size = 1.0f / sqrt(std::abs(determinant));
return std::max(width, min_size) * 0.5f;
}
Vector2 LineGeometry::ComputeAlongVector(const Matrix& transform,
bool allow_zero_length) const {
Scalar stroke_half_width = ComputePixelHalfWidth(transform, width_);
if (stroke_half_width < kEhCloseEnough) {
return {};
}
auto along = p1_ - p0_;
Scalar length = along.GetLength();
if (length < kEhCloseEnough) {
if (!allow_zero_length) {
// We won't enclose any pixels unless the endpoints are extended
return {};
}
return {stroke_half_width, 0};
} else {
return along * stroke_half_width / length;
}
}
bool LineGeometry::ComputeCorners(Point corners[4],
const Matrix& transform,
bool extend_endpoints) const {
auto along = ComputeAlongVector(transform, extend_endpoints);
if (along.IsZero()) {
return false;
}
auto across = Vector2(along.y, -along.x);
corners[0] = p0_ - across;
corners[1] = p1_ - across;
corners[2] = p0_ + across;
corners[3] = p1_ + across;
if (extend_endpoints) {
corners[0] -= along;
corners[1] += along;
corners[2] -= along;
corners[3] += along;
}
return true;
}
GeometryResult LineGeometry::GetPositionBuffer(const ContentContext& renderer,
const Entity& entity,
RenderPass& pass) const {
using VT = SolidFillVertexShader::PerVertexData;
auto& transform = entity.GetTransform();
auto radius = ComputePixelHalfWidth(transform, width_);
if (cap_ == Cap::kRound) {
std::shared_ptr<Tessellator> tessellator = renderer.GetTessellator();
auto generator = tessellator->RoundCapLine(transform, p0_, p1_, radius);
return ComputePositionGeometry(renderer, generator, entity, pass);
}
Point corners[4];
if (!ComputeCorners(corners, transform, cap_ == Cap::kSquare)) {
return kEmptyResult;
}
auto& host_buffer = renderer.GetTransientsBuffer();
size_t count = 4;
BufferView vertex_buffer = host_buffer.Emplace(
count * sizeof(VT), alignof(VT), [&corners](uint8_t* buffer) {
auto vertices = reinterpret_cast<VT*>(buffer);
for (auto& corner : corners) {
*vertices++ = {
.position = corner,
};
}
});
return GeometryResult{
.type = PrimitiveType::kTriangleStrip,
.vertex_buffer =
{
.vertex_buffer = vertex_buffer,
.vertex_count = count,
.index_type = IndexType::kNone,
},
.transform = pass.GetOrthographicTransform() * entity.GetTransform(),
};
}
// |Geometry|
GeometryResult LineGeometry::GetPositionUVBuffer(Rect texture_coverage,
Matrix effect_transform,
const ContentContext& renderer,
const Entity& entity,
RenderPass& pass) const {
auto& host_buffer = renderer.GetTransientsBuffer();
using VT = TextureFillVertexShader::PerVertexData;
auto& transform = entity.GetTransform();
auto radius = ComputePixelHalfWidth(transform, width_);
auto uv_transform =
texture_coverage.GetNormalizingTransform() * effect_transform;
if (cap_ == Cap::kRound) {
std::shared_ptr<Tessellator> tessellator = renderer.GetTessellator();
auto generator = tessellator->RoundCapLine(transform, p0_, p1_, radius);
return ComputePositionUVGeometry(renderer, generator, uv_transform, entity,
pass);
}
Point corners[4];
if (!ComputeCorners(corners, transform, cap_ == Cap::kSquare)) {
return kEmptyResult;
}
size_t count = 4;
BufferView vertex_buffer =
host_buffer.Emplace(count * sizeof(VT), alignof(VT),
[&uv_transform, &corners](uint8_t* buffer) {
auto vertices = reinterpret_cast<VT*>(buffer);
for (auto& corner : corners) {
*vertices++ = {
.position = corner,
.texture_coords = uv_transform * corner,
};
}
});
return GeometryResult{
.type = PrimitiveType::kTriangleStrip,
.vertex_buffer =
{
.vertex_buffer = vertex_buffer,
.vertex_count = count,
.index_type = IndexType::kNone,
},
.transform = pass.GetOrthographicTransform() * entity.GetTransform(),
};
}
GeometryVertexType LineGeometry::GetVertexType() const {
return GeometryVertexType::kPosition;
}
std::optional<Rect> LineGeometry::GetCoverage(const Matrix& transform) const {
Point corners[4];
if (!ComputeCorners(corners, transform, cap_ != Cap::kButt)) {
return {};
}
for (int i = 0; i < 4; i++) {
corners[i] = transform * corners[i];
}
return Rect::MakePointBounds(std::begin(corners), std::end(corners));
}
bool LineGeometry::CoversArea(const Matrix& transform, const Rect& rect) const {
if (!transform.IsTranslationScaleOnly() || !IsAxisAlignedRect()) {
return false;
}
auto coverage = GetCoverage(transform);
return coverage.has_value() ? coverage->Contains(rect) : false;
}
bool LineGeometry::IsAxisAlignedRect() const {
return cap_ != Cap::kRound && (p0_.x == p1_.x || p0_.y == p1_.y);
}
} // namespace impeller