| // Copyright 2020 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: cord.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This file defines the `absl::Cord` data structure and operations on that data |
| // structure. A Cord is a string-like sequence of characters optimized for |
| // specific use cases. Unlike a `std::string`, which stores an array of |
| // contiguous characters, Cord data is stored in a structure consisting of |
| // separate, reference-counted "chunks." (Currently, this implementation is a |
| // tree structure, though that implementation may change.) |
| // |
| // Because a Cord consists of these chunks, data can be added to or removed from |
| // a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a |
| // `std::string`, a Cord can therefore accommodate data that changes over its |
| // lifetime, though it's not quite "mutable"; it can change only in the |
| // attachment, detachment, or rearrangement of chunks of its constituent data. |
| // |
| // A Cord provides some benefit over `std::string` under the following (albeit |
| // narrow) circumstances: |
| // |
| // * Cord data is designed to grow and shrink over a Cord's lifetime. Cord |
| // provides efficient insertions and deletions at the start and end of the |
| // character sequences, avoiding copies in those cases. Static data should |
| // generally be stored as strings. |
| // * External memory consisting of string-like data can be directly added to |
| // a Cord without requiring copies or allocations. |
| // * Cord data may be shared and copied cheaply. Cord provides a copy-on-write |
| // implementation and cheap sub-Cord operations. Copying a Cord is an O(1) |
| // operation. |
| // |
| // As a consequence to the above, Cord data is generally large. Small data |
| // should generally use strings, as construction of a Cord requires some |
| // overhead. Small Cords (<= 15 bytes) are represented inline, but most small |
| // Cords are expected to grow over their lifetimes. |
| // |
| // Note that because a Cord is made up of separate chunked data, random access |
| // to character data within a Cord is slower than within a `std::string`. |
| // |
| // Thread Safety |
| // |
| // Cord has the same thread-safety properties as many other types like |
| // std::string, std::vector<>, int, etc -- it is thread-compatible. In |
| // particular, if threads do not call non-const methods, then it is safe to call |
| // const methods without synchronization. Copying a Cord produces a new instance |
| // that can be used concurrently with the original in arbitrary ways. |
| |
| #ifndef ABSL_STRINGS_CORD_H_ |
| #define ABSL_STRINGS_CORD_H_ |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iosfwd> |
| #include <iterator> |
| #include <string> |
| #include <type_traits> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/config.h" |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/internal/per_thread_tls.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/port.h" |
| #include "absl/container/inlined_vector.h" |
| #include "absl/functional/function_ref.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/cord_analysis.h" |
| #include "absl/strings/internal/cord_internal.h" |
| #include "absl/strings/internal/cord_rep_btree.h" |
| #include "absl/strings/internal/cord_rep_btree_reader.h" |
| #include "absl/strings/internal/cord_rep_crc.h" |
| #include "absl/strings/internal/cord_rep_ring.h" |
| #include "absl/strings/internal/cordz_functions.h" |
| #include "absl/strings/internal/cordz_info.h" |
| #include "absl/strings/internal/cordz_statistics.h" |
| #include "absl/strings/internal/cordz_update_scope.h" |
| #include "absl/strings/internal/cordz_update_tracker.h" |
| #include "absl/strings/internal/resize_uninitialized.h" |
| #include "absl/strings/internal/string_constant.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| class Cord; |
| class CordTestPeer; |
| template <typename Releaser> |
| Cord MakeCordFromExternal(absl::string_view, Releaser&&); |
| void CopyCordToString(const Cord& src, std::string* dst); |
| |
| // Cord memory accounting modes |
| enum class CordMemoryAccounting { |
| // Counts the *approximate* number of bytes held in full or in part by this |
| // Cord (which may not remain the same between invocations). Cords that share |
| // memory could each be "charged" independently for the same shared memory. |
| kTotal, |
| |
| // Counts the *approximate* number of bytes held in full or in part by this |
| // Cord weighted by the sharing ratio of that data. For example, if some data |
| // edge is shared by 4 different Cords, then each cord is attributed 1/4th of |
| // the total memory usage as a 'fair share' of the total memory usage. |
| kFairShare, |
| }; |
| |
| // Cord |
| // |
| // A Cord is a sequence of characters, designed to be more efficient than a |
| // `std::string` in certain circumstances: namely, large string data that needs |
| // to change over its lifetime or shared, especially when such data is shared |
| // across API boundaries. |
| // |
| // A Cord stores its character data in a structure that allows efficient prepend |
| // and append operations. This makes a Cord useful for large string data sent |
| // over in a wire format that may need to be prepended or appended at some point |
| // during the data exchange (e.g. HTTP, protocol buffers). For example, a |
| // Cord is useful for storing an HTTP request, and prepending an HTTP header to |
| // such a request. |
| // |
| // Cords should not be used for storing general string data, however. They |
| // require overhead to construct and are slower than strings for random access. |
| // |
| // The Cord API provides the following common API operations: |
| // |
| // * Create or assign Cords out of existing string data, memory, or other Cords |
| // * Append and prepend data to an existing Cord |
| // * Create new Sub-Cords from existing Cord data |
| // * Swap Cord data and compare Cord equality |
| // * Write out Cord data by constructing a `std::string` |
| // |
| // Additionally, the API provides iterator utilities to iterate through Cord |
| // data via chunks or character bytes. |
| // |
| class Cord { |
| private: |
| template <typename T> |
| using EnableIfString = |
| absl::enable_if_t<std::is_same<T, std::string>::value, int>; |
| |
| public: |
| // Cord::Cord() Constructors. |
| |
| // Creates an empty Cord. |
| constexpr Cord() noexcept; |
| |
| // Creates a Cord from an existing Cord. Cord is copyable and efficiently |
| // movable. The moved-from state is valid but unspecified. |
| Cord(const Cord& src); |
| Cord(Cord&& src) noexcept; |
| Cord& operator=(const Cord& x); |
| Cord& operator=(Cord&& x) noexcept; |
| |
| // Creates a Cord from a `src` string. This constructor is marked explicit to |
| // prevent implicit Cord constructions from arguments convertible to an |
| // `absl::string_view`. |
| explicit Cord(absl::string_view src); |
| Cord& operator=(absl::string_view src); |
| |
| // Creates a Cord from a `std::string&&` rvalue. These constructors are |
| // templated to avoid ambiguities for types that are convertible to both |
| // `absl::string_view` and `std::string`, such as `const char*`. |
| template <typename T, EnableIfString<T> = 0> |
| explicit Cord(T&& src); |
| template <typename T, EnableIfString<T> = 0> |
| Cord& operator=(T&& src); |
| |
| // Cord::~Cord() |
| // |
| // Destructs the Cord. |
| ~Cord() { |
| if (contents_.is_tree()) DestroyCordSlow(); |
| } |
| |
| // MakeCordFromExternal() |
| // |
| // Creates a Cord that takes ownership of external string memory. The |
| // contents of `data` are not copied to the Cord; instead, the external |
| // memory is added to the Cord and reference-counted. This data may not be |
| // changed for the life of the Cord, though it may be prepended or appended |
| // to. |
| // |
| // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when |
| // the reference count for `data` reaches zero. As noted above, this data must |
| // remain live until the releaser is invoked. The callable releaser also must: |
| // |
| // * be move constructible |
| // * support `void operator()(absl::string_view) const` or `void operator()` |
| // |
| // Example: |
| // |
| // Cord MakeCord(BlockPool* pool) { |
| // Block* block = pool->NewBlock(); |
| // FillBlock(block); |
| // return absl::MakeCordFromExternal( |
| // block->ToStringView(), |
| // [pool, block](absl::string_view v) { |
| // pool->FreeBlock(block, v); |
| // }); |
| // } |
| // |
| // WARNING: Because a Cord can be reference-counted, it's likely a bug if your |
| // releaser doesn't do anything. For example, consider the following: |
| // |
| // void Foo(const char* buffer, int len) { |
| // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), |
| // [](absl::string_view) {}); |
| // |
| // // BUG: If Bar() copies its cord for any reason, including keeping a |
| // // substring of it, the lifetime of buffer might be extended beyond |
| // // when Foo() returns. |
| // Bar(c); |
| // } |
| template <typename Releaser> |
| friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); |
| |
| // Cord::Clear() |
| // |
| // Releases the Cord data. Any nodes that share data with other Cords, if |
| // applicable, will have their reference counts reduced by 1. |
| ABSL_ATTRIBUTE_REINITIALIZES void Clear(); |
| |
| // Cord::Append() |
| // |
| // Appends data to the Cord, which may come from another Cord or other string |
| // data. |
| void Append(const Cord& src); |
| void Append(Cord&& src); |
| void Append(absl::string_view src); |
| template <typename T, EnableIfString<T> = 0> |
| void Append(T&& src); |
| |
| // Cord::Prepend() |
| // |
| // Prepends data to the Cord, which may come from another Cord or other string |
| // data. |
| void Prepend(const Cord& src); |
| void Prepend(absl::string_view src); |
| template <typename T, EnableIfString<T> = 0> |
| void Prepend(T&& src); |
| |
| // Cord::RemovePrefix() |
| // |
| // Removes the first `n` bytes of a Cord. |
| void RemovePrefix(size_t n); |
| void RemoveSuffix(size_t n); |
| |
| // Cord::Subcord() |
| // |
| // Returns a new Cord representing the subrange [pos, pos + new_size) of |
| // *this. If pos >= size(), the result is empty(). If |
| // (pos + new_size) >= size(), the result is the subrange [pos, size()). |
| Cord Subcord(size_t pos, size_t new_size) const; |
| |
| // Cord::swap() |
| // |
| // Swaps the contents of the Cord with `other`. |
| void swap(Cord& other) noexcept; |
| |
| // swap() |
| // |
| // Swaps the contents of two Cords. |
| friend void swap(Cord& x, Cord& y) noexcept { x.swap(y); } |
| |
| // Cord::size() |
| // |
| // Returns the size of the Cord. |
| size_t size() const; |
| |
| // Cord::empty() |
| // |
| // Determines whether the given Cord is empty, returning `true` is so. |
| bool empty() const; |
| |
| // Cord::EstimatedMemoryUsage() |
| // |
| // Returns the *approximate* number of bytes held by this cord. |
| // See CordMemoryAccounting for more information on accounting method used. |
| size_t EstimatedMemoryUsage(CordMemoryAccounting accounting_method = |
| CordMemoryAccounting::kTotal) const; |
| |
| // Cord::Compare() |
| // |
| // Compares 'this' Cord with rhs. This function and its relatives treat Cords |
| // as sequences of unsigned bytes. The comparison is a straightforward |
| // lexicographic comparison. `Cord::Compare()` returns values as follows: |
| // |
| // -1 'this' Cord is smaller |
| // 0 two Cords are equal |
| // 1 'this' Cord is larger |
| int Compare(absl::string_view rhs) const; |
| int Compare(const Cord& rhs) const; |
| |
| // Cord::StartsWith() |
| // |
| // Determines whether the Cord starts with the passed string data `rhs`. |
| bool StartsWith(const Cord& rhs) const; |
| bool StartsWith(absl::string_view rhs) const; |
| |
| // Cord::EndsWith() |
| // |
| // Determines whether the Cord ends with the passed string data `rhs`. |
| bool EndsWith(absl::string_view rhs) const; |
| bool EndsWith(const Cord& rhs) const; |
| |
| // Cord::operator std::string() |
| // |
| // Converts a Cord into a `std::string()`. This operator is marked explicit to |
| // prevent unintended Cord usage in functions that take a string. |
| explicit operator std::string() const; |
| |
| // CopyCordToString() |
| // |
| // Copies the contents of a `src` Cord into a `*dst` string. |
| // |
| // This function optimizes the case of reusing the destination string since it |
| // can reuse previously allocated capacity. However, this function does not |
| // guarantee that pointers previously returned by `dst->data()` remain valid |
| // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new |
| // object, prefer to simply use the conversion operator to `std::string`. |
| friend void CopyCordToString(const Cord& src, std::string* dst); |
| |
| class CharIterator; |
| |
| //---------------------------------------------------------------------------- |
| // Cord::ChunkIterator |
| //---------------------------------------------------------------------------- |
| // |
| // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its |
| // Cord. Such iteration allows you to perform non-const operatons on the data |
| // of a Cord without modifying it. |
| // |
| // Generally, you do not instantiate a `Cord::ChunkIterator` directly; |
| // instead, you create one implicitly through use of the `Cord::Chunks()` |
| // member function. |
| // |
| // The `Cord::ChunkIterator` has the following properties: |
| // |
| // * The iterator is invalidated after any non-const operation on the |
| // Cord object over which it iterates. |
| // * The `string_view` returned by dereferencing a valid, non-`end()` |
| // iterator is guaranteed to be non-empty. |
| // * Two `ChunkIterator` objects can be compared equal if and only if they |
| // remain valid and iterate over the same Cord. |
| // * The iterator in this case is a proxy iterator; the `string_view` |
| // returned by the iterator does not live inside the Cord, and its |
| // lifetime is limited to the lifetime of the iterator itself. To help |
| // prevent lifetime issues, `ChunkIterator::reference` is not a true |
| // reference type and is equivalent to `value_type`. |
| // * The iterator keeps state that can grow for Cords that contain many |
| // nodes and are imbalanced due to sharing. Prefer to pass this type by |
| // const reference instead of by value. |
| class ChunkIterator { |
| public: |
| using iterator_category = std::input_iterator_tag; |
| using value_type = absl::string_view; |
| using difference_type = ptrdiff_t; |
| using pointer = const value_type*; |
| using reference = value_type; |
| |
| ChunkIterator() = default; |
| |
| ChunkIterator& operator++(); |
| ChunkIterator operator++(int); |
| bool operator==(const ChunkIterator& other) const; |
| bool operator!=(const ChunkIterator& other) const; |
| reference operator*() const; |
| pointer operator->() const; |
| |
| friend class Cord; |
| friend class CharIterator; |
| |
| private: |
| using CordRep = absl::cord_internal::CordRep; |
| using CordRepBtree = absl::cord_internal::CordRepBtree; |
| using CordRepBtreeReader = absl::cord_internal::CordRepBtreeReader; |
| |
| // Stack of right children of concat nodes that we have to visit. |
| // Keep this at the end of the structure to avoid cache-thrashing. |
| // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for |
| // the inlined vector size (47 exists for backward compatibility). |
| using Stack = absl::InlinedVector<absl::cord_internal::CordRep*, 47>; |
| |
| // Constructs a `begin()` iterator from `tree`. `tree` must not be null. |
| explicit ChunkIterator(cord_internal::CordRep* tree); |
| |
| // Constructs a `begin()` iterator from `cord`. |
| explicit ChunkIterator(const Cord* cord); |
| |
| // Initializes this instance from a tree. Invoked by constructors. |
| void InitTree(cord_internal::CordRep* tree); |
| |
| // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than |
| // `current_chunk_.size()`. |
| void RemoveChunkPrefix(size_t n); |
| Cord AdvanceAndReadBytes(size_t n); |
| void AdvanceBytes(size_t n); |
| |
| // Stack specific operator++ |
| ChunkIterator& AdvanceStack(); |
| |
| // Btree specific operator++ |
| ChunkIterator& AdvanceBtree(); |
| void AdvanceBytesBtree(size_t n); |
| |
| // Iterates `n` bytes, where `n` is expected to be greater than or equal to |
| // `current_chunk_.size()`. |
| void AdvanceBytesSlowPath(size_t n); |
| |
| // A view into bytes of the current `CordRep`. It may only be a view to a |
| // suffix of bytes if this is being used by `CharIterator`. |
| absl::string_view current_chunk_; |
| // The current leaf, or `nullptr` if the iterator points to short data. |
| // If the current chunk is a substring node, current_leaf_ points to the |
| // underlying flat or external node. |
| absl::cord_internal::CordRep* current_leaf_ = nullptr; |
| // The number of bytes left in the `Cord` over which we are iterating. |
| size_t bytes_remaining_ = 0; |
| |
| // Cord reader for cord btrees. Empty if not traversing a btree. |
| CordRepBtreeReader btree_reader_; |
| |
| // See 'Stack' alias definition. |
| Stack stack_of_right_children_; |
| }; |
| |
| // Cord::ChunkIterator::chunk_begin() |
| // |
| // Returns an iterator to the first chunk of the `Cord`. |
| // |
| // Generally, prefer using `Cord::Chunks()` within a range-based for loop for |
| // iterating over the chunks of a Cord. This method may be useful for getting |
| // a `ChunkIterator` where range-based for-loops are not useful. |
| // |
| // Example: |
| // |
| // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, |
| // absl::string_view s) { |
| // return std::find(c.chunk_begin(), c.chunk_end(), s); |
| // } |
| ChunkIterator chunk_begin() const; |
| |
| // Cord::ChunkItertator::chunk_end() |
| // |
| // Returns an iterator one increment past the last chunk of the `Cord`. |
| // |
| // Generally, prefer using `Cord::Chunks()` within a range-based for loop for |
| // iterating over the chunks of a Cord. This method may be useful for getting |
| // a `ChunkIterator` where range-based for-loops may not be available. |
| ChunkIterator chunk_end() const; |
| |
| //---------------------------------------------------------------------------- |
| // Cord::ChunkIterator::ChunkRange |
| //---------------------------------------------------------------------------- |
| // |
| // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`, |
| // producing an iterator which can be used within a range-based for loop. |
| // Construction of a `ChunkRange` will return an iterator pointing to the |
| // first chunk of the Cord. Generally, do not construct a `ChunkRange` |
| // directly; instead, prefer to use the `Cord::Chunks()` method. |
| // |
| // Implementation note: `ChunkRange` is simply a convenience wrapper over |
| // `Cord::chunk_begin()` and `Cord::chunk_end()`. |
| class ChunkRange { |
| public: |
| // Fulfill minimum c++ container requirements [container.requirements] |
| // Theses (partial) container type definitions allow ChunkRange to be used |
| // in various utilities expecting a subset of [container.requirements]. |
| // For example, the below enables using `::testing::ElementsAre(...)` |
| using value_type = absl::string_view; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using iterator = ChunkIterator; |
| using const_iterator = ChunkIterator; |
| |
| explicit ChunkRange(const Cord* cord) : cord_(cord) {} |
| |
| ChunkIterator begin() const; |
| ChunkIterator end() const; |
| |
| private: |
| const Cord* cord_; |
| }; |
| |
| // Cord::Chunks() |
| // |
| // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks |
| // of a `Cord` with a range-based for-loop. For most iteration tasks on a |
| // Cord, use `Cord::Chunks()` to retrieve this iterator. |
| // |
| // Example: |
| // |
| // void ProcessChunks(const Cord& cord) { |
| // for (absl::string_view chunk : cord.Chunks()) { ... } |
| // } |
| // |
| // Note that the ordinary caveats of temporary lifetime extension apply: |
| // |
| // void Process() { |
| // for (absl::string_view chunk : CordFactory().Chunks()) { |
| // // The temporary Cord returned by CordFactory has been destroyed! |
| // } |
| // } |
| ChunkRange Chunks() const; |
| |
| //---------------------------------------------------------------------------- |
| // Cord::CharIterator |
| //---------------------------------------------------------------------------- |
| // |
| // A `Cord::CharIterator` allows iteration over the constituent characters of |
| // a `Cord`. |
| // |
| // Generally, you do not instantiate a `Cord::CharIterator` directly; instead, |
| // you create one implicitly through use of the `Cord::Chars()` member |
| // function. |
| // |
| // A `Cord::CharIterator` has the following properties: |
| // |
| // * The iterator is invalidated after any non-const operation on the |
| // Cord object over which it iterates. |
| // * Two `CharIterator` objects can be compared equal if and only if they |
| // remain valid and iterate over the same Cord. |
| // * The iterator keeps state that can grow for Cords that contain many |
| // nodes and are imbalanced due to sharing. Prefer to pass this type by |
| // const reference instead of by value. |
| // * This type cannot act as a forward iterator because a `Cord` can reuse |
| // sections of memory. This fact violates the requirement for forward |
| // iterators to compare equal if dereferencing them returns the same |
| // object. |
| class CharIterator { |
| public: |
| using iterator_category = std::input_iterator_tag; |
| using value_type = char; |
| using difference_type = ptrdiff_t; |
| using pointer = const char*; |
| using reference = const char&; |
| |
| CharIterator() = default; |
| |
| CharIterator& operator++(); |
| CharIterator operator++(int); |
| bool operator==(const CharIterator& other) const; |
| bool operator!=(const CharIterator& other) const; |
| reference operator*() const; |
| pointer operator->() const; |
| |
| friend Cord; |
| |
| private: |
| explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} |
| |
| ChunkIterator chunk_iterator_; |
| }; |
| |
| // Cord::CharIterator::AdvanceAndRead() |
| // |
| // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes |
| // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the |
| // number of bytes within the Cord; otherwise, behavior is undefined. It is |
| // valid to pass `char_end()` and `0`. |
| static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); |
| |
| // Cord::CharIterator::Advance() |
| // |
| // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than |
| // or equal to the number of bytes remaining within the Cord; otherwise, |
| // behavior is undefined. It is valid to pass `char_end()` and `0`. |
| static void Advance(CharIterator* it, size_t n_bytes); |
| |
| // Cord::CharIterator::ChunkRemaining() |
| // |
| // Returns the longest contiguous view starting at the iterator's position. |
| // |
| // `it` must be dereferenceable. |
| static absl::string_view ChunkRemaining(const CharIterator& it); |
| |
| // Cord::CharIterator::char_begin() |
| // |
| // Returns an iterator to the first character of the `Cord`. |
| // |
| // Generally, prefer using `Cord::Chars()` within a range-based for loop for |
| // iterating over the chunks of a Cord. This method may be useful for getting |
| // a `CharIterator` where range-based for-loops may not be available. |
| CharIterator char_begin() const; |
| |
| // Cord::CharIterator::char_end() |
| // |
| // Returns an iterator to one past the last character of the `Cord`. |
| // |
| // Generally, prefer using `Cord::Chars()` within a range-based for loop for |
| // iterating over the chunks of a Cord. This method may be useful for getting |
| // a `CharIterator` where range-based for-loops are not useful. |
| CharIterator char_end() const; |
| |
| // Cord::CharIterator::CharRange |
| // |
| // `CharRange` is a helper class for iterating over the characters of a |
| // producing an iterator which can be used within a range-based for loop. |
| // Construction of a `CharRange` will return an iterator pointing to the first |
| // character of the Cord. Generally, do not construct a `CharRange` directly; |
| // instead, prefer to use the `Cord::Chars()` method show below. |
| // |
| // Implementation note: `CharRange` is simply a convenience wrapper over |
| // `Cord::char_begin()` and `Cord::char_end()`. |
| class CharRange { |
| public: |
| // Fulfill minimum c++ container requirements [container.requirements] |
| // Theses (partial) container type definitions allow CharRange to be used |
| // in various utilities expecting a subset of [container.requirements]. |
| // For example, the below enables using `::testing::ElementsAre(...)` |
| using value_type = char; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using iterator = CharIterator; |
| using const_iterator = CharIterator; |
| |
| explicit CharRange(const Cord* cord) : cord_(cord) {} |
| |
| CharIterator begin() const; |
| CharIterator end() const; |
| |
| private: |
| const Cord* cord_; |
| }; |
| |
| // Cord::CharIterator::Chars() |
| // |
| // Returns a `Cord::CharIterator` for iterating over the characters of a |
| // `Cord` with a range-based for-loop. For most character-based iteration |
| // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator. |
| // |
| // Example: |
| // |
| // void ProcessCord(const Cord& cord) { |
| // for (char c : cord.Chars()) { ... } |
| // } |
| // |
| // Note that the ordinary caveats of temporary lifetime extension apply: |
| // |
| // void Process() { |
| // for (char c : CordFactory().Chars()) { |
| // // The temporary Cord returned by CordFactory has been destroyed! |
| // } |
| // } |
| CharRange Chars() const; |
| |
| // Cord::operator[] |
| // |
| // Gets the "i"th character of the Cord and returns it, provided that |
| // 0 <= i < Cord.size(). |
| // |
| // NOTE: This routine is reasonably efficient. It is roughly |
| // logarithmic based on the number of chunks that make up the cord. Still, |
| // if you need to iterate over the contents of a cord, you should |
| // use a CharIterator/ChunkIterator rather than call operator[] or Get() |
| // repeatedly in a loop. |
| char operator[](size_t i) const; |
| |
| // Cord::TryFlat() |
| // |
| // If this cord's representation is a single flat array, returns a |
| // string_view referencing that array. Otherwise returns nullopt. |
| absl::optional<absl::string_view> TryFlat() const; |
| |
| // Cord::Flatten() |
| // |
| // Flattens the cord into a single array and returns a view of the data. |
| // |
| // If the cord was already flat, the contents are not modified. |
| absl::string_view Flatten(); |
| |
| // Supports absl::Cord as a sink object for absl::Format(). |
| friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) { |
| cord->Append(part); |
| } |
| |
| // Cord::SetExpectedChecksum() |
| // |
| // Stores a checksum value with this non-empty cord instance, for later |
| // retrieval. |
| // |
| // The expected checksum is a number stored out-of-band, alongside the data. |
| // It is preserved across copies and assignments, but any mutations to a cord |
| // will cause it to lose its expected checksum. |
| // |
| // The expected checksum is not part of a Cord's value, and does not affect |
| // operations such as equality or hashing. |
| // |
| // This field is intended to store a CRC32C checksum for later validation, to |
| // help support end-to-end checksum workflows. However, the Cord API itself |
| // does no CRC validation, and assigns no meaning to this number. |
| // |
| // This call has no effect if this cord is empty. |
| void SetExpectedChecksum(uint32_t crc); |
| |
| // Returns this cord's expected checksum, if it has one. Otherwise, returns |
| // nullopt. |
| absl::optional<uint32_t> ExpectedChecksum() const; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const absl::Cord& c) { |
| absl::optional<absl::string_view> maybe_flat = c.TryFlat(); |
| if (maybe_flat.has_value()) { |
| return H::combine(std::move(hash_state), *maybe_flat); |
| } |
| return c.HashFragmented(std::move(hash_state)); |
| } |
| |
| // Create a Cord with the contents of StringConstant<T>::value. |
| // No allocations will be done and no data will be copied. |
| // This is an INTERNAL API and subject to change or removal. This API can only |
| // be used by spelling absl::strings_internal::MakeStringConstant, which is |
| // also an internal API. |
| template <typename T> |
| explicit constexpr Cord(strings_internal::StringConstant<T>); |
| |
| private: |
| using CordRep = absl::cord_internal::CordRep; |
| using CordRepFlat = absl::cord_internal::CordRepFlat; |
| using CordzInfo = cord_internal::CordzInfo; |
| using CordzUpdateScope = cord_internal::CordzUpdateScope; |
| using CordzUpdateTracker = cord_internal::CordzUpdateTracker; |
| using InlineData = cord_internal::InlineData; |
| using MethodIdentifier = CordzUpdateTracker::MethodIdentifier; |
| |
| // Creates a cord instance with `method` representing the originating |
| // public API call causing the cord to be created. |
| explicit Cord(absl::string_view src, MethodIdentifier method); |
| |
| friend class CordTestPeer; |
| friend bool operator==(const Cord& lhs, const Cord& rhs); |
| friend bool operator==(const Cord& lhs, absl::string_view rhs); |
| |
| friend const CordzInfo* GetCordzInfoForTesting(const Cord& cord); |
| |
| // Calls the provided function once for each cord chunk, in order. Unlike |
| // Chunks(), this API will not allocate memory. |
| void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const; |
| |
| // Allocates new contiguous storage for the contents of the cord. This is |
| // called by Flatten() when the cord was not already flat. |
| absl::string_view FlattenSlowPath(); |
| |
| // Actual cord contents are hidden inside the following simple |
| // class so that we can isolate the bulk of cord.cc from changes |
| // to the representation. |
| // |
| // InlineRep holds either a tree pointer, or an array of kMaxInline bytes. |
| class InlineRep { |
| public: |
| static constexpr unsigned char kMaxInline = cord_internal::kMaxInline; |
| static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); |
| |
| constexpr InlineRep() : data_() {} |
| explicit InlineRep(InlineData::DefaultInitType init) : data_(init) {} |
| InlineRep(const InlineRep& src); |
| InlineRep(InlineRep&& src); |
| InlineRep& operator=(const InlineRep& src); |
| InlineRep& operator=(InlineRep&& src) noexcept; |
| |
| explicit constexpr InlineRep(cord_internal::InlineData data); |
| |
| void Swap(InlineRep* rhs); |
| bool empty() const; |
| size_t size() const; |
| const char* data() const; // Returns nullptr if holding pointer |
| void set_data(const char* data, size_t n); // Discards pointer, if any |
| char* set_data(size_t n); // Write data to the result |
| // Returns nullptr if holding bytes |
| absl::cord_internal::CordRep* tree() const; |
| absl::cord_internal::CordRep* as_tree() const; |
| // Returns non-null iff was holding a pointer |
| absl::cord_internal::CordRep* clear(); |
| // Converts to pointer if necessary. |
| void reduce_size(size_t n); // REQUIRES: holding data |
| void remove_prefix(size_t n); // REQUIRES: holding data |
| void AppendArray(absl::string_view src, MethodIdentifier method); |
| absl::string_view FindFlatStartPiece() const; |
| |
| // Creates a CordRepFlat instance from the current inlined data with `extra' |
| // bytes of desired additional capacity. |
| CordRepFlat* MakeFlatWithExtraCapacity(size_t extra); |
| |
| // Sets the tree value for this instance. `rep` must not be null. |
| // Requires the current instance to hold a tree, and a lock to be held on |
| // any CordzInfo referenced by this instance. The latter is enforced through |
| // the CordzUpdateScope argument. If the current instance is sampled, then |
| // the CordzInfo instance is updated to reference the new `rep` value. |
| void SetTree(CordRep* rep, const CordzUpdateScope& scope); |
| |
| // Identical to SetTree(), except that `rep` is allowed to be null, in |
| // which case the current instance is reset to an empty value. |
| void SetTreeOrEmpty(CordRep* rep, const CordzUpdateScope& scope); |
| |
| // Sets the tree value for this instance, and randomly samples this cord. |
| // This function disregards existing contents in `data_`, and should be |
| // called when a Cord is 'promoted' from an 'uninitialized' or 'inlined' |
| // value to a non-inlined (tree / ring) value. |
| void EmplaceTree(CordRep* rep, MethodIdentifier method); |
| |
| // Identical to EmplaceTree, except that it copies the parent stack from |
| // the provided `parent` data if the parent is sampled. |
| void EmplaceTree(CordRep* rep, const InlineData& parent, |
| MethodIdentifier method); |
| |
| // Commits the change of a newly created, or updated `rep` root value into |
| // this cord. `old_rep` indicates the old (inlined or tree) value of the |
| // cord, and determines if the commit invokes SetTree() or EmplaceTree(). |
| void CommitTree(const CordRep* old_rep, CordRep* rep, |
| const CordzUpdateScope& scope, MethodIdentifier method); |
| |
| void AppendTreeToInlined(CordRep* tree, MethodIdentifier method); |
| void AppendTreeToTree(CordRep* tree, MethodIdentifier method); |
| void AppendTree(CordRep* tree, MethodIdentifier method); |
| void PrependTreeToInlined(CordRep* tree, MethodIdentifier method); |
| void PrependTreeToTree(CordRep* tree, MethodIdentifier method); |
| void PrependTree(CordRep* tree, MethodIdentifier method); |
| |
| template <bool has_length> |
| void GetAppendRegion(char** region, size_t* size, size_t length); |
| |
| bool IsSame(const InlineRep& other) const { |
| return memcmp(&data_, &other.data_, sizeof(data_)) == 0; |
| } |
| int BitwiseCompare(const InlineRep& other) const { |
| uint64_t x, y; |
| // Use memcpy to avoid aliasing issues. |
| memcpy(&x, &data_, sizeof(x)); |
| memcpy(&y, &other.data_, sizeof(y)); |
| if (x == y) { |
| memcpy(&x, reinterpret_cast<const char*>(&data_) + 8, sizeof(x)); |
| memcpy(&y, reinterpret_cast<const char*>(&other.data_) + 8, sizeof(y)); |
| if (x == y) return 0; |
| } |
| return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) |
| ? -1 |
| : 1; |
| } |
| void CopyTo(std::string* dst) const { |
| // memcpy is much faster when operating on a known size. On most supported |
| // platforms, the small string optimization is large enough that resizing |
| // to 15 bytes does not cause a memory allocation. |
| absl::strings_internal::STLStringResizeUninitialized(dst, |
| sizeof(data_) - 1); |
| memcpy(&(*dst)[0], &data_, sizeof(data_) - 1); |
| // erase is faster than resize because the logic for memory allocation is |
| // not needed. |
| dst->erase(inline_size()); |
| } |
| |
| // Copies the inline contents into `dst`. Assumes the cord is not empty. |
| void CopyToArray(char* dst) const; |
| |
| bool is_tree() const { return data_.is_tree(); } |
| |
| // Returns true if the Cord is being profiled by cordz. |
| bool is_profiled() const { return data_.is_tree() && data_.is_profiled(); } |
| |
| // Returns the available inlined capacity, or 0 if is_tree() == true. |
| size_t remaining_inline_capacity() const { |
| return data_.is_tree() ? 0 : kMaxInline - data_.inline_size(); |
| } |
| |
| // Returns the profiled CordzInfo, or nullptr if not sampled. |
| absl::cord_internal::CordzInfo* cordz_info() const { |
| return data_.cordz_info(); |
| } |
| |
| // Sets the profiled CordzInfo. `cordz_info` must not be null. |
| void set_cordz_info(cord_internal::CordzInfo* cordz_info) { |
| assert(cordz_info != nullptr); |
| data_.set_cordz_info(cordz_info); |
| } |
| |
| // Resets the current cordz_info to null / empty. |
| void clear_cordz_info() { data_.clear_cordz_info(); } |
| |
| private: |
| friend class Cord; |
| |
| void AssignSlow(const InlineRep& src); |
| // Unrefs the tree and stops profiling. |
| void UnrefTree(); |
| |
| void ResetToEmpty() { data_ = {}; } |
| |
| void set_inline_size(size_t size) { data_.set_inline_size(size); } |
| size_t inline_size() const { return data_.inline_size(); } |
| |
| cord_internal::InlineData data_; |
| }; |
| InlineRep contents_; |
| |
| // Helper for GetFlat() and TryFlat(). |
| static bool GetFlatAux(absl::cord_internal::CordRep* rep, |
| absl::string_view* fragment); |
| |
| // Helper for ForEachChunk(). |
| static void ForEachChunkAux( |
| absl::cord_internal::CordRep* rep, |
| absl::FunctionRef<void(absl::string_view)> callback); |
| |
| // The destructor for non-empty Cords. |
| void DestroyCordSlow(); |
| |
| // Out-of-line implementation of slower parts of logic. |
| void CopyToArraySlowPath(char* dst) const; |
| int CompareSlowPath(absl::string_view rhs, size_t compared_size, |
| size_t size_to_compare) const; |
| int CompareSlowPath(const Cord& rhs, size_t compared_size, |
| size_t size_to_compare) const; |
| bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; |
| bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; |
| int CompareImpl(const Cord& rhs) const; |
| |
| template <typename ResultType, typename RHS> |
| friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, |
| size_t size_to_compare); |
| static absl::string_view GetFirstChunk(const Cord& c); |
| static absl::string_view GetFirstChunk(absl::string_view sv); |
| |
| // Returns a new reference to contents_.tree(), or steals an existing |
| // reference if called on an rvalue. |
| absl::cord_internal::CordRep* TakeRep() const&; |
| absl::cord_internal::CordRep* TakeRep() &&; |
| |
| // Helper for Append(). |
| template <typename C> |
| void AppendImpl(C&& src); |
| |
| // Prepends the provided data to this instance. `method` contains the public |
| // API method for this action which is tracked for Cordz sampling purposes. |
| void PrependArray(absl::string_view src, MethodIdentifier method); |
| |
| // Assigns the value in 'src' to this instance, 'stealing' its contents. |
| // Requires src.length() > kMaxBytesToCopy. |
| Cord& AssignLargeString(std::string&& src); |
| |
| // Helper for AbslHashValue(). |
| template <typename H> |
| H HashFragmented(H hash_state) const { |
| typename H::AbslInternalPiecewiseCombiner combiner; |
| ForEachChunk([&combiner, &hash_state](absl::string_view chunk) { |
| hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(), |
| chunk.size()); |
| }); |
| return H::combine(combiner.finalize(std::move(hash_state)), size()); |
| } |
| }; |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // allow a Cord to be logged |
| extern std::ostream& operator<<(std::ostream& out, const Cord& cord); |
| |
| // ------------------------------------------------------------------ |
| // Internal details follow. Clients should ignore. |
| |
| namespace cord_internal { |
| |
| // Fast implementation of memmove for up to 15 bytes. This implementation is |
| // safe for overlapping regions. If nullify_tail is true, the destination is |
| // padded with '\0' up to 16 bytes. |
| template <bool nullify_tail = false> |
| inline void SmallMemmove(char* dst, const char* src, size_t n) { |
| if (n >= 8) { |
| assert(n <= 16); |
| uint64_t buf1; |
| uint64_t buf2; |
| memcpy(&buf1, src, 8); |
| memcpy(&buf2, src + n - 8, 8); |
| if (nullify_tail) { |
| memset(dst + 8, 0, 8); |
| } |
| memcpy(dst, &buf1, 8); |
| memcpy(dst + n - 8, &buf2, 8); |
| } else if (n >= 4) { |
| uint32_t buf1; |
| uint32_t buf2; |
| memcpy(&buf1, src, 4); |
| memcpy(&buf2, src + n - 4, 4); |
| if (nullify_tail) { |
| memset(dst + 4, 0, 4); |
| memset(dst + 8, 0, 8); |
| } |
| memcpy(dst, &buf1, 4); |
| memcpy(dst + n - 4, &buf2, 4); |
| } else { |
| if (n != 0) { |
| dst[0] = src[0]; |
| dst[n / 2] = src[n / 2]; |
| dst[n - 1] = src[n - 1]; |
| } |
| if (nullify_tail) { |
| memset(dst + 8, 0, 8); |
| memset(dst + n, 0, 8); |
| } |
| } |
| } |
| |
| // Does non-template-specific `CordRepExternal` initialization. |
| // Requires `data` to be non-empty. |
| void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep); |
| |
| // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer |
| // to it. Requires `data` to be non-empty. |
| template <typename Releaser> |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
| CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { |
| assert(!data.empty()); |
| using ReleaserType = absl::decay_t<Releaser>; |
| CordRepExternal* rep = new CordRepExternalImpl<ReleaserType>( |
| std::forward<Releaser>(releaser), 0); |
| InitializeCordRepExternal(data, rep); |
| return rep; |
| } |
| |
| // Overload for function reference types that dispatches using a function |
| // pointer because there are no `alignof()` or `sizeof()` a function reference. |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
| inline CordRep* NewExternalRep(absl::string_view data, |
| void (&releaser)(absl::string_view)) { |
| return NewExternalRep(data, &releaser); |
| } |
| |
| } // namespace cord_internal |
| |
| template <typename Releaser> |
| Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { |
| Cord cord; |
| if (ABSL_PREDICT_TRUE(!data.empty())) { |
| cord.contents_.EmplaceTree(::absl::cord_internal::NewExternalRep( |
| data, std::forward<Releaser>(releaser)), |
| Cord::MethodIdentifier::kMakeCordFromExternal); |
| } else { |
| using ReleaserType = absl::decay_t<Releaser>; |
| cord_internal::InvokeReleaser( |
| cord_internal::Rank0{}, ReleaserType(std::forward<Releaser>(releaser)), |
| data); |
| } |
| return cord; |
| } |
| |
| constexpr Cord::InlineRep::InlineRep(cord_internal::InlineData data) |
| : data_(data) {} |
| |
| inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) |
| : data_(InlineData::kDefaultInit) { |
| if (CordRep* tree = src.tree()) { |
| EmplaceTree(CordRep::Ref(tree), src.data_, |
| CordzUpdateTracker::kConstructorCord); |
| } else { |
| data_ = src.data_; |
| } |
| } |
| |
| inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) : data_(src.data_) { |
| src.ResetToEmpty(); |
| } |
| |
| inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { |
| if (this == &src) { |
| return *this; |
| } |
| if (!is_tree() && !src.is_tree()) { |
| data_ = src.data_; |
| return *this; |
| } |
| AssignSlow(src); |
| return *this; |
| } |
| |
| inline Cord::InlineRep& Cord::InlineRep::operator=( |
| Cord::InlineRep&& src) noexcept { |
| if (is_tree()) { |
| UnrefTree(); |
| } |
| data_ = src.data_; |
| src.ResetToEmpty(); |
| return *this; |
| } |
| |
| inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { |
| if (rhs == this) { |
| return; |
| } |
| std::swap(data_, rhs->data_); |
| } |
| |
| inline const char* Cord::InlineRep::data() const { |
| return is_tree() ? nullptr : data_.as_chars(); |
| } |
| |
| inline absl::cord_internal::CordRep* Cord::InlineRep::as_tree() const { |
| assert(data_.is_tree()); |
| return data_.as_tree(); |
| } |
| |
| inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { |
| if (is_tree()) { |
| return as_tree(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| inline bool Cord::InlineRep::empty() const { return data_.is_empty(); } |
| |
| inline size_t Cord::InlineRep::size() const { |
| return is_tree() ? as_tree()->length : inline_size(); |
| } |
| |
| inline cord_internal::CordRepFlat* Cord::InlineRep::MakeFlatWithExtraCapacity( |
| size_t extra) { |
| static_assert(cord_internal::kMinFlatLength >= sizeof(data_), ""); |
| size_t len = data_.inline_size(); |
| auto* result = CordRepFlat::New(len + extra); |
| result->length = len; |
| memcpy(result->Data(), data_.as_chars(), sizeof(data_)); |
| return result; |
| } |
| |
| inline void Cord::InlineRep::EmplaceTree(CordRep* rep, |
| MethodIdentifier method) { |
| assert(rep); |
| data_.make_tree(rep); |
| CordzInfo::MaybeTrackCord(data_, method); |
| } |
| |
| inline void Cord::InlineRep::EmplaceTree(CordRep* rep, const InlineData& parent, |
| MethodIdentifier method) { |
| data_.make_tree(rep); |
| CordzInfo::MaybeTrackCord(data_, parent, method); |
| } |
| |
| inline void Cord::InlineRep::SetTree(CordRep* rep, |
| const CordzUpdateScope& scope) { |
| assert(rep); |
| assert(data_.is_tree()); |
| data_.set_tree(rep); |
| scope.SetCordRep(rep); |
| } |
| |
| inline void Cord::InlineRep::SetTreeOrEmpty(CordRep* rep, |
| const CordzUpdateScope& scope) { |
| assert(data_.is_tree()); |
| if (rep) { |
| data_.set_tree(rep); |
| } else { |
| data_ = {}; |
| } |
| scope.SetCordRep(rep); |
| } |
| |
| inline void Cord::InlineRep::CommitTree(const CordRep* old_rep, CordRep* rep, |
| const CordzUpdateScope& scope, |
| MethodIdentifier method) { |
| if (old_rep) { |
| SetTree(rep, scope); |
| } else { |
| EmplaceTree(rep, method); |
| } |
| } |
| |
| inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { |
| if (is_tree()) { |
| CordzInfo::MaybeUntrackCord(cordz_info()); |
| } |
| absl::cord_internal::CordRep* result = tree(); |
| ResetToEmpty(); |
| return result; |
| } |
| |
| inline void Cord::InlineRep::CopyToArray(char* dst) const { |
| assert(!is_tree()); |
| size_t n = inline_size(); |
| assert(n != 0); |
| cord_internal::SmallMemmove(dst, data_.as_chars(), n); |
| } |
| |
| constexpr inline Cord::Cord() noexcept {} |
| |
| inline Cord::Cord(absl::string_view src) |
| : Cord(src, CordzUpdateTracker::kConstructorString) {} |
| |
| template <typename T> |
| constexpr Cord::Cord(strings_internal::StringConstant<T>) |
| : contents_(strings_internal::StringConstant<T>::value.size() <= |
| cord_internal::kMaxInline |
| ? cord_internal::InlineData( |
| strings_internal::StringConstant<T>::value) |
| : cord_internal::InlineData( |
| &cord_internal::ConstInitExternalStorage< |
| strings_internal::StringConstant<T>>::value)) {} |
| |
| inline Cord& Cord::operator=(const Cord& x) { |
| contents_ = x.contents_; |
| return *this; |
| } |
| |
| template <typename T, Cord::EnableIfString<T>> |
| Cord& Cord::operator=(T&& src) { |
| if (src.size() <= cord_internal::kMaxBytesToCopy) { |
| return operator=(absl::string_view(src)); |
| } else { |
| return AssignLargeString(std::forward<T>(src)); |
| } |
| } |
| |
| inline Cord::Cord(const Cord& src) : contents_(src.contents_) {} |
| |
| inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} |
| |
| inline void Cord::swap(Cord& other) noexcept { |
| contents_.Swap(&other.contents_); |
| } |
| |
| inline Cord& Cord::operator=(Cord&& x) noexcept { |
| contents_ = std::move(x.contents_); |
| return *this; |
| } |
| |
| extern template Cord::Cord(std::string&& src); |
| |
| inline size_t Cord::size() const { |
| // Length is 1st field in str.rep_ |
| return contents_.size(); |
| } |
| |
| inline bool Cord::empty() const { return contents_.empty(); } |
| |
| inline size_t Cord::EstimatedMemoryUsage( |
| CordMemoryAccounting accounting_method) const { |
| size_t result = sizeof(Cord); |
| if (const absl::cord_internal::CordRep* rep = contents_.tree()) { |
| if (accounting_method == CordMemoryAccounting::kFairShare) { |
| result += cord_internal::GetEstimatedFairShareMemoryUsage(rep); |
| } else { |
| result += cord_internal::GetEstimatedMemoryUsage(rep); |
| } |
| } |
| return result; |
| } |
| |
| inline absl::optional<absl::string_view> Cord::TryFlat() const { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| return absl::string_view(contents_.data(), contents_.size()); |
| } |
| absl::string_view fragment; |
| if (GetFlatAux(rep, &fragment)) { |
| return fragment; |
| } |
| return absl::nullopt; |
| } |
| |
| inline absl::string_view Cord::Flatten() { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| return absl::string_view(contents_.data(), contents_.size()); |
| } else { |
| absl::string_view already_flat_contents; |
| if (GetFlatAux(rep, &already_flat_contents)) { |
| return already_flat_contents; |
| } |
| } |
| return FlattenSlowPath(); |
| } |
| |
| inline void Cord::Append(absl::string_view src) { |
| contents_.AppendArray(src, CordzUpdateTracker::kAppendString); |
| } |
| |
| inline void Cord::Prepend(absl::string_view src) { |
| PrependArray(src, CordzUpdateTracker::kPrependString); |
| } |
| |
| extern template void Cord::Append(std::string&& src); |
| extern template void Cord::Prepend(std::string&& src); |
| |
| inline int Cord::Compare(const Cord& rhs) const { |
| if (!contents_.is_tree() && !rhs.contents_.is_tree()) { |
| return contents_.BitwiseCompare(rhs.contents_); |
| } |
| |
| return CompareImpl(rhs); |
| } |
| |
| // Does 'this' cord start/end with rhs |
| inline bool Cord::StartsWith(const Cord& rhs) const { |
| if (contents_.IsSame(rhs.contents_)) return true; |
| size_t rhs_size = rhs.size(); |
| if (size() < rhs_size) return false; |
| return EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool Cord::StartsWith(absl::string_view rhs) const { |
| size_t rhs_size = rhs.size(); |
| if (size() < rhs_size) return false; |
| return EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline void Cord::ChunkIterator::InitTree(cord_internal::CordRep* tree) { |
| tree = cord_internal::SkipCrcNode(tree); |
| if (tree->tag == cord_internal::BTREE) { |
| current_chunk_ = btree_reader_.Init(tree->btree()); |
| return; |
| } |
| |
| stack_of_right_children_.push_back(tree); |
| operator++(); |
| } |
| |
| inline Cord::ChunkIterator::ChunkIterator(cord_internal::CordRep* tree) |
| : bytes_remaining_(tree->length) { |
| InitTree(tree); |
| } |
| |
| inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) |
| : bytes_remaining_(cord->size()) { |
| if (cord->contents_.is_tree()) { |
| InitTree(cord->contents_.as_tree()); |
| } else { |
| current_chunk_ = |
| absl::string_view(cord->contents_.data(), bytes_remaining_); |
| } |
| } |
| |
| inline Cord::ChunkIterator& Cord::ChunkIterator::AdvanceBtree() { |
| current_chunk_ = btree_reader_.Next(); |
| return *this; |
| } |
| |
| inline void Cord::ChunkIterator::AdvanceBytesBtree(size_t n) { |
| assert(n >= current_chunk_.size()); |
| bytes_remaining_ -= n; |
| if (bytes_remaining_) { |
| if (n == current_chunk_.size()) { |
| current_chunk_ = btree_reader_.Next(); |
| } else { |
| size_t offset = btree_reader_.length() - bytes_remaining_; |
| current_chunk_ = btree_reader_.Seek(offset); |
| } |
| } else { |
| current_chunk_ = {}; |
| } |
| } |
| |
| inline Cord::ChunkIterator& Cord::ChunkIterator::operator++() { |
| ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 && |
| "Attempted to iterate past `end()`"); |
| assert(bytes_remaining_ >= current_chunk_.size()); |
| bytes_remaining_ -= current_chunk_.size(); |
| if (bytes_remaining_ > 0) { |
| return btree_reader_ ? AdvanceBtree() : AdvanceStack(); |
| } else { |
| current_chunk_ = {}; |
| } |
| return *this; |
| } |
| |
| inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { |
| ChunkIterator tmp(*this); |
| operator++(); |
| return tmp; |
| } |
| |
| inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { |
| return bytes_remaining_ == other.bytes_remaining_; |
| } |
| |
| inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { |
| return !(*this == other); |
| } |
| |
| inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { |
| ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); |
| return current_chunk_; |
| } |
| |
| inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { |
| ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); |
| return ¤t_chunk_; |
| } |
| |
| inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { |
| assert(n < current_chunk_.size()); |
| current_chunk_.remove_prefix(n); |
| bytes_remaining_ -= n; |
| } |
| |
| inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { |
| assert(bytes_remaining_ >= n); |
| if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { |
| RemoveChunkPrefix(n); |
| } else if (n != 0) { |
| btree_reader_ ? AdvanceBytesBtree(n) : AdvanceBytesSlowPath(n); |
| } |
| } |
| |
| inline Cord::ChunkIterator Cord::chunk_begin() const { |
| return ChunkIterator(this); |
| } |
| |
| inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } |
| |
| inline Cord::ChunkIterator Cord::ChunkRange::begin() const { |
| return cord_->chunk_begin(); |
| } |
| |
| inline Cord::ChunkIterator Cord::ChunkRange::end() const { |
| return cord_->chunk_end(); |
| } |
| |
| inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } |
| |
| inline Cord::CharIterator& Cord::CharIterator::operator++() { |
| if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { |
| chunk_iterator_.RemoveChunkPrefix(1); |
| } else { |
| ++chunk_iterator_; |
| } |
| return *this; |
| } |
| |
| inline Cord::CharIterator Cord::CharIterator::operator++(int) { |
| CharIterator tmp(*this); |
| operator++(); |
| return tmp; |
| } |
| |
| inline bool Cord::CharIterator::operator==(const CharIterator& other) const { |
| return chunk_iterator_ == other.chunk_iterator_; |
| } |
| |
| inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { |
| return !(*this == other); |
| } |
| |
| inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { |
| return *chunk_iterator_->data(); |
| } |
| |
| inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { |
| return chunk_iterator_->data(); |
| } |
| |
| inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { |
| assert(it != nullptr); |
| return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); |
| } |
| |
| inline void Cord::Advance(CharIterator* it, size_t n_bytes) { |
| assert(it != nullptr); |
| it->chunk_iterator_.AdvanceBytes(n_bytes); |
| } |
| |
| inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { |
| return *it.chunk_iterator_; |
| } |
| |
| inline Cord::CharIterator Cord::char_begin() const { |
| return CharIterator(this); |
| } |
| |
| inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } |
| |
| inline Cord::CharIterator Cord::CharRange::begin() const { |
| return cord_->char_begin(); |
| } |
| |
| inline Cord::CharIterator Cord::CharRange::end() const { |
| return cord_->char_end(); |
| } |
| |
| inline Cord::CharRange Cord::Chars() const { return CharRange(this); } |
| |
| inline void Cord::ForEachChunk( |
| absl::FunctionRef<void(absl::string_view)> callback) const { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| callback(absl::string_view(contents_.data(), contents_.size())); |
| } else { |
| return ForEachChunkAux(rep, callback); |
| } |
| } |
| |
| // Nonmember Cord-to-Cord relational operarators. |
| inline bool operator==(const Cord& lhs, const Cord& rhs) { |
| if (lhs.contents_.IsSame(rhs.contents_)) return true; |
| size_t rhs_size = rhs.size(); |
| if (lhs.size() != rhs_size) return false; |
| return lhs.EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } |
| inline bool operator<(const Cord& x, const Cord& y) { return x.Compare(y) < 0; } |
| inline bool operator>(const Cord& x, const Cord& y) { return x.Compare(y) > 0; } |
| inline bool operator<=(const Cord& x, const Cord& y) { |
| return x.Compare(y) <= 0; |
| } |
| inline bool operator>=(const Cord& x, const Cord& y) { |
| return x.Compare(y) >= 0; |
| } |
| |
| // Nonmember Cord-to-absl::string_view relational operators. |
| // |
| // Due to implicit conversions, these also enable comparisons of Cord with |
| // with std::string, ::string, and const char*. |
| inline bool operator==(const Cord& lhs, absl::string_view rhs) { |
| size_t lhs_size = lhs.size(); |
| size_t rhs_size = rhs.size(); |
| if (lhs_size != rhs_size) return false; |
| return lhs.EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } |
| inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } |
| inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } |
| inline bool operator<(const Cord& x, absl::string_view y) { |
| return x.Compare(y) < 0; |
| } |
| inline bool operator<(absl::string_view x, const Cord& y) { |
| return y.Compare(x) > 0; |
| } |
| inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } |
| inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } |
| inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } |
| inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } |
| inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } |
| inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } |
| |
| // Some internals exposed to test code. |
| namespace strings_internal { |
| class CordTestAccess { |
| public: |
| static size_t FlatOverhead(); |
| static size_t MaxFlatLength(); |
| static size_t SizeofCordRepConcat(); |
| static size_t SizeofCordRepExternal(); |
| static size_t SizeofCordRepSubstring(); |
| static size_t FlatTagToLength(uint8_t tag); |
| static uint8_t LengthToTag(size_t s); |
| }; |
| } // namespace strings_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_STRINGS_CORD_H_ |