| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // A bunch of threads repeatedly hash an array of ints protected by a |
| // spinlock. If the spinlock is working properly, all elements of the |
| // array should be equal at the end of the test. |
| |
| #include <cstdint> |
| #include <limits> |
| #include <random> |
| #include <thread> // NOLINT(build/c++11) |
| #include <type_traits> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "absl/base/attributes.h" |
| #include "absl/base/config.h" |
| #include "absl/base/internal/low_level_scheduling.h" |
| #include "absl/base/internal/scheduling_mode.h" |
| #include "absl/base/internal/spinlock.h" |
| #include "absl/base/internal/sysinfo.h" |
| #include "absl/base/macros.h" |
| #include "absl/synchronization/blocking_counter.h" |
| #include "absl/synchronization/notification.h" |
| |
| constexpr int32_t kNumThreads = 10; |
| constexpr int32_t kIters = 1000; |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace base_internal { |
| |
| // This is defined outside of anonymous namespace so that it can be |
| // a friend of SpinLock to access protected methods for testing. |
| struct SpinLockTest { |
| static uint32_t EncodeWaitCycles(int64_t wait_start_time, |
| int64_t wait_end_time) { |
| return SpinLock::EncodeWaitCycles(wait_start_time, wait_end_time); |
| } |
| static uint64_t DecodeWaitCycles(uint32_t lock_value) { |
| return SpinLock::DecodeWaitCycles(lock_value); |
| } |
| }; |
| |
| namespace { |
| |
| static constexpr int kArrayLength = 10; |
| static uint32_t values[kArrayLength]; |
| |
| ABSL_CONST_INIT static SpinLock static_cooperative_spinlock( |
| absl::kConstInit, base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); |
| ABSL_CONST_INIT static SpinLock static_noncooperative_spinlock( |
| absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); |
| |
| // Simple integer hash function based on the public domain lookup2 hash. |
| // http://burtleburtle.net/bob/c/lookup2.c |
| static uint32_t Hash32(uint32_t a, uint32_t c) { |
| uint32_t b = 0x9e3779b9UL; // The golden ratio; an arbitrary value. |
| a -= b; a -= c; a ^= (c >> 13); |
| b -= c; b -= a; b ^= (a << 8); |
| c -= a; c -= b; c ^= (b >> 13); |
| a -= b; a -= c; a ^= (c >> 12); |
| b -= c; b -= a; b ^= (a << 16); |
| c -= a; c -= b; c ^= (b >> 5); |
| a -= b; a -= c; a ^= (c >> 3); |
| b -= c; b -= a; b ^= (a << 10); |
| c -= a; c -= b; c ^= (b >> 15); |
| return c; |
| } |
| |
| static void TestFunction(int thread_salt, SpinLock* spinlock) { |
| for (int i = 0; i < kIters; i++) { |
| SpinLockHolder h(spinlock); |
| for (int j = 0; j < kArrayLength; j++) { |
| const int index = (j + thread_salt) % kArrayLength; |
| values[index] = Hash32(values[index], thread_salt); |
| std::this_thread::yield(); |
| } |
| } |
| } |
| |
| static void ThreadedTest(SpinLock* spinlock) { |
| std::vector<std::thread> threads; |
| threads.reserve(kNumThreads); |
| for (int i = 0; i < kNumThreads; ++i) { |
| threads.push_back(std::thread(TestFunction, i, spinlock)); |
| } |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| |
| SpinLockHolder h(spinlock); |
| for (int i = 1; i < kArrayLength; i++) { |
| EXPECT_EQ(values[0], values[i]); |
| } |
| } |
| |
| #ifndef ABSL_HAVE_THREAD_SANITIZER |
| static_assert(std::is_trivially_destructible<SpinLock>(), ""); |
| #endif |
| |
| TEST(SpinLock, StackNonCooperativeDisablesScheduling) { |
| SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY); |
| spinlock.Lock(); |
| EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed()); |
| spinlock.Unlock(); |
| } |
| |
| TEST(SpinLock, StaticNonCooperativeDisablesScheduling) { |
| static_noncooperative_spinlock.Lock(); |
| EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed()); |
| static_noncooperative_spinlock.Unlock(); |
| } |
| |
| TEST(SpinLock, WaitCyclesEncoding) { |
| // These are implementation details not exported by SpinLock. |
| const int kProfileTimestampShift = 7; |
| const int kLockwordReservedShift = 3; |
| const uint32_t kSpinLockSleeper = 8; |
| |
| // We should be able to encode up to (1^kMaxCycleBits - 1) without clamping |
| // but the lower kProfileTimestampShift will be dropped. |
| const int kMaxCyclesShift = |
| 32 - kLockwordReservedShift + kProfileTimestampShift; |
| const uint64_t kMaxCycles = (int64_t{1} << kMaxCyclesShift) - 1; |
| |
| // These bits should be zero after encoding. |
| const uint32_t kLockwordReservedMask = (1 << kLockwordReservedShift) - 1; |
| |
| // These bits are dropped when wait cycles are encoded. |
| const uint64_t kProfileTimestampMask = (1 << kProfileTimestampShift) - 1; |
| |
| // Test a bunch of random values |
| std::default_random_engine generator; |
| // Shift to avoid overflow below. |
| std::uniform_int_distribution<uint64_t> time_distribution( |
| 0, std::numeric_limits<uint64_t>::max() >> 4); |
| std::uniform_int_distribution<uint64_t> cycle_distribution(0, kMaxCycles); |
| |
| for (int i = 0; i < 100; i++) { |
| int64_t start_time = time_distribution(generator); |
| int64_t cycles = cycle_distribution(generator); |
| int64_t end_time = start_time + cycles; |
| uint32_t lock_value = SpinLockTest::EncodeWaitCycles(start_time, end_time); |
| EXPECT_EQ(0, lock_value & kLockwordReservedMask); |
| uint64_t decoded = SpinLockTest::DecodeWaitCycles(lock_value); |
| EXPECT_EQ(0, decoded & kProfileTimestampMask); |
| EXPECT_EQ(cycles & ~kProfileTimestampMask, decoded); |
| } |
| |
| // Test corner cases |
| int64_t start_time = time_distribution(generator); |
| EXPECT_EQ(kSpinLockSleeper, |
| SpinLockTest::EncodeWaitCycles(start_time, start_time)); |
| EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(0)); |
| EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(kLockwordReservedMask)); |
| EXPECT_EQ(kMaxCycles & ~kProfileTimestampMask, |
| SpinLockTest::DecodeWaitCycles(~kLockwordReservedMask)); |
| |
| // Check that we cannot produce kSpinLockSleeper during encoding. |
| int64_t sleeper_cycles = |
| kSpinLockSleeper << (kProfileTimestampShift - kLockwordReservedShift); |
| uint32_t sleeper_value = |
| SpinLockTest::EncodeWaitCycles(start_time, start_time + sleeper_cycles); |
| EXPECT_NE(sleeper_value, kSpinLockSleeper); |
| |
| // Test clamping |
| uint32_t max_value = |
| SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles); |
| uint64_t max_value_decoded = SpinLockTest::DecodeWaitCycles(max_value); |
| uint64_t expected_max_value_decoded = kMaxCycles & ~kProfileTimestampMask; |
| EXPECT_EQ(expected_max_value_decoded, max_value_decoded); |
| |
| const int64_t step = (1 << kProfileTimestampShift); |
| uint32_t after_max_value = |
| SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles + step); |
| uint64_t after_max_value_decoded = |
| SpinLockTest::DecodeWaitCycles(after_max_value); |
| EXPECT_EQ(expected_max_value_decoded, after_max_value_decoded); |
| |
| uint32_t before_max_value = SpinLockTest::EncodeWaitCycles( |
| start_time, start_time + kMaxCycles - step); |
| uint64_t before_max_value_decoded = |
| SpinLockTest::DecodeWaitCycles(before_max_value); |
| EXPECT_GT(expected_max_value_decoded, before_max_value_decoded); |
| } |
| |
| TEST(SpinLockWithThreads, StackSpinLock) { |
| SpinLock spinlock; |
| ThreadedTest(&spinlock); |
| } |
| |
| TEST(SpinLockWithThreads, StackCooperativeSpinLock) { |
| SpinLock spinlock(base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); |
| ThreadedTest(&spinlock); |
| } |
| |
| TEST(SpinLockWithThreads, StackNonCooperativeSpinLock) { |
| SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY); |
| ThreadedTest(&spinlock); |
| } |
| |
| TEST(SpinLockWithThreads, StaticCooperativeSpinLock) { |
| ThreadedTest(&static_cooperative_spinlock); |
| } |
| |
| TEST(SpinLockWithThreads, StaticNonCooperativeSpinLock) { |
| ThreadedTest(&static_noncooperative_spinlock); |
| } |
| |
| TEST(SpinLockWithThreads, DoesNotDeadlock) { |
| struct Helper { |
| static void NotifyThenLock(Notification* locked, SpinLock* spinlock, |
| BlockingCounter* b) { |
| locked->WaitForNotification(); // Wait for LockThenWait() to hold "s". |
| b->DecrementCount(); |
| SpinLockHolder l(spinlock); |
| } |
| |
| static void LockThenWait(Notification* locked, SpinLock* spinlock, |
| BlockingCounter* b) { |
| SpinLockHolder l(spinlock); |
| locked->Notify(); |
| b->Wait(); |
| } |
| |
| static void DeadlockTest(SpinLock* spinlock, int num_spinners) { |
| Notification locked; |
| BlockingCounter counter(num_spinners); |
| std::vector<std::thread> threads; |
| |
| threads.push_back( |
| std::thread(Helper::LockThenWait, &locked, spinlock, &counter)); |
| for (int i = 0; i < num_spinners; ++i) { |
| threads.push_back( |
| std::thread(Helper::NotifyThenLock, &locked, spinlock, &counter)); |
| } |
| |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } |
| }; |
| |
| SpinLock stack_cooperative_spinlock( |
| base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); |
| SpinLock stack_noncooperative_spinlock(base_internal::SCHEDULE_KERNEL_ONLY); |
| Helper::DeadlockTest(&stack_cooperative_spinlock, |
| base_internal::NumCPUs() * 2); |
| Helper::DeadlockTest(&stack_noncooperative_spinlock, |
| base_internal::NumCPUs() * 2); |
| Helper::DeadlockTest(&static_cooperative_spinlock, |
| base_internal::NumCPUs() * 2); |
| Helper::DeadlockTest(&static_noncooperative_spinlock, |
| base_internal::NumCPUs() * 2); |
| } |
| |
| } // namespace |
| } // namespace base_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |