blob: 3933bfab1a28d6ea88dce7bbfb92a77330eb2d54 [file] [log] [blame]
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "impeller/geometry/wangs_formula.h"
namespace impeller {
namespace {
// Don't allow linearized segments to be off by more than 1/4th of a pixel from
// the true curve. This value should be scaled by the max basis of the
// X and Y directions.
constexpr static Scalar kPrecision = 4;
} // namespace
Scalar ComputeCubicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2,
Point p3) {
const Scalar k = scale_factor * .75f * kPrecision;
const Vector2 a = p0 - p1 * 2 + p2;
const Vector2 b = p1 - p2 * 2 + p3;
const Scalar max_len_sq =
std::max(a.GetLengthSquared(), b.GetLengthSquared());
return std::sqrt(k * std::sqrt(max_len_sq));
}
Scalar ComputeQuadradicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2) {
const Scalar k = scale_factor * .25f * kPrecision;
return std::sqrt(k * (p0 - p1 * 2 + p2).GetLength());
}
// Returns Wang's formula specialized for a conic curve.
//
// This is not actually due to Wang, but is an analogue from:
// (Theorem 3, corollary 1):
// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
Scalar ComputeConicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2,
Scalar w) {
// Compute center of bounding box in projected space
const Point C = 0.5f * (p0.Min(p1).Min(p2) + p0.Max(p1).Max(p2));
// Translate by -C. This improves translation-invariance of the formula,
// see Sec. 3.3 of cited paper
p0 -= C;
p1 -= C;
p2 -= C;
// Compute max length
const Scalar max_len =
std::sqrt(std::max(p0.Dot(p0), std::max(p1.Dot(p1), p2.Dot(p2))));
// Compute forward differences
const Point dp = -2 * w * p1 + p0 + p2;
const Scalar dw = std::abs(-2 * w + 2);
// Compute numerator and denominator for parametric step size of
// linearization. Here, the epsilon referenced from the cited paper
// is 1/precision.
Scalar k = scale_factor * kPrecision;
const Scalar rp_minus_1 = std::max(0.0f, max_len * k - 1);
const Scalar numer = std::sqrt(dp.Dot(dp)) * k + rp_minus_1 * dw;
const Scalar denom = 4 * std::min(w, 1.0f);
// Number of segments = sqrt(numer / denom).
// This assumes parametric interval of curve being linearized is
// [t0,t1] = [0, 1].
// If not, the number of segments is (tmax - tmin) / sqrt(denom / numer).
return std::sqrt(numer / denom);
}
} // namespace impeller